SEARCH FOR CPVIOLATION IN BARYONS WITH THE LHCb DETECTOR

Chiara Mancuso on behalf of the LHCb collaboration

I 2th International Workshop on the CKM Unitarity Triangle I8-22 September 2023

chiara.mancuso@cern.ch

INTRODUCTION

Why studying CP violation?

- Important phenomenon in the Standard Model (SM)
- Accomodated in the SM with the CKM matrix
- Well enstablished in mesons and consistent with the predictions
- Predicted for baryons, never observed

Outline

- Search for CP violation and observation of P violation in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ [Phys. Rev. D 102, 051101]
- Observation of the suppressed $\Lambda_b^0 \rightarrow D^0 p K^-$ decay with $D^0 \rightarrow K^+ \pi^-$ and measurement of its CP asymmetry [arXiv:2109.02621]
- Search for CP violation in $\Xi_b^- \rightarrow pK^-K^-$ decays [Phys Rev D 104, 052010 (2021)]

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} =$$
$$= \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

b-BARYONS @LHCb

- In contrast with the study of CP violation in beauty-meson decays, the sector of beauty baryons remains almost unexplored
- Thanks to the **large production cross-section** of beauty baryons in *pp* collisions at the LHC, the LHCb experiment is the only experiment capable of expanding our knowledge in this sector
- The first observation of CP violation in a baryon decay is already within the reach of LHCb with the data collected during the Run 2 of the LHC, considering that a first hint for CP violation in baryon decays has been reported in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ decays [Phys. Rev. D 102,051101]

- Analysis performed using data coming from pp collisions corresponding to an integrated luminosity of 6.6 fb⁻¹ collected from 2011 to 2017 at $\sqrt{s} = 7,8$ and 13 TeV
- The measurement is performed using two different independent techniques:
 - Studying Triple Product Asymmetries (TPA)
 - Unbinned energy test method

Starting point: $N_{\Lambda_{b}^{0}+\overline{\Lambda}_{b}^{0}} = 27\ 600 \pm 200$

- The searches for CP violation are performed by separating the **P-odd** and **P-even** contributions
- In these studies, a large control sample of Cabibbo-favored $\Lambda_b^0 \to \Lambda_c^+ (\to pK^-\pi^+) \pi^-$ decays is used, where **no CP violation** is expected, to assess potential experimental **biases** and **systematic effects**

Chiara Mancuso - CKM 2023

Two cents on TPA:

• Considers both local and integrated asymmetries

These quantities are odd under \hat{T} operator transormations

• The scalar triple products are built in the Λ_b^0 rest frame and correspond to

CP- and P-violating effects appear as differences between the triple product observables related by CP and P transformations.

Finally, the TPA are defined as

$$A_{\widehat{T}} = \frac{N(C_{\widehat{T}} > 0) - N(C_{\widehat{T}} < 0)}{N(C_{\widehat{T}} > 0) + N(C_{\widehat{T}} < 0)} \qquad \overline{A}_{\widehat{T}} = \frac{\overline{N}(-\overline{C}_{\widehat{T}} > 0) - \overline{N}(-\overline{C}_{\widehat{T}} < 0)}{\overline{N}(-\overline{C}_{\widehat{T}} > 0) + \overline{N}(-\overline{C}_{\widehat{T}} < 0)}$$

And it follows that the **CP-** and **P-violating asymmetries** are

$$a_{CP}^{\widehat{T}\text{-odd}} = \frac{1}{2} \left(A_{\widehat{T}} - \overline{A}_{\widehat{T}} \right)$$

Chiara Mancuso - CKM 2023

 $a_P^{\widehat{T}\text{-}\mathrm{odd}} = \frac{1}{2} \left(A_{\widehat{T}} + \overline{A}_{\widehat{T}} \right)$

Caveat:

• It has been shown that it exists a **dependence** of the CP asymmetry as a function of $|\Phi|$, the absolute value of the angle between the planes defined by the $p \pi_{fast}^-$ and $\pi^+ \pi_{slow}^-$ systems in the Λ_b^0 rest frame

A rich resonant structure:

Makes the decay investigated particularly well-suited for CPV searches. The dominant contributions are:

- $\Lambda_b^0 \to N^{*+}\pi^-$, with $N^{*+} \to \Delta^{++}(1234)\pi^-$, and $\Delta^{++}(1234) \to p \pi^+$
- $\Lambda_b^0 \to p \ a_1^-(1260)$, with $a_1^-(1260) \to \rho^0(770)\pi^-$, and $\rho^0(770) \to \pi^-\pi^+$

Two phase space binning schemes are adopted:

- <u>A</u>: 16 subsamples to explore the distribution of the **polar** and **azimuthal angles** of the proton in the Δ^{++} rest frame
- <u>B</u>: 10 subsamples uniformly distributed between $[0, \pi]$ used to probe the asymmetries as a function of $|\Phi|$

Two cents on the Energy Test method:

- It is a model-independent unbinned test sensitive to local differences between two samples
- The test is performed through the calculation of a test statistic

$$T \equiv \frac{1}{2n(n-1)} \sum_{i \neq j}^{n} \psi_{ij} + \frac{1}{2\overline{n}(\overline{n}-1)} \sum_{i \neq j}^{\overline{n}} \psi_{ij} - \frac{1}{n\overline{n}} \sum_{i=1}^{n} \sum_{j=1}^{\overline{n}} \psi_{ij}$$

 $\psi_{ij} = e^{-d_{ij}^2/2\delta^2}$, with d_{ij} the **Euclidean distance** between two candidates in the phase space and δ the **distance scale** probed in the Energy Test

The comparison between the regions allows several tests:

- Region I and IV compared to II and III: P-odd and CP-odd test
- Region I and II compared to III and IV: P-even and CP-odd test
- Region I and III compared to II and IV: P violation test

The **length scale** at which CP violation might appear is **not known**: three scales are probed $\delta = 1.6 \text{ GeV}^2/c^4$, 2.7 GeV²/c⁴, 13 GeV²/c⁴

SEARCH FOR CPVIOLATION AND OBSERVATION OF P [Phys. Rev. D 102, 051101] VIOLATION IN $\Lambda_h^0 \rightarrow p \ \pi^- \pi^+ \pi^-$

Results:

•

- The two observables $A_{\hat{T}}$ and $A_{\hat{T}}$ are **uncorrelated** from one other •
- The **reconstruction efficiency** for signal candidates with $C_{\hat{T}} > 0$ is **consistent** with that for candidates • with $C_{\hat{T}} < 0$, i.e. the detector and the reconstruction algorithms do not bias the measurements (same for $C_{\hat{T}}$)
- The main sources of **systematic uncertainties** in the TPA analysis are selection criteria, reconstruction and • $m(p\pi^+\pi^-_{\rm slow}) > 2.8 \,{\rm GeV}/c^2$ detector acceptance
- netries [% 20 The Energy Test method is insensitive to global **asymmetries**, and so is not affected by differences between Λ_h^0 and $\overline{\Lambda}_h^0$ production rates scheme A γ^2 /ndof=13.5/16 /ndof=25 3/16 $a_{CP}^{T\text{-odd}} = (-0.7 \pm 0.7 \pm 0.2)\%$ **TPA** results $a_P^{\widehat{T}\text{-odd}} = (-4.0 \pm 0.7 \pm 0.2)\%$ 8 10 12 0.5 6 14 16 Bin

Results:

- The two observables $A_{\hat{T}}$ and $\bar{A}_{\hat{T}}$ are **uncorrelated** from one other
- The **reconstruction efficiency** for signal candidates with $C_{\hat{T}} > 0$ is **consistent** with that for candidates with $C_{\hat{T}} < 0$, i.e. the detector and the reconstruction algorithms do not bias the measurements (same for $\bar{C}_{\hat{T}}$)
- The main sources of **systematic uncertainties** in the TPA analysis are selection criteria, reconstruction and detector acceptance
- The Energy Test method is **insensitive to global asymmetries**, and so is not affected by differences between Λ_b^0 and $\overline{\Lambda}_b^0$ production rates

Distance scale δ	$1.6 \ { m GeV^2}/c^4$	$2.7~{ m GeV^2}/c^4$	$13 \ { m GeV^2}/c^4$
p-value (CP conservation, P even)	3.1×10^{-2}	$2.7 imes 10^{-3}$	1.3×10^{-2}
p-value (CP conservation, P odd)	$1.5 imes 10^{-1}$	$6.9 imes 10^{-2}$	$6.5 imes 10^{-2}$
p-value (P conservation)	$1.3 imes 10^{-7}$	4.0×10^{-7}	$1.6 imes10^{-1}$

b-BARYONS @LHCb

- In contrast with the study of CP violation in beauty-meson decays, the sector of beauty baryons remains almost unexplored
- Thanks to the **large production cross-section** of beauty baryons in *pp* collisions at the LHC, the LHCb experiment is the only experiment capable of expanding our knowledge in this sector
- The first observation of CP violation in a baryon decay is already within the reach of LHCb with the data collected during the Run 2 of the LHC, considering that a first hint for CP violation in baryon decays has been reported in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ decays [Phys. Rev. D 102,051101]
- The unprecedented number of beauty baryons available with the data sample expected to be collected in the LHCb Upgrade I and later with UpgradeII phase, will allow a precision measurement programme of CP violation observables in b-baryon decays to be pursued

[arXiv:2109.02621]

• As for $b \to u$ and $b \to c$ tree-level transitions, like the decays $\Lambda_b^0 \to D\Lambda$ and $\Lambda_b^0 \to DpK^-$. These decays can be used to measure the CKM angle γ as it is done with $B^0 \to DK^+\pi^-$ decays

OBSERVATION OF THE SUPPRESSED $\Lambda_b^0 \rightarrow D^0 p K^-$ decay with $D^0 \rightarrow K^+ \pi^-$ and measurement of its cpasymmetry [arXiv:2109.02621]

- Analysis performed using data coming from pp collisions corresponding to an integrated luminosity of 9 fb⁻¹ collected from 2011 to 2018 at $\sqrt{s} = 7, 8$ and 13 TeV
- Study of $\Lambda_b^0 \to DpK^-$, with $D \to K^-\pi^+$ and $D \to K^+\pi^-$, D is a superposition of D^0 and \overline{D}^0 states
- The ratio of branching fractions of the two decays is measured, and the CP asymmetry of the suppressed mode is also reported
- $\Lambda_b^0 \to [K^+\pi^-]_D \text{pK}^-$ is **suppressed** by a factor $R \approx \left| \frac{V_{cb} V_{us}^*}{V_{ub} V_{cs}^*} \right|^2 = 6.0$
- **CP observable** $A = \frac{\mathcal{B}(\Lambda_b^0 \to [K^+\pi^-]_D p K^-) \mathcal{B}(\overline{\Lambda}_b^0 \to [K^-\pi^+]_D \overline{p} K^+)}{\mathcal{B}(\Lambda_b^0 \to [K^+\pi^-]_D p K^-) + \mathcal{B}(\overline{\Lambda}_b^0 \to [K^-\pi^+]_D \overline{p} K^+)}$
- The ratio of branching fractions R and the CP asymmetry A are measured separately in the full phase space and in a restricted phase space region $m^2(K^-p) < 5 \ GeV^2/c^4$
 - Region which involves $\Lambda_b^0 \to D\Lambda^*$ decays, where an enhanced sensitivity to γ is expected

OBSERVATION OF THE SUPPRESSED $\Lambda_b^0 \rightarrow D^0 p K^-$ DECAY WITH $D^0 \rightarrow K^+ \pi^-$ AND MEASUREMENT OF ITS CP ASYMMETRY [arXiv:2109.02621]

Physical background:

- Charmless background removed reducing the D^0 mass window and selection on D^0 decay time
- Contributions from $\Lambda_b^0 \to \Lambda_c^+ h^-$ are vetoed
- Double misidentified background: considered in the systematics

Observables and correction factors

Systematic uncertainties

- Many systematic effects **cancel** in the ratios
- Description of signal and background contributions in the invariant mass **fit model**
- Particle identification in the detector assessed with specific tools
- Asymmetry in Λ^0_b and $\overline{\Lambda}^0_b$ production
- Asymmetry in p and \bar{p} detection

OBSERVATION OF THE SUPPRESSED $\Lambda_b^0 \rightarrow D^0 \text{pK}^-$ decay with $D^0 \rightarrow K^+ \pi^-$ and measurement of its cpasymmetry [arXiv:2109.02621]

- Suppressed decay $\Lambda_b^0 \rightarrow [K^+\pi^-]_D p K^-$ seen for the first time
- The measured **yield** in the **full phase space** is:
 - 1437 ± 92 for the favoured mode
 - 241 ± 22 for the suppressed mode
- Favoured-to-suppressed \mathcal{B} ratio

 $R = 7.1 \pm 0.8 \,(\text{stat.})^{+0.4}_{-0.3} \,(\text{syst.})$

• CP asymmetry

 $A = 0.12 \pm 0.09 \,(\text{stat.})^{+0.02}_{-0.03} \,(\text{syst.})$

13

OBSERVATION OF THE SUPPRESSED $\Lambda_b^0 \rightarrow D^0 \text{pK}^-$ decay with $D^0 \rightarrow K^+ \pi^-$ and measurement of its cpasymmetry [arXiv:2109.02621]

- Suppressed decay $\Lambda_b^0 \rightarrow [K^+\pi^-]_D p K^-$ seen for the first time
- The measured **yield** in the **restricted phase space** is:
 - 664 ± 36 for the favoured mode
 - 84 ± 14 for the suppressed mode
- Favoured-to-suppressed \mathcal{B} ratio

 $R = 8.6 \pm 1.5 \,(\text{stat.})^{+0.4}_{-0.3} \,(\text{syst.})$

• CP asymmetry

 $A = 0.01 \pm 0.16 \,(\text{stat.})^{+0.03}_{-0.02} \,(\text{syst.})$

b-BARYONS @LHCb

- Another sector explored by the LHCb collaboration is that of beauty baryons decaying to final states without a charm quark
 - relevant contributions from $b \rightarrow d$, s loop-level transitions
- Very large signal yields are also expected in several **multibody final states** of Λ_b^0 and Ξ_b^0 decays
 - Besides the already seen $\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$, also $\Lambda_b^0 \to p K^- K^+ K^-$ decays are investigated for CPV searches, as Ξ_b^0 3- and 4-body decays

SEARCH FOR CPVIOLATION IN $\Xi_b^- \rightarrow pK^-K^-$ DECAYS [Phys Rev D 104, 052010 (2021)]

- Analysis performed using data coming from pp collisions corresponding to an integrated luminosity of 5 fb ⁻¹ collected from 2011 to 2016 at $\sqrt{s} = 7, 8$ and 13 TeV
- First amplitude analysis of any baryon decay mode whose model allows for CP-violation effects
- Only candidates in the m (pK^-K^-) signal region of ±40 MeV around the Ξ_b^- mass are retained for the amplitude analysis

120

100

80

60

40

20

5600

Entries / (23.125 MeV)

 Signal purities of (63 ± 3)% and (70 ± 2)% for Run I and Run 2, respectively

16

SEARCH FOR CPVIOLATION IN $\Xi_b^- \rightarrow pK^-K^-$ DECAYS [Phys Rev D 104, 052010 (2021)]

Dalitz Plot Analysis

- It is assumed that Ξ_b^- baryons produced in pp collisions within the LHCb acceptance have **negligible polarization**
 - As a result, the phase space of the $\Xi_b^- \rightarrow pK_1^-K_2^-$ decay is characterized by two independent kinematic variables $m^2(pK_1^-)$ and $m^2(pK_2^-)$
- The **Bose symmetry** implies that the decay amplitudes must be invariant under the exchange of the two kaons
 - The variables m_{low}^2 and m_{high}^2 are used, which denote the lower and higher of $m^2(pK_1^-)$ and $m^2(pK_2^-)$, respectively

• Other two variables are used, the **Squared Dalitz** ones

$$m' = \frac{1}{\pi} \arccos\left(2\frac{m(K^-K^-) - m_{\min}(K^-K^-)}{m_{\max}(K^-K^-) - m_{\min}(K^-K^-)}\right) \qquad \qquad \theta' = \frac{1}{\pi}\theta(K^-K^-)$$

SEARCH FOR CPVIOLATION IN $\Xi_b^- \rightarrow pK^-K^-$ DECAYS

[Phys Rev D 104, 052010 (2021)]

Helicity formalism

- The main characters of this amplitude analysis are Σ^* and Λ^* resonances via the decay chain $\Xi_b^- \to (R \to pK^-)K^-$
- The differential decay densities are expressed as

$$\frac{d\Gamma^Q}{d\Omega} = \frac{1}{(8\pi m_{\Xi_b})^3} \sum_{M_{\Xi_b},\lambda_p} \left| \sum_{R} A^Q_{R,M_{\Xi_b},\lambda_p}(\Omega) \right|^2$$

where $A_{R,M_{\Xi_b},\lambda_p}^Q(\Omega)$ denotes the **symmetrized decay amplitude** for a given intermediate state R, which is itself expressed as $A_{R,M_{\Xi_b},\lambda_p}^Q(m_{\text{low}}^2,m_{\text{high}}^2) = T_{R,M_{\Xi_b},\lambda_p}^Q(m_{\text{low}}^2,m_{\text{high}}^2) + (-1)^{M_{\Xi_b}+\lambda_p}T_{R,M_{\Xi_b},\lambda_p}^Q(m_{\text{high}}^2,m_{\text{low}}^2)$

• Resonances are parametrized with **Relativistic Breit–Wigner** (RBW) functions, F_{RBW} , that are modified by Blatt–Weisskopf barrier factors, $B_{L_{\Xi_h}}$ and B_{L_R} , and are given by

$$R(m_x^2) = B_{L_{\Xi_b}}(p|p_0, d) \left(\frac{p}{m_{\Xi_b}}\right)^{L_{\Xi_b}} F_{\text{RBW}}(m_x^2|m_0, \Gamma_0) \times B_{L_R}(q|q_0, d) \left(\frac{q}{m_0}\right)^{L_R}$$

SEARCH FOR CPVIOLATION IN $\Xi_b^- \rightarrow pK^-K^-$ DECAYS

[Phys Rev D 104, 052010 (2021)]

	Name	J^P	Mass	(MeV)	Width (MeV)	Main decay channels

t	$\Lambda(1405)$	$\frac{1}{2}$	1403	$5.1^{+1.3}_{-1.0}$	50.5 ± 2.0	$\Sigma\pi$
t	$\Lambda(1520)$	$\frac{3}{2}$	1518	to 1520	15 to 17	$N\bar{K}, \Sigma\pi$
t	$\Lambda(1670)$	$\frac{\overline{1}}{2}$	1660	to 1680	25 to 50	$N\bar{K}, \Sigma\pi, \Lambda\eta$
	$\Lambda(1690)$	$\frac{\overline{3}}{2}$	1685	to 1695	50 to 70	$N\bar{K}, \Sigma\pi, \Lambda\pi\pi, \Sigma\pi\pi$
	$\Lambda(1820)$	$\frac{\overline{5}}{2}$ +	1815	to 1825	70 to 90	$Nar{K}$
	$\Lambda(1830)$	$\frac{1}{2}$	1810	to 1830	60 to 110	$\Sigma \pi$
	$\Lambda(1890)$	$\frac{\overline{3}}{2}^+$	1850	to 1910	60 to 200	$Nar{K}$
t	Σ(1385)	$\frac{3}{2}$ +	1383	8.7 ± 1	36 ± 5	$\Lambda \pi, \Sigma \pi$
	Σ(1670)	$\frac{3}{2}$	1665	to 1685	40 to 80	$\Sigma \pi$
t	$\Sigma(1775)$	5-	1770	to 1780	105 to 135	$Nar{K}, \Lambda^{(*)}\pi$
t	$\Sigma(1915)$	$\frac{5}{2}$ +	1900	to 1935	80 to 160	not clear

	Λ(1600)	$\frac{1}{2}^{+}$	1560	to 1700	50 to 250	$N\bar{K}, \Sigma\pi$
	Λ(1800)	$\frac{1}{2}$	1720	to 1850	200 to 400	$N\bar{K}^{(*)}, \Sigma\pi, \Lambda\eta$
	Λ(1810)	$\frac{1}{2}$ +	1750	to 1850	50 to 250	$N\bar{K}^{(*)}, \Sigma\pi, \Lambda\eta, \Xi K$
	$\Lambda(2110)$	$\frac{5}{2}$ +	2090	to 2140	150 to 250	$Nar{K}^{(*)}, \Sigma\pi, \Lambda\Omega$
	Σ(1660)	$\frac{1}{2}$	1630	to 1690	40 to 200	$N\bar{K}, \Sigma\pi, \Lambda\pi$
	Σ(1750)	$\frac{1}{2}$	1730	to 1800	60 to 160	$N\bar{K}, \Sigma\pi, \Lambda\pi, \Sigma\eta$
	Σ(1940)	3-	1900	to 1950	150 to 300	$N\bar{K}, \Sigma\pi, \Lambda\pi$
_	Σ(2250)	??	2210	to 2280	60 to 150	$N\bar{K}, \Sigma\pi, \Lambda\pi$

A zoo of particles taken into consideration

- The $\Lambda(1520)$ resonance is chosen as the **reference component**, and the helicity couplings of all other resonant and nonresonant components are left free to vary in the fit
- Baseline model obtained by adding resonances iteratively to maximise the change in $-2\ln \mathcal{L}$
- This approach leads to a model that contains $\Sigma(1385)$, $\Lambda(1405)$, $\Lambda(1520)$, $\Lambda(1670)$, $\Sigma(1775)$ and $\Sigma(1915)$ components
- The potential for additional components to be present in the chosen model is considered as a source of **systematic uncertainty**

SEARCH FOR CPVIOLATION IN $\Xi_b^- \rightarrow pK^-K^-$ DECAYS

[Phys Rev D 104, 052010 (2021)]

Fit results

- The fit is performed **simultaneously** on Run I and Run2 data
- There is **no indication of CP violation** in the distributions, i.e., no significant difference between Ξ_b^- and $\overline{\Xi}_b^+$ decays

Component	A^{CP} (10 ⁻²)
Σ(1385)	$-27 \pm 34 (\text{stat}) \pm 73 (\text{syst})$
Λ(1405)	-1 ± 24 (stat) ± 32 (syst)
Λ(1520)	-5 ± 9 (stat) ± 8 (syst)
$\Lambda(1670)$	3 ± 14 (stat) ± 10 (syst)
$\Sigma(1775)$	$-47 \pm 26 (\mathrm{stat}) \pm 14 (\mathrm{syst})$
Σ(1915)	$11\pm26(\mathrm{stat})\pm22(\mathrm{syst})$

20

CONCLUSIONS

Summary of this talk

- The LHCb collaboration is putting a lot of effort into the search for CP violation in baryons
 - Upgradel and II will allow to have much more statistics for these studies!
- Up-to-now many channels are being investigated, 3- and 4-body decays of both Ξ_b and Λ_b
 - Also exploring never tried techniques
- Unfortunately, only hints of CP violation have been found, but an evidence of P violation was found
- Many analysis are in the pipeline! The search is not stopping

THANKS FOR LISTENING! QUESTIONS?

