Correlated systematic uncertainties on the CKM angle γ

Alex Gilman

University of Oxford on behalf of the LHCb collaboration

September 19th, 2023

CKM 2023 Santiago de Compostela, Spain

Outline

Introduction

Correlated Uncertainties across CPV Observables

 D^0 Hadronic Parameters

Concluding Remarks

2/22 U. Oxford

A. Gilman γ Uncertainties CKM 2023

Concluding Remarks

Outline

Introduction

Correlated Uncertainties across CPV Observables

 D^0 Hadronic Parameters

Concluding Remarks

3/22

A. Gilman γ Uncertainties CKM 2023

γ Overview: Where are we now?

- $\blacktriangleright~\gamma$ provides a theoretically clean unitarity test
- Access through interference of tree-level B decays

A. Gilman

 γ Uncertainties

 D^0 Hadronic Parameters

γ Overview: Where are going?

By the end of Run4, expected uncertainty through direct measurements on γ is ~ 1°, see arXiv:1812.07638

Concluding Remarks

Golden Decay Channel: $B^+ \rightarrow DK^+$

• CPV through interference of $b \to c\overline{u}s$ and $b \to u\overline{c}s$

- ► Examine *D* decay modes common to D^0 and \overline{D}^0 : Self Conjugate (GLW), CF/DCS (ADS), KK^* (GLS), $K_S^0h^+h^-$ (BPGGSZ),
- ▶ Additional advantage: $B^+ \rightarrow D\pi^+$ decays, with similar decay topology and small effects from interference, can be used as normalisation channel.
- Sensitivity to γ achieved through:
 - 1. Flavour-dependant decay rates $(B^- \text{ vs. } B^+)$
 - 2. Modulation of the flavour-integrated decay rate

Determination of γ by combining measurements

Each γ analysis reports CPV observables, which are interpreted in combined analyses in terms of γ and:

For examples, see LHCb Gamma Combinations, HFLAV, UTFit, CKMFitter

Where are we now?: Zooming In

- ▶ LHCb average: $(63.8^{+3.5}_{-3.7})^{\circ}$, systematics contribute $\sim 1.4^{\circ}$
- Systematic contributions from strong phase inputs and LHCb are comparable

What's to come?

- Competitive sensitivites from combination of same D final states in $B^0 \rightarrow DK^+\pi^-$, $B^+ \rightarrow D^*K^+$, $B^+ \rightarrow DK^{*+}$, $\Lambda^0_b \rightarrow DpK$, time-dependent $B^0_s \rightarrow D^+_s K$
- ▶ Binned analysis of multi-body D final states, similar to LHCb $B^+ \rightarrow D[K\pi\pi\pi]K^+$ JHEP 07 (2023) 138


```
From B^+ \rightarrow D[K\pi\pi\pi]K^+ toy studies
PLB 802 (2020) 135188
With Binning
No Binning
```

See talks from K. Trabelsi, S. Stanislaus, Q. Fuhring, I. MacKay

 $\begin{array}{c} D^0 \\ 0 \end{array}$ Hadronic Parameters

Outline

Introduction

Correlated Uncertainties across CPV Observables

 D^0 Hadronic Parameters

Concluding Remarks

10/22

 $\substack{D^0 \ {\rm Hadronic}\ {\rm Parameters}\ {\rm 0000}}$

Concluding Remarks

$B^+ \rightarrow D[ADS/GLW]K^+$

JHEP, 04 (2021) 081

arXiv:2308.05048

See talk by K. Trabelsi

• Experimental systematics dominated by charmless backgrounds, Λ_b^0 , B_s^0 backgrounds (LHCb only)

Charmless uncertainties decouple – determined from data

$B^+ \to D[ADS/GLW]K^+$

Systematic uncertainties from LHCb JHEP, 04 (2021) 081 relative to statistics

Observable	Total
A_K^{CP}	16
R^{CP}	109
$R_{K^-}^{\pi K}$	57
$R_{K^+}^{\pi K}$	53

- Experimental systematics dominated by charmless backgrounds, Λ_b^0 , B_s^0 backgrounds (LHCb only)
- Charmless uncertainties decouple determined from data
- Uncertainties should mostly scale with data, pending further analysis of backgrounds

BPGGSZ Analyses

Analysis measures binned yields in D phase-space, mostly insensitive to D uniform phase-space effects

Fit to yields in all bins in terms of $x_{\pm} \equiv r_B \cos(\delta_B \pm \gamma)$, $y_{\pm} \equiv r_B \sin(\delta_B \pm \gamma)$, with c_i and s_i as inputs

JHEP. 2021, 169 (2021)

Measured asymmetries (points) vs. Predicted asymmetries (solid line)

13/22 U. Oxford

A. Gilman

 $\substack{D^0 \\ 0000}$ Hadronic Parameters

BPGGSZ Systematic Uncertainties

From LHCb JHEP. 2021, 169 (2021), in 10^{-2}

Source	$\mid \sigma(x_{-}^{DK})$	$\sigma(y^{DK})$	$\sigma(x_+^{DK})$	$\sigma(y_+^{DK})$
Statistical	0.96	1.14	0.98	1.23
Strong-phase inputs	0.23	0.35	0.18	0.28
Total LHCb-related uncertainty	y 0.20	0.25	0.24	0.26
Total systematic uncertainty	0.31	0.43	0.30	0.38

- LHCb-related reducible with effort
- Correlations with Bellell negligible from JHEP 02 (2022) 063, except for strong-phase inputs

Some additional comments ...

- Correlated uncertainties between $B^+ \to DK^+$ exist due to some shared sources of background models, but are small enough to neglect for 1° precision
- ▶ Different *B*⁺, *B*⁰, *B*⁰_s measurements all have effectively decoupled systematics

Some additional comments ...

- Correlated uncertainties between $B^+ \to DK^+$ exist due to some shared sources of background models, but are small enough to neglect for 1° precision
- ▶ Different *B*⁺, *B*⁰, *B*⁰_s measurements all have effectively decoupled systematics
- Aside from strong-phase inputs, systematics decouple between Bellell and LHCb

Some additional comments ...

- Correlated uncertainties between $B^+ \rightarrow DK^+$ exist due to some shared sources of background models, but are small enough to neglect for 1° precision
- ▶ Different *B*⁺, *B*⁰, *B*⁰_s measurements all have effectively decoupled systematics
- Aside from strong-phase inputs, systematics decouple between Bellell and LHCb
- Reporting correlated uncertainties in binned analyses on CPV observables, e.g. BPGGSZ, will get administratively burdensome. Correlation matrices go like 6^N, where N is the number of published results.

Outline

Introduction

Correlated Uncertainties across CPV Observables

 D^0 Hadronic Parameters

Concluding Remarks

16/22

U. Oxford

A. Gilman γ Uncertainties CKM 2023

 $B^+ \to D[K3\pi]K^+$

Concluding Remarks

Strong Phase Impacts on γ

 $B^+ \rightarrow D[K^0_S h^+ h^-]K^+$

See talks from X. K. Zhou, Y. Gao

U. Oxford

A. Gilman

 γ Uncertainties CKM 2023

Introduction 0000000 $\substack{D^0 \\ \circ \circ \circ \circ} {\sf Hadronic \ {\sf Parameters}}$

Correlated c_i , s_i uncertainties in BPGGSZ

- ▶ Correlations from shared c_i , s_i inputs between $B^+ \rightarrow D[K_S^0 hh]K^+$ and $B^0 \rightarrow D[K_S^0 hh]K^{*0}$ studied in arXiv:2309.05514
- Correlations very small!
- Correlations likely broken by different values of $r_B, \delta_B \rightarrow$ sensitive to different parts of parameter space
- ► Variations will be made public for all future BPGGSZ analyses

	x_{-}^{DK}	x_+^{DK}	y_{-}^{DK}	y_+^{DK}
$x_{+}^{DK^{*0}}$	-0.02	0.06	-0.02	-0.02
$x_{-}^{DK^{*0}}$	0.00	-0.05	-0.01	0.04
$y_{+}^{DK^{*0}}$	-0.03	0.04	0.04	-0.05
$y_{-}^{DK^{*0}}$	0.01	0.01	-0.02	0.00

Looking to the future...

- \blacktriangleright New $\psi(3770)$ data sets at BESIII, useful for hadronic D measurements:
 - $\blacktriangleright~\sim 8 {\rm fb}^{-1}$ taken at $\psi(3770)$ in 2022-2023 ready for analysis.
 - $\blacktriangleright \sim 20 {\rm fb}^{-1}$ at $\psi(3770)$ expected by the end of 2024.
- ▶ Compare to 3fb⁻¹ of current data
- Measurement of hadronic D parameters look to still be stats. limited at BESIII with larger data,
- Dominating BESIII systematics likely scale with data (model/normalization related)
- Current precision on $\delta_D^{K\pi}$ comes from LHCb, although significant contributions to come from BESIII

Outline

Introduction

Correlated Uncertainties across CPV Observables

 D^0 Hadronic Parameters

Concluding Remarks

20/22

A. Gilman γ Uncertainties CKM 2023

How do we report results?

- $D \to K^0_S hh(\pi^0)$ analyses have c_i , s_i as inputs to CPV observables, x^{\pm} , y^{\pm} .
 - Updating with new c_i , $s_i \Rightarrow$ have to rerun fits
 - Moving forward, will publish raw yields in bins \Rightarrow Reinterpretation at small cost of sensitivity, as in $B^+ \rightarrow D[KK\pi\pi]K^+$ EPJC83 547 (2023)

How do we report results?

- $D \to K^0_S hh(\pi^0)$ analyses have c_i , s_i as inputs to CPV observables, x^{\pm} , y^{\pm} .
 - Updating with new c_i , $s_i \Rightarrow$ have to rerun fits
 - Moving forward, will publish raw yields in bins \Rightarrow Reinterpretation at small cost of sensitivity, as in $B^+ \rightarrow D[KK\pi\pi]K^+$ EPJC83 547 (2023)
- Accounting for input uncertainties in binned 4h analyses non-trivial, e.g. full likelihood profile required in $B^+ \rightarrow D[K3\pi]K^+$

BESIII JHEP 05 (2021) 164

How do we report results?

- $D \to K^0_S hh(\pi^0)$ analyses have c_i , s_i as inputs to CPV observables, x^{\pm} , y^{\pm} .
 - Updating with new c_i , $s_i \Rightarrow$ have to rerun fits
 - Moving forward, will publish raw yields in bins \Rightarrow Reinterpretation at small cost of sensitivity, as in $B^+ \rightarrow D[KK\pi\pi]K^+$ EPJC83 547 (2023)
- Accounting for input uncertainties in binned 4h analyses non-trivial, e.g. full likelihood profile required in $B^+ \rightarrow D[K3\pi]K^+$

BESIII JHEP 05 (2021) 164

Publish running with nuisance parameters for systematic uncertainties

 A. Gilman
 U. Oxford

 γ Uncertainties
 CKM 2023

In Summary

- Uncertainty on γ still statistically dominated, but current level of systematic uncertainty will limit future measurements (~ 1.4°)
- Different B decays introduce largely uncorrelated systematics
- Some correlations across LHCb BPGGSZ to be accounted for (work in progress)
- Uncertainties from LHCb/B factories largely uncorrelated, except strong phase inputs
- \blacktriangleright Uncertainties on D strong phases should scale with BESIII data
- $\blacktriangleright~\sim~7x$ BESIII data sample for D strong phases by end of 2024
- Questions remain on how to best publish forward-compatible results

In Summary

- Uncertainty on γ still statistically dominated, but current level of systematic uncertainty will limit future measurements ($\sim 1.4^{\circ}$)
- Different B decays introduce largely uncorrelated systematics
- Some correlations across LHCb BPGGSZ to be accounted for (work in progress)
- Uncertainties from LHCb/B factories largely uncorrelated, except strong phase inputs
- \blacktriangleright Uncertainties on D strong phases should scale with BESIII data
- $\blacktriangleright~\sim~7x$ BESIII data sample for D strong phases by end of 2024
- Questions remain on how to best publish forward-compatible results

Now for discussion...