
New Physics in                  Mixing
                   in connection with CKM angle                                                    

Bq − B̄q

γ

Kristof De Bruyn, Robert Fleischer, E.M., Philine van Vliet

The talk is based on:

Journal of Physics G: Nuclear and Particle Physics,  
Volume 50, Number 4 

DOI 10.1088/1361-6471/acab1d 

Eleftheria Malami

Theoretical Particle Physics Group

https://iopscience.iop.org/journal/0954-3899
https://iopscience.iop.org/volume/0954-3899/50
https://iopscience.iop.org/issue/0954-3899/50/4


Introduction

Neutral Meson Mixing

Schrödinger equation      Mass eigenstates         

ϕsand ϕd mixing phases

Time-dependent decay rates:  
      characterised by  

mass difference ΔMq

Important quantities



Introduction

Neutral Meson Mixing

Schrödinger equation      Mass eigenstates         

ϕsand ϕd mixing phases

Time-dependent decay rates:  
      characterised by  

mass difference ΔMq

Unitarity Triangle

[M.Z. Barel, K. De Bruyn, R. Fleischer, & E.M. (2020)]

Important quantities

Wolfenstein parameters

Following PDG parametrisation, 
the UT coordinates are given by:



Introduction

Neutral Meson Mixing

Schrödinger equation      Mass eigenstates         

ϕsand ϕd mixing phases

Time-dependent decay rates:  
      characterised by  

mass difference ΔMq

Unitarity Triangle

[M.Z. Barel, K. De Bruyn, R. Fleischer, & E.M. (2020)]

Important quantities

Wolfenstein parameters

Following PDG parametrisation, 
the UT coordinates are given by:

determined from decays  
that proceed only via tree topologies
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 Decay-time-dependent B0
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penguin effects are included

The effective mixing angle determined from B0
d → J/ψKS

and the corresponding CP asymmetries 
Updating [J. Phys. G: Nucl. Part. Phys. 48 (2021) 065002]

using new LHCb                                   and Belle II                      data [LHCb-PAPER-2023-013]  [2302.12898]

Special thanks to Kristof De Bruyn for the updated values and the corresponding GammaCombo plots!
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For completeness, the other mixed option
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• The UT side Rt  is defined as: 
FLAG(2021), 
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due to experiment 

due to lattice input

scenarios with γ are a factor 2 less precise 
than the scenarios without γ 

UT apex determination  
through Rb and Rt is more precise 

Rt determined assuming SM ∆md and ∆ms  

ignores possible NP in                 mixing  
•NP will contaminate Rt  determination 

To determine NP in                mixing  
in a general scenario:  UT apex 
determination through Rb and γ 
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Introducing NP Parameters

Model independent parametrization

We explore 2 different NP scenarios

Comparing FUNP with Scenario I
test of FUNP 
assumption

Impact of the assumptions on 
the constraints on parameters 
space of NP in mixing
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We will focus on the following topics

• Constraining 

• UT 

• Special attention:
   to determination
     of CKM input
      parameters

determination

B0
q − B̄0

q mixing

the New Physics
 parameters of

• Application in 
 the analysis of rare
   leptonic decays 

• Minimising CKM
parameters impact

in NP searches

Future
Prospects
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in the uncertainty on:
• the CKM matrix element |Vcb|, 
• the lattice calculations, 
• the UT apex
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less promising than the Bs-meson 
due to small κd we find with current data
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Thank you!

Don’t forget to follow us on Instagram…
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Fit results - Scenario I
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