

Decay-time-dependent measurements of the CKM angle γ at LHCb

On behalf of the LHCb collaboration

September 19th 2023

Quentin Führing

12th International Workshop on the CKM Unitarity

Decay-time dependent measurements of γ

- Interference of direct decay and decay after mixing Accessible in relative phase
- Limited sensitivity in $B^0 \rightarrow D^{\mp} \pi^{\pm}$ -like decays
- Good sensitivity in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ -like decays
 - Large interference effects

2023-09-19 Q. Führing TD measurements of γ at LHCb

 D_s^+

 K^{-}

Decay-time dependent measurements of γ

- Measurement of four decay rates gives access to:
 - Relative phase $\gamma 2\beta_s$ Strong phase difference δ • Amplitude ratio $r_{D_{c}K}$

$$\Gamma\left(B_{s}^{0}(t) \rightarrow f/\bar{f}\right) \sim \mathbf{e}^{-\Gamma_{s}t} \left(\cosh\left(\frac{\Delta\Gamma_{s}}{2}t\right) + C_{ff\bar{f}}\cos\left(\Delta m_{s}t\right) + A_{ff\bar{f}}^{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma_{s}}{2}t\right) - S_{ff\bar{f}}\sin\left(\Delta m_{s}t\right)\right)$$

$$C_{f} = C_{\bar{f}} = \frac{1 - r_{D_{s}K}^{2}}{1 + r_{D_{s}K}^{2}} \qquad A_{f}^{\Delta\Gamma} = \frac{-2r_{D_{s}K}\cos\left(\delta - (\gamma - 2\beta_{s})\right)}{1 + r_{D_{s}K}^{2}} \qquad S_{f} = \frac{2r_{D_{s}K}\sin\left(\delta - (\gamma - 2\beta_{s})\right)}{1 + r_{D_{s}K}^{2}} \qquad A_{\bar{f}}^{\Delta\Gamma} = \frac{-2r_{D_{s}K}\cos\left(\delta + (\gamma - 2\beta_{s})\right)}{1 + r_{D_{s}K}^{2}} \qquad S_{\bar{f}} = \frac{2r_{D_{s}K}\sin\left(\delta + (\gamma - 2\beta_{s})\right)}{1 + r_{D_{s}K}^{2}} \qquad S_{\bar{f}} = \frac{2r_{D_{s}K}\sin\left(\delta + (\gamma - 2\beta_{s})\right)}{1 + r_{D_{s}K}^{2}}$$

$$\Gamma\left(B_{s}^{0}(t) \rightarrow f/\bar{f}\right) \sim e^{-\Gamma_{s}t}\left(\cosh\left(\frac{\Delta\Gamma_{s}}{2}t\right) + C_{f/\bar{f}}\cos\left(\Delta m_{s}t\right) + A_{f/\bar{f}}^{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma_{s}}{2}t\right) - S_{f/\bar{f}}\sin\left(\Delta m_{s}t\right)\right)$$

$$C_{f} = C_{\bar{f}} = \frac{1 - r_{D_{s}K}^{2}}{1 + r_{D_{s}K}^{2}} \qquad A_{f}^{\Delta\Gamma} = \frac{-2r_{D_{s}K}\cos\left(\delta - (\gamma - 2\beta_{s})\right)}{1 + r_{D_{s}K}^{2}} \qquad S_{f} = \frac{2r_{D_{s}K}\sin\left(\delta - (\gamma - 2\beta_{s})\right)}{1 + r_{D_{s}K}^{2}} \qquad A_{\bar{f}}^{\Delta\Gamma} = \frac{-2r_{D_{s}K}\cos\left(\delta + (\gamma - 2\beta_{s})\right)}{1 + r_{D_{s}K}^{2}} \qquad S_{\bar{f}} = \frac{2r_{D_{s}K}\sin\left(\delta + (\gamma - 2\beta_{s})\right)}{1 + r_{D_{s}K}^{2}} \qquad N_{f}^{\Delta\Gamma} = \frac{-2r_{D_{s}K}\cos\left(\delta + (\gamma - 2\beta_{s})\right)}{1 + r_{D_{s}K}^{2}} \qquad S_{\bar{f}} = \frac{2r_{D_{s}K}\sin\left(\delta + (\gamma - 2\beta_{s})\right)}{1 + r_{D_{s}K}^{2}}$$

2023-09-19 Q. Führing | TD measurements of γ at LHCb

The LHCb experiment

The LHCb experiment

Single-arm forward spectrometer

Precision measurements of b and c decays

Good decay-time resolution

- VertexLocator close to interaction region
- Average resolution below 50 fs [4]

Good hadron identification

- Only $10 \% \pi \rightarrow K$ misID at 95 % K efficiency [6]
- Important for the hadronic final-states
- Ingredient to flavour tagging

[4] LHCb-CONF-2023-004 [6] Int. J. Mod. Phys. A 30, 1530022 (2015) [7] Eur. Phys. J. C 73, 2431 (2013)

Flavour tagging at LHCb

- Flavour tagging estimates initial flavour
 - Exploits various fragmentation processes
 - MVA-based mistag probability

2023-09-19 | Q. Führing | TD measurements of γ at LHCb

L, r

IrReduction of effective sample sizeessesTagging efficiency

Dilution from mistagged candidates

•

$TD B_{c}^{0}$ measurements at LHCb

- Signal extraction
- Careful handling of:
 - Flavour tagging calibration
 - Decay-time resolution
 - Decay-time acceptance

$- B_s^0 \to D_s^- \pi^+ - \overline{B}_s^0 \to D_s^- \pi^+ - \text{Untagged}$ 20001000LHCb $6\,\mathrm{fb}^{-1}$ 26 t | ps |Figure taken from [8]

TD measurements of γ at LHCb

• Time-dependent measurements of γ

- $B^0 \to D^{\mp} \pi^{\pm}$ (Run1, 3 fb^{-1}) [1]
- $B_s^0 \to D_s^{\mp} K^{\pm}$ (Run1, 3 fb⁻¹) [2]
- $B_{c}^{0} \to D_{c}^{\mp} K^{\pm} \pi^{\mp} \pi^{\pm}$ (Run1+2, 9 fb⁻¹) [3]
- $B_s^0 \to D_s^{\pm} K^{\pm} \mathbb{NEW}!$ (Run2, 6 fb⁻¹) [4]

Small tensions

Charged vs neutral

Table taken from [5]									
Method	Value [°]	$68.3\%~{ m CL}$		$95.4\%~{ m CL}$					
		Uncertainty	Interval	Uncertainty	Interval				
Time-dependent	79	$^{+21}_{-23}$	[56, 100]	$+51 \\ -48$	[31,130]				
Time-integrated	63.3	$+3.7 \\ -3.9$	[59.4, 67.0]	$+7.1 \\ -7.8$	[55.5, 70.4]				

Q. Führing | TD measurements of γ at LHCb 2023-09-19

[1] JHEP 06 (2018) 084 [2] JHEP 03 (2018) 059 [3] JHEP 03 (2021) 137 [4] LHCb-CONF-2023-004 [5] LHCb-CONF-2022-003

Within B_{c}^{0} measurements \blacktriangleright Time-dependent vs integrated

Overview on previous measurements

$B^0 \rightarrow D^{\mp} \pi^{\pm}$ - Run1 [1]

- 2011 & 12 data $(3 \, \text{fb}^{-1})$
- Large statistics
 - 479000 ± 700 candidates
 - $\varepsilon_{\text{eff}} = (5.59 \pm 0.01) \%$
- Minor sensitivity to γ
 - Amplitude ratio $r_{D\pi} \approx 0.02$
 - Negligible $\Delta\Gamma \approx 0$

$\gamma \in [5^{\circ}, 86^{\circ}] \cup [185^{\circ}, 266^{\circ}] \text{ at } 68 \% \text{ CL}$

[1] JHEP 06 (2018) 084

TD measurements of γ at LHCb 2023-09-19 Q. Führing

$B_{s}^{0} \rightarrow D_{s}^{\mp} K^{\pm} \pi^{\mp} \pi^{\pm}$ - Run1 & 2 [3]

- Full LHCb dataset (Run1 & 2, $9 \, \text{fb}^{-1}$) \sim 7500 ± 100 candidates
 - $\varepsilon_{\text{eff}} = (5.71 \pm 0.40) \% \text{(Run1)}$
 - $\varepsilon_{\text{eff}} = (6.52 \pm 0.17) \%$ (Run2)

Two strategies 1. Phase-space integrated analysis

$$C_{f} = 0.631 \pm 0.096 \pm 0.032$$

$$A_{f}^{\Delta\Gamma} = -0.334 \pm 0.232 \pm 0.097$$

$$A_{\bar{f}}^{\Delta\Gamma} = -0.6$$

$$S_{f} = -0.424 \pm 0.135 \pm 0.033$$

$$S_{\bar{f}} = -0.424 \pm 0.135 \pm 0.033$$

Q. Führing | TD measurements of γ at LHCb 2023-09-19

[3] JHEP 03 (2021) 137

 $\gamma = \left(44^{+20}_{-13}\right)$ $695 \pm 0.215 \pm 0.081$ $463 \pm 0.134 \pm 0.031$

$B_{c}^{0} \rightarrow D_{c}^{\mp} K^{\pm} \pi^{\mp} \pi^{\pm}$ - Run1 & 2 [3]

- Full LHCb dataset (Run1 & 2, $9 \, \text{fb}^{-1}$)
 - ► 7500 ± 100 candidates
 - $\varepsilon_{\text{eff}} = (5.71 \pm 0.40) \% \text{(Run1)}$
 - $\varepsilon_{\text{eff}} = (6.52 \pm 0.17) \%$ (Run2)

• Two strategies

2. Model-dependent amplitude analysis

2023-09-19 Q. Führing TD measurements of γ at LHCb

[3] JHEP 03 (2021) 137

Analysis of $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ decays in the LHCb Run2 dataset

$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ - Run2

- Three time-dependent legacy measurements coming together
 - $B_s^0 \rightarrow D_s^- \pi^+ \operatorname{Run2} [8]$
 - $B_s^0 \to D_s^{\mp} K^{\pm} \operatorname{Run2}[4]$
 - $B_s^0 \rightarrow J/\psi K^+ K^-$ Run2 [9]
- Most precise TD measurement of γ

```
[4] LHCb-CONF-2023-004
[8] Nat. Phys. 18, 1–5 (2022)
[9] LHCb-PAPER-2023-016, submitted to Phys. Rev. Lett.
```

2023-09-19 | Q. Führing | TD measurements of γ at LHCb

$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ - Run2 [4] - Signal

• D_{c}^{-} reconstructed in five modes

- Different levels of contamination
- $\phi(1020)\pi^{-}$

•
$$K^{*0}(892)K^{-}$$

$$K^-\pi^+\pi^-$$

$$\pi^{-}\pi^{+}\pi^{-}$$

• $K^-K^+\pi^-$ (nonresonant)

- Selection
 - BDT to reduce combinatorial
 - Various specific vetoes
 - FD requirements to suppress non- D_{c}^{-} backgrounds
 - Sample split by hadron PID $h \in \{K, \pi\}$

[4] LHCb-CONF-2023-004

$B_{s}^{0} \rightarrow D_{s}^{+}K^{\pm}$ - Run2 [4] - Signal

- Invariant mass fit to extract sWeights [10]
 - 2-dimensional
 - Simultaneous for all D_{c}^{-} modes and years (2015+16, 2017, 2018)
 - 20950 ± 180 candidates

2023-09-19 Q. Führing TD measurements of γ at LHCb

[4] LHCb-CONF-2023-004 [10] Eur. Phys. J. C 82, 393 (2022)

$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ - Run2 [4] - Fit

- Simultaneous fit of all modes and years
- Inputs from $B_s^0 \rightarrow D_s^- \pi^+$
 - **Resolution calibration**
 - VELO alignment correction
 - Decay-time acceptance with small simulation-based corrections
 - Tagging calibration ($\varepsilon_{eff} = (6.10 \pm 0.15) \%$)
 - Production asymmetry and Δm_s
- **External inputs**
 - Γ_{s} and $\Delta\Gamma_{s}$ [9]
 - Detection asymmetry [11]

2023-09-19 Q. Führing | TD measurements of γ at LHCb

[4] LHCb-CONF-2023-004 [9] LHCb-PAPER-2023-016 (submitted to Phys. Rev. Lett.) [11] LHCb-PUB-2018-004

$B_{c}^{0} \rightarrow D_{c}^{\mp} K^{\pm}$ - Run2 [4] - Fit

- Simultaneous fit of all modes and years
- Inputs from $B_s^0 \rightarrow D_s^- \pi^+$
 - Resolution calibration
 - VELO alignment correction
 - Decay-time acceptance with small simulation-based corrections
 - Tagging calibration ($\varepsilon_{eff} = (6.10 \pm 0.15) \%$)
 - Production asymmetry and Δm_s
- **External inputs**
 - $\Gamma_{\rm s}$ and $\Delta\Gamma_{\rm s}$ [9]
 - Detection asymmetry [11]

TD measurements of γ at LHCb 2023-09-19 Q. Führing

[4] LHCb-CONF-2023-004 [9] LHCb-PAPER-2023-016 (submitted to Phys. Rev. Lett.) [11] LHCb-PUB-2018-004

$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ - Run2 [4] - Fit

- Uncertainties improved beyond statistics e.g. improvement in FT
- Systematics also reduced
- Significant *CP* violation in the interference $S_f \neq -S_{\bar{f}}$ at 8.8 σ

$$C_f = 0.791 \pm 0.061 \pm 0.022$$
$$A_f^{\Delta\Gamma} = 0.051 \pm 0.134 \pm 0.037$$
$$S_f = -0.571 \pm 0.084 \pm 0.023$$

 $S_{\bar{f}} = -0.503 \pm 0.084 \pm 0.025$

$B_{s}^{0} \rightarrow D_{s}^{+}K^{\pm}$ - Run2 [4] - Systematics

Sou Systematics evaluated Δm_s Dete Peseudoexperiment studies Mult Data-driven approaches Flav Deca Bootstrapping simulation Deca Deca Deca Negl

- **Further checks**
 - Simulation-based closure tests
 - Analysis performed in subsamples
- No systematic limitation expected in Run3

[4] LHCb-CONF-2023-004

Source	C_{f}	$A_f^{\Delta\Gamma}$	$A^{\Delta\Gamma}_{ar{f}}$	S_f
Δm_s	0.007	0.004	0.004	0.108
Detection asymmetry		0.079	0.083	0.006
Multivariate fit	0.045	0.095	0.121	0.088
Flavour tagging	0.256	0.026	0.028	0.012
Decay-time resolution model	0.195	0.002	0.003	0.058
Decay-time bias	0.062	0.027	0.046	0.188
Decay-time acceptance, Γ_s , $\Delta\Gamma_s$	0.006	0.225	0.231	0.003
Decay-time acceptance ratios	0.001	0.018	0.018	<u>, </u>
Neglecting correlations	0.137	0.081	0.054	0.135
Total	0.358	0.273	0.285	0.278

$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ - Run2 [4] - Results

Extraction of physics parameters

External input [9]

 $-2\beta_s = \phi_s = (-0.031 \pm 0.018)$ rad

Run2 <u>standalone</u> result:

$$\gamma = (74 \pm 11)^{\circ}$$

 $\boldsymbol{\delta} = \left(346.9 \pm 6.6\right)^{\circ}$ $r_{D_cK} = 0.327 \pm 0.038$

[4] LHCb-CONF-2023-004 [9] LHCb-PAPER-2023-016, submitted to Phys. Rev. Lett.

$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ - Run2 [4] - Results

- Compatibility to Run1^[2] at 1.3σ
 - Driven by γ at 2σ and Re[λ_f]
 - $r_{D,K}$ and δ at 0.6 σ each
- Updated machinery reproduces Run1 result [2]
- **Combination in preparation**

2023-09-19 Q. Führing TD measurements of γ at LHCb

Summary

• New TD analysis of $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ decays in LHCb Run2 data set: [4]

Combinations with new result in preparation

[1] JHEP 06 (2018) 084
[2] JHEP 03 (2018) 059
[3] JHEP 03 (2021) 137
[4] LHCb-CONF-2023-004
[5] LHCb-CONF-2022-003
[6] Int. J. Mod. Phys. A 30, 1530022 (2015)
[7] Eur. Phys. J. C 73, 2431 (2013)
[8] Nat. Phys. 18, 1–5 (2022)
[9] LHCb-PAPER-2023-016, submitted to Phys. Rev. Lett. (Presentation: WG4, Mon 14:45)
[10] Eur. Phys. J. C 82, 393 (2022)
[11] LHCb-PUB-2018-004

2023-09-19 | Q. Führing | TD measurements of γ at LHCb

