Kaon decays and the Cabibbo Angle Anomaly

Matthew Moulson INFN Frascati For the NA62 Collaboration

12th International Workshop on the CKM Unitarity Triangle (CKM 2023) Santiago de Compostela, 20 September 2023

First-row CKM unitarity

Standard-model coupling of quarks and leptons to *W*:

Universality: Is G_F from μ decay equal to G_F from π , K, nuclear β decay?

$$G_{\mu}^{2} = (g_{\mu}g_{e})^{2}/M_{W}^{4} \stackrel{?}{=} G_{CKM}^{2} = (g_{q}g_{\ell})^{2} (|V_{ud}|^{2} + |V_{us}|^{2})/M_{W}^{4}$$

Physics beyond the Standard Model can break gauge universality:

First-row CKM unitarity

Standard-model coupling of quarks and leptons to *W*:

For measurement of $\Delta_{\rm CKM}$ with total uncertainty σ :

- Scale probed is $\Lambda \sim (M_W/g)/\sqrt{\sigma}$
- For $\sigma \sim 10^{-4} \rightarrow \text{probe } \Lambda \sim 20 \text{ TeV}$

Determination of V_{us} from $K_{\ell 3}$ data

$$\Gamma(K_{\ell 3(\gamma)}) = \frac{C_K^2 G_F^2 m_K^5}{192\pi^3} S_{\rm EW} |V_{us}|^2 |f_+^{K^0 \pi^-}(0)|^2 \\ \times I_{K\ell}(\lambda_{K\ell}) \left(1 + 2\Delta_K^{SU(2)} + 2\Delta_{K\ell}^{\rm EM}\right) \\ \text{with } K \in \{K^+, K^0\}; \ \ell \in \{e, \mu\}, \text{ and:}$$

 C_{K^2} 1/2 for K^+ , 1 for K^0 $S_{\rm EW}$ Universal SD EW correction (1.0232)

Inputs from experiment:

 $\Gamma(K_{\ell 3(\gamma)})$

- Rates with well-determined treatment of radiative decays:
 - Branching ratios: K_S , K_L , K^{\pm}
 - Kaon lifetimes

 $\Delta_K^{SU(2)}$

 $\Delta_{K\ell}^{EM}$

Form-factor correction for SU(2) breaking

momentum transfer (t = 0)

 $I_{K\ell}(\{\lambda\}_{K\ell})$

Integral of form factor over phase space: λ s parameterize evolution in t

- K_{e3} : Only λ_+ (or λ_+' , λ_+'')
- $K_{\mu3}$: Need λ_+ and λ_0

Form-factor correction for long-distance EM effects

etermined $f_{+}^{K^{0}\pi^{-}(0)}$ Hadronic matrix element tive decays: (form factor) at zero

Inputs from theory:

BR($K_S \rightarrow \pi \ell v$) from KLOE-2

Preselection with kinematic BDT and

time-of-flight $\pi\ell$ assignment

 K_S from $\phi \rightarrow K_L K_S$ tagged by K_L interaction in calorimeter barrel

KLOE-2 PLB 804 (2020) BR($K_S \rightarrow \pi \mu v$) = (4.56 ± 0.20) × 10⁻⁴ First measurement of this BR

KLOE-2 2208.04872

BR($K_S \rightarrow \pi ev$) = (7.153 ± 0.037 ± 0.043) × 10⁻⁴ 0.4 + 1.6 fb⁻¹: 0.8% uncertainty

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Fit to K_S rate data (2022)

7 input measurements:

KLOE '06 BR $\pi^0 \pi^0 / \pi^+ \pi^-$ NA48 $\Gamma(K_S \to \pi e v) / \Gamma(K_L \to \pi e v), \tau_S$ KLOE '11 τ_S KTeV '11 τ_S KLOE-2 '22 BR $\pi e v / \pi^+ \pi^-$ New! KLOE-2 '20 BR $\pi \mu v / \pi^+ \pi^-$

2 possible constraints:

- Σ BR = 1
- **BR**(K_{e3})/**BR**($K_{\mu3}$) = 0.6640(17) From ratio of phase-space integrals from current fit to dispersive $K_{\ell3}$ form factor parameters

Only sum constraint used for fit

Parameter	Value
$BR(\pi^+\pi^-(\gamma))$	69.20(5)%
$BR(\pi^0\pi^0)$	30.69(5)%
$BR(K_{e3})$	7.15(6) × 10 ⁻⁴
BR(<i>K</i> _{µ3})	4.56(20) × 10 ⁻⁴
$ au_S$	89.58(4) ns

*χ*²/ndf = 0.36/3 (Prob = 95%)

Little correlation for $K_{e3} K_{\mu 3}$ from fit

10-20% correlations with $\pi^0\pi^0/\pi^+\pi^-$

Input measurements essentially unchanged

Fit to K_L rate data (2010)

21 input measurements:	Parameter	Value	S
5 KTeV ratios	$BR(K_{a3})$	0.4056(9)	1.3
NA48 BR(K_{e3} /2 track)	$BR(K_{\mu3})$	0.2704(10)	1.5
4 KLOE BRs	BR($3\pi^{0}$)	0.1952(9)	1.2
with dependence on τ_L	$BR(\pi^+\pi^-\pi^0)$	0.1254(6)	1.3
KLOE , NA48 $BR(\pi^{+}\pi^{-}K_{\ell 3})$	$BR(\pi^+\pi^-(\gamma_{IB}))$	1.967(7) × 10 ^{−3}	1.1
RECE, NA46 DR($\gamma\gamma/3\pi^{\circ}$) BR($2\pi^{0}/\pi^{+}\pi^{-}$) from K fit Re c'/c	$BR(\pi^+\pi^-\gamma)$	4.15(9) × 10 ^{−5}	1.6
EXAMPLE 1 From $3\pi^0$	$BR(\pi^+\pi^-\gamma_DE)$	2.84(8) × 10 ⁻⁵	1.3
Vosburgh '72 τ_L	$BR(2\pi^0)$	8.65(4) × 10 ⁻⁴	1.4
KTeV BB $(\pi^+\pi^-\nu/\pi^+\pi^-(\nu))$	BR(γγ)	5.47(4) × 10 ⁻⁴	1.1
E731, 2 KTeV BR($\pi^+\pi^-\gamma_{DE}/\pi^+\pi^-\gamma)$	$ au_L$	51.16(21) ns	1.1

1 constraint: Σ BR = 1

*χ*²/ndf = 19.8/12 (Prob = 7.0%)

Essentially same result as 2010 fit Current PDG (since '09): **37.4/17** (0.30%)

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Fit to K^{\pm} rate data (2014)

· — ·				
17 input measurements:	Parameter	Value	S	
Sold τ values in PDG KLOE τ KLOE BR $\mu\nu$, $\pi\pi^0$	$BR(\mu v)$ $BR(\pi \pi^0)$	63.58(11)% 20.64(7)%	1.*	
KLOE BR K_{e3} , $K_{\mu3}$ with dependence on τ	$BR(\pi\pi\pi)$	5.56(4)%	1.(
NA48/2 BR <i>K_{e3}/ππ</i> ⁰ , <i>K_{μ3}/ππ</i> ⁰ E865 BR <i>K₂/K</i> Dal	$BR(K_{e3})$ $BR(K_{\mu3})$	5.088(27)% 3.366(30)%	1.2 1.9	
3 old BR $\pi\pi^0/\mu v$	$BR(\pi\pi^0\pi^0)$	1.764(25)%	1.(
KEK-246 $K_{\mu3}/K_{e3}$	$ au_{\pm}$	12.384(15) ns	1.2	
KLOE BR πππ, ππ ⁰ π ⁰ (Bisi '65 BR ππ ⁰ π ⁰ /πππ removed)	χ^2 /ndf = 25	5.5/11 (Prob = 0.78°	%)	

1 constraint: Σ BR = 1

Much more selective than PDG fit PDG '16: 35 inputs, 8 parameters 1 D G 10. J J Z O (0.20 / 0)

With ISTRA+ '14 BR($K_{\rho3}^{-}/\pi^{-}\pi^{0}$)

- BR(K_{e3}) = 5.083(27)%
- Negligible changes in other parameters, fit quality

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

$K_{\ell 3}$ form factors

Hadronic matrix element:

- $\langle \pi | J_{\alpha} | K \rangle = f(0) \times \left[\tilde{f}_{+}(t) (P+p)_{\alpha} + \tilde{f}_{-}(t) (P-p)_{\alpha} \right]$
 - K_{e3} decays: Only vector form factor: $\tilde{f}_+(t)$
 - $K_{\mu 3}$ decays: Also need scalar form factor: $\tilde{f}_0(t) = \tilde{f}_+ + \tilde{f}_- \frac{t}{m_K^2 m_\pi^2}$
- For V_{us} , need integral over phase space of squared matrix element: Parameterize form factors and fit distributions in t (or related variables)

Parameterizations based on systematic expansions

Taylor expansion:

$$\begin{split} \tilde{f}_{+,0}(t) &= 1 + \lambda_{+,0} \left(\frac{t}{m_{\pi^+}^2} \right) \\ \tilde{f}_{+,0}(t) &= 1 + \lambda_{+,0}' \left(\frac{t}{m_{\pi^+}^2} \right) + \lambda_{+,0}'' \left(\frac{t}{m_{\pi^+}^2} \right)^2 \end{split}$$

Notes:

Many parameters: $\lambda_{+}', \lambda_{+}'', \lambda_{0}', \lambda_{0}''$ Large correlations, unstable fits Higher-order terms ignored

11

K(P)

 $t = (P - p)^2$

 $\pi(n)$

$K_{\ell 3}$ form-factor parameterizations

Parameterizations incorporating physical constraints

Pole dominance: $ilde{f}_{+,0}$

$$h(t) = \frac{M_{V,S}^2}{M_{V,S}^2 - t}$$

Dispersion relations:

$$\tilde{f}_{+}(t) = \exp\left[\frac{t}{m_{\pi}^{2}}(\Lambda_{+} - H(t))\right]$$
$$\tilde{f}_{0}(t) = \exp\left[\frac{t}{m_{K}^{2} - m_{\pi}^{2}}(\ln C - G(t))\right]$$

Notes:

What does M_S correspond to?

Notes:

Allows tests of ChPT & lowenergy dynamics

H(t), G(t) evaluated from $K\pi$ scattering data and given as polynomials Bernard et al. PBD 80 (2009)

12

Bernard et al., PRD 80 (2009)

Uncertainties from representations H(t), G(t) of $K\pi$ phase-shift data contribute to fit results for Λ_+ , ln C

- Small compared to other uncertainties for single measurements (so far)

2010 FlaviaNet analysis used average of FF parameters from dispersive fits

– Parameterization uncertainties beginning to dominate averages for Λ_+ , $\ln C$

Dispersive parameters for $K_{\ell 3}$ form factors

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Dispersive parameters for $K_{\ell 3}$ form factors

2010 fit Current

 $K_{\ell 3}$ avgs from **KTeV KLOE ISTRA+ NA48/2**

NA48 K_{e3} data included in fits but not shown

Long-distance EM corrections

Mode-dependent corrections $\Delta^{\text{EM}}_{K\ell}$ to phase-space integrals $I_{K\ell}$ from EM-induced Dalitz plot modifications

- Values depend on acceptance for events with additional real photon(s)
- All recent measurements assumed fully inclusive

FlaviaNet analysis and updates used Cirigliano et al. '08

• Comprehensive analysis at fixed order e^2p^2

Seng et al. JHEP 07 (2022) Calculation of complete EW RC using hybrid current algebra and ChPT with resummation of largest terms to all chiral orders

- Reduced uncertainties at $O(e^2p^4)$
- Lattice evaluation of QCD contributions to γW box diagrams
- Conventional value of $S_{\rm EW}$ subtracted from results for use with standard formula for V_{us}

	Cirigliano et al. '08	Seng et al. '21
$\Delta^{EM}(K^{0}_{e3}) \ [\%]$	0.50 ± 0.11	0.580 ± 0.016
$\Delta^{EM}(K^{+}_{e3})$ [%]	0.05 ± 0.12	0.105 ± 0.023
$\Delta^{EM}(K^{+}_{\mu3})$ [%]	0.70 ± 0.11	0.770 ± 0.019
$\Delta^{\sf EM}(K^{0}_{\mu3})$ [%]	0.01 ± 0.12	0.025 ± 0.027

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

$|V_{us}| f_{+}(0)$ from world data: 2022 update

Evaluations of $f_+(0)$

FLAG '21 averages:

 $N_f = 2+1+1$ $f_+(0) = 0.9698(17)$

Uncorrelated average of:

FNAL/MILC 18: HISQ, 5sp, $m_{\pi} \rightarrow 135$ MeV, new ensembles added to FNAL/MILC 13E **ETM 16:** TwMW, 3sp, $m_{\pi} \rightarrow 210$ MeV, full q^2 dependence of f_+ , f_0

$N_f = 2+1$ $f_+(0) = 0.9677(27)$

Uncorrelated average of:

FNAL/MILC 12I: HISQ, $m_{\pi} \sim 300 \text{ MeV}$ **RBC/UKQCD 15A:** DWF, $m_{\pi} \rightarrow 139 \text{ MeV}$ **JLQCD 17** not included because only single lattice spacing used

ChPT $f_{+}(0) = 0.970(8)$

Ecker 15, Chiral Dynamics 15: Calculation from Bijnens 03, with new LECs from Bijnens, Ecker 14

Evaluations of $f_+(0)$

ETM PRD 93 (2016) $N_f = 2+1+1$ $f_+(0) = 0.9709(44)_{st}(9)_{sy}(11)_{ext}$ Full q^2 dependence of f_+, f_0

See also:

PACS PRD 101 (2020) **ETM** PRD 105 (2022)

Fit synthetic data points with dispersive parameterization

 $\Lambda_{+} = 24.22(1.16) \times 10^{-3} \quad \rho(\Lambda_{+}, f_{+}(0)) = -0.228$ ln C = 0.1998(138) $\rho(\ln C, f_{+}(0)) = -0.719$ $\rho(\Lambda_{+}, \ln C) = +0.376$

- Basic agreement with $\Lambda_+ \times 1$ experimental results
- Confirms basic correctness of lattice calculations for *f*₊(0)
- In the near future FF parameters will be obtained on lattice?

V_{us}/V_{ud} and $K_{\ell 2}$ decays

$$\frac{|V_{us}|}{|V_{ud}|}\frac{f_K}{f_{\pi}} = \left(\frac{\Gamma_{K_{\mu^2(\gamma)}}m_{\pi^{\pm}}}{\Gamma_{\pi_{\mu^2(\gamma)}}m_{K^{\pm}}}\right)^{1/2}\frac{1-m_{\mu}^2/m_{\pi^{\pm}}^2}{1-m_{\mu}^2/m_{K^{\pm}}^2}\left(1-\frac{1}{2}\delta_{\rm EM}-\frac{1}{2}\delta_{SU(2)}\right)$$

Inputs from experiment:

From K^{\pm} BR fit: **BR**($K^{\pm}_{\mu 2(\gamma)}$) = 0.6358(11) $\tau_{K\pm}$ = 12.384(15) ns

From PDG:

BR($\pi^{\pm}_{\mu 2(\gamma)}$) = 0.9999 $\tau_{\pi \pm}$ = 26.033(5) ns

Inputs from theory:

 $\delta_{\rm EM}$ Long-distance EM corrections

 $\frac{\delta_{SU(2)}}{f_K / f_\pi \to f_{K\pm} / f_{\pi\pm}}$ Strong isospin breaking

 f_{K}/f_{π} Ratio of decay constants Cancellation of lattice-scale uncertainties from ratio NB: Most lattice results already

corrected for SU(2)-breaking: $f_{K\pm}/f_{\pi\pm}$

V_{us}/V_{ud} and $K_{\ell 2}$ decays

Giusti et al. PRL 120 (2018)

First lattice calculation of EM corrections to P_{l2} decays

- Ensembles from ETM
- $N_f = 2+1+1$ Twisted-mass Wilson fermions

 $\delta_{SU(2)} + \delta_{\rm EM} = -0.0122(16)$

• Uncertainty from quenched QED included (0.0006)

Compare to ChPT result from Cirigliano, Neufeld '11: $\delta_{SU(2)} + \delta_{EM} = -0.0112(21)$

Di Carlo et al. PRD 100 (2019) Update, extended description, and systematics of Giusti et al. $\delta_{SU(2)} + \delta_{EM} = -0.0126(14)$

$|V_{us}/V_{ud}| \times f_K/f_{\pi} = 0.27679(28)_{BR}(20)_{corr}$

Lattice evaluations of f_K/f_{π}

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Lattice results for f_K/f_{π}

Recalculate FLAG averages for results without *SU*(2)**-breaking** Isospin-limit results as reported in original papers

$N_f = 2 + 1 + 1$

BMW10

HPQCD/UKQCD07

* MILC10 omitted from average because unpublished

1.192(7)(6)

1.198(2)(7)

V_{us} from kaon decays: Summary

$$K_{\ell 3} \qquad V_{us} = 0.22330(35)_{exp}(39)_{lat}(8)_{IB}$$

$$f_{+}(0) = 0.9698(17) \qquad (53)_{tot} = 0.24\%$$

$$K_{\mu 2}$$

$$f_{K}/f_{\pi} = 1.1978(22)$$

$$N_{f} = 2+1+1$$

$$V_{us}/V_{ud} = 0.23108(23)_{exp}(42)_{lat}(16)_{IB}$$
(51)_{tot} = 0.22%

First hint of an anomaly: Without information from β decays $\Delta_{\text{CKM}}^{(3)} = |V_{us}^{K\ell 3}|^2 \left[\left(\frac{1}{|V_{us}/V_{ud}|^{K_{\mu 2}}} \right)^2 + 1 \right] - 1 \qquad \Delta_{\text{CKM}}^{(3)} = -0.0164(63) -2.6\sigma$

Need additional information to test consistency of $K_{\ell 3}$ and $K_{\mu 2}$

$|V_{ud}|$ from 0⁺ \rightarrow 0⁺: World data

$$ft = \frac{K}{G_V^2 \langle \tau \rangle^2}$$

 $f(Z, Q_{\rm EC})$ statistical rate function $t = t_{1/2}/{\rm BR}$ partial half life $G_V = G_F V_{ud}$ vector coupling constant $\langle \tau \rangle$ Fermi matrix element

Experimentally, measure

- BR branching ratios
- $t_{1/2}$ parent half-life
- $Q_{\rm EC}$ transition energy

Hardy & Towner PRC 102 (2020)

Comprehensive survey of *ft* measurements

- 9 cases with precision < 0.05%
- 6 cases with precision 0.05-0.23%
- About 220 individual measurements with compatible precison

V_{ud} and inner radiative correction Δ_R^{V}

Box diagrams contributing at order α/π to neutron β decay at the hadronic scale

Hardy & Towner 1807.01146

Seng et al. PRD 100 (2019)

Czarnecki et al. PRD 100 (2019)

 $|V_{ud}| = 0.97420(21)$ $\Delta_R^V = 2.361(38)\%$ Δ_R^V from Marciano & Sirlin '06 First-row CKM unitarity respected

 $|V_{ud}| = 0.97370(14)$ $\Delta_R^V = 2.467(22)\%$ New calculation of γW -box contribution to Δ_R^V using dispersion relations and DIS structure functions 3σ shift in Δ_R^V and V_{ud} : the birth of the anomaly! Also identified need for new calculations of δ_{NS}

 $|V_{ud}| = 0.97389(18)$ $\Delta_R^V = 2.426(32)\%$

Improved use of Bjorken sum rule to constrain stronginteraction corrections to axial-vector component of the γW -box

 $|V_{ud}| = 0.97373(31)$ $\Delta_R^V = 2.454(19)\%$ 23 new publications, some older measurements eliminated Use weighted average of above values for Δ_R^V Larger uncertainty for δ_{NS}

$|V_{ud}|$ from neutron β decays

 $|V_{ud}|^{2} = \frac{5024.7\text{s}}{\tau_{n} (1+3\lambda^{2}) (1+\Delta_{R})} \qquad \begin{array}{l} \tau_{n} & \text{Free neutron lifetime} \\ \lambda = g_{A}/g_{V} & \text{Ratio of axial to vector couplings} \\ \Delta_{R} & \text{Radiative correction} \\ (\text{universal + outer}) \end{array}$

- Δ_R under control to same extent as in $0^+ \rightarrow 0^+$
- To match precision from 0⁺ \rightarrow 0⁺ require $\sigma_{\tau} \sim 0.3$ s and $\sigma_{\lambda}/\lambda \sim 3 \times 10^{-4}$
- World data set for *τ* and *λ* riddled by inconsistencies → large scale factors
 → Use recent high-precision measurements instead of averages

 $\tau_n = 877.75(28)_{stat}(^{+22}_{-16})_{sys} s$ Ultra-cold neutron trap Improves on precision of previous results by > 2x

PERKEO III PRL 122 (2019)

 $\lambda = -1.27641(45)_{stat}(33)_{sys}$ β decay asymmetry 5x improvement on precision of world average

Combined result for $|V_{ud}|$

Cirigliano et al. PLB 838 (2023) Evaluation of Δ_R^V and Δ_R :

- Hadronic scheme for resummation of infrared logs
- Non-correlated average of contributions to γW box V_{ud} from neutron decays uses current best measurements (not averages) for τ_n and $\lambda = g_A/g_V$

$$0^{+} \rightarrow 0^{+} \text{ with } \Delta_{R}^{V} = 2.467(27)\%$$

$$V_{ud}^{0+\to0+} = 0.97367(11)_{exp}(13)_{\Delta RV}(27)_{NS} \quad [32]_{tot}, 0.033\%$$

n decays with $\Delta_R = 3.983(27)\%$

 $V_{ud}^{n, \text{ best}} = 0.97413(13)_{\Delta R}(35)_{\lambda}(20)\tau_n$ [43]_{tot}, 0.044%

 0.9σ agreement

Average
$$|V_{ud}| = 0.97384(26)$$

Status of first-row unitarity

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

 $V_{us} = 0.22422(36)$

 χ^2 /ndf = 6.4/2 (4.1%)

 $\Delta_{\rm CKM} = -0.0018(6)$

 -2.8σ

 $V_{ud} = 0.9737(8)$

 $V_{us} = 0.2242(10)$

Status of first-row unitarity

3 observables: $|V_{us}|^{K\ell_3}$, $|V_{us}/V_{ud}|^{K\mu_2}$, V_{ud} 2 quantities to determine: V_{us} , V_{ud} **3 ways to test unitarity**

$$\Delta_{\text{CKM}}^{(1)} = |V_{ud}|^2 + |V_{us}^{K_{\ell 3}}|^2 - 1 = -0.00176(56) -3.1\sigma$$

$$\Delta_{\text{CKM}}^{(2)} = |V_{ud}|^2 \left[1 + \left(\left| \frac{V_{us}}{V_{ud}} \right|^{K_{\mu 2}} \right)^2 \right] - 1 = -0.00098(58) -1.7\sigma$$

 $K_{\mu 2}$ result shows better agreement with unitarity than $K_{\ell 3}$ result when $|V_{ud}|$ obtained from beta decays:

$$\Delta V_{us}(K_{\ell 3} - K_{\mu 2}) = V_{us}^{K_{\ell 3}} - V_{ud} \left(\frac{V_{us}}{V_{ud}}\right)^{K_{\mu 2}} = -0.0174(73) -2.4\sigma$$

 $\Delta^{(3)}_{CKM}$ uses no information from β decays:

$$\Delta_{\text{CKM}}^{(3)} = |V_{us}^{K_{\ell 3}}|^2 \left[\left(\frac{1}{|V_{us}/V_{ud}|^{K_{\mu 2}}} \right)^2 + 1 \right] - 1 = -0.0164(63) -2.6\sigma$$

29

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Constraints on right-handed currents

- In SM, *W* couples only to LH chiral fermion states
- New physics with couplings to RH currents could explain both unitarity deficit and $K_{\ell 3}$ - $K_{\mu 2}$ difference
- Define ϵ_R = admixture of RH currents in non-strange sector $\epsilon_R + \Delta \epsilon_R$ = admixture of RH currents in strange sector

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Cirigliano et al.

PLB 838 (2023)

What can NA62 contribute?

NA62 can make a precision measurement of $K_{\mu3}/K_{\mu2}$, with many systematics cancelling. What can this measurement alone tell us?

r is proportional to $(K_{\mu3}/K_{\mu2})^{-1/2}$:

$$r \equiv \left(\frac{1 + \Delta_{\rm CKM}^{(2)}}{1 + \Delta_{\rm CKM}^{(3)}}\right)^{1/2} = \frac{\frac{V_{us}}{V_{ud}}\Big|_{K_{\ell 2}/\pi_{\ell 2}}}{\frac{V_{us}^{K_{\ell 3}}}{V_{ud}^{\beta}}} = 1 - 2\Delta\epsilon_R$$

- Uses input from β decays, but provides a qualified statement about consistency of data set
- Search for right-handed currents

NA62 hypothetical $K_{\mu3}/K_{\mu2}$ to 0.5%:

Result	$\Delta\epsilon_R$		Remarks
Same as fit	–4.0(1.9)×10 ^{−3}	2 .1σ	Almost same precision as result from world average
+ 1.5 <i>o</i>	–0.4(1.9)×10 ^{−3}	0 .2 <i>σ</i>	$K_{\mu 2}, K_{\mu 3}, V_{ud}$ consistent: current tensions have experimental origin?
– 1.5 <i>o</i>	–7.6(1.9)×10 ^{−3}	4.0 σ	Evidence for right-handed currents contributing to CKM non-unitarity

What can NA62 contribute?

While a high priority, $K_{\mu3}/K_{\mu2}$ is not the only measurement that NA62 can make to help clarify the inconsistencies in the first row

- Suite of redundant measurements for good control of systematics
- · Single analysis framework to maximize cancellation of systematics
- Dedicated data-taking with minimum-bias trigger maintaining stable conditions at low intensity: statistical uncertainties < 0.1% in two weeks

What can NA62 contribute?

While a high priority, $K_{\mu3}/K_{\mu2}$ is not the only measurement that NA62 can make to help clarify the inconsistencies in the first row

Some degree of independence from the global fit can be obtained in an alternate analysis scheme to measure the following ratios:

- Use of coherent analysis scheme to minimize systematics from comparison of modes with/without π⁰s and decays in flight Simultaneous fit to m²_{miss} spectra for 0 and 1 π⁰ modes
- 2 weeks of dedicated data taking would reduce statistical uncertainty to <0.1%
- Systematic uncertainties under evaluation with NA62 data from 2017-2018: expect to reach < 0.6%

From NA62 to HIKE

HIKE is a multi-phase, general purpose kaon experiment to extend the NA62 physics program at the CERN SPS into the HL-LHC era and beyond

Phase 1: $K^+ \rightarrow \pi^+ v v$ to 5%, LFV/LNV & other rare decays, precision mmts

Phase 2: $K_L \rightarrow \pi^0 \ell \ell$ to 12-18%, LFV/LNV & rare decays, precision mmts

Plus FIP searches with kaon beams and in periodic dump-mode runs

Hypothetical Phase-1 fit to K[±] rate data

3 old τ values in PDG	Parameter	Value	S
KLOE τ	BR(µv)	63.08(6)%	1.0
KLOE BR $\pi\pi\pi$, $\pi\pi^0\pi^0$	$BR(\pi\pi^0)$	21.11(5)%	1.0
HIKE $\pi\pi^0/\mu v$ to 0.4%	BR (<i>πππ</i>)	5.56(4)%	1.0
HIKE $K_{e3}/\pi\pi^0$ to 0.4%	$BR(K_{e3})$	5.109(9)%	1.0
HIKE $K_{\mu3}/\mu v$ to 0.2% HIKE $K_{\mu3}/\pi \pi^0$ to 0.4%	$BR(K_{\mu3})$	3.383(5)%	1.0
HIKE $K_{\mu3}/K_{\mu3}$ to 0.4%	$BR(\pi\pi^0\pi^0)$	1.763(26)%	1.0
1 constraint: Σ BR = 1	$ au_{\pm}$	12.385(15) ns	1.2

Hypothetical HIKE measurements chosen to agree with $V_{us} = 0.22417$ (midway between current values for $K_{\ell 3}$ and $K_{\mu 2}$) χ²/ndf = 4.90/5 (Prob = 42.8%) compare current: 25.5/11 (0.78%)

- Can remove all most all old data except 3π and τ measurements
- Some strong correlations in fit results, esp between μv , $\pi \pi^0$ (-0.7) and K_{e3} , $K_{\mu 3}$ (+0.5)
- Fit constraint Σ BR = 1 significantly increases result for μv

Comparison: First-row unitarity in 2023

 $\epsilon_R = \Delta \epsilon_R = 0$ excluded at 3.1 σ

Scenario: HIKE Phase 1 with $V_{us} = 0.22417$

Hypothetical Phase-2 fit to K_L rate data

Improvements to K_L fit tricky:

- HIKE measures ratios of BRs
- $K_{\ell 3}$ modes dominant
- $3\pi^0, \pi^+\pi^-\pi^0$ critical for normalization but poor cancellation of systematics with $K_{\ell 3}$ modes
- Strong constraints from CP measurements

24 input measurements:

21 inputs from current fit Hypothetical HIKE measurements chosen to agree with $V_{us} = 0.22417$: HIKE $K_{\mu3}/K_{e3}$ to 0.3% HIKE $\pi^+\pi^-/K_{e3}$ to 0.4% HIKE $\pi^+\pi^-/\pi^+\pi^-\pi^0$ to 0.6%

1 constraint: Σ BR = 1

Parameter	Value	S
$BR(K_{e3})$	0.4064(7)	1.3
$BR(K_{\mu3})$	0.2707(5)	1.5
$BR(3\pi^0)$	0.1950(11)	1.2
$BR(\pi^+\pi^-\pi^0)$	0.1244(4)	1.3
$BR(\pi^+\pi^-(\gamma_{IB}))$	1.959(6) × 10 ^{−3}	1.1
$BR(\pi^+\pi^-\gamma)$	4.13(6) × 10 ^{−5}	1.6
$BR(\pi^+\pi^-\gamma_DE)$	2.83(6) × 10 ^{−5}	1.3
$BR(2\pi^0)$	8.62(6) × 10 ⁻⁴	1.4
BR(γγ)	5.47(4) × 10 ⁻⁴	1.1
$ au_L$	51.23(22) ns	1.1

χ²/ndf = 30.7/15 (Prob = 0.94%)

Significantly reduced errors for $K_{\ell 3}$ BRs Most BRs change by $< 1\sigma$ Adds tension to current fit: Prob 7.0 \rightarrow 0.94%

Scenario: HIKE Phase 1 with $V_{us} = 0.22417$

Scenario: Phase 1+2 with $V_{us} = 0.22417$

Good agreement between $K_{\ell 3} \& K_{\mu 2}$ $\epsilon_R = 0$ at 2.2 σ level Unitarity deficit persists at ~2.7 σ level Precision in kaon sector strongly motivates further progress on V_{ud} , especially in theoretical calculation of radiative corrections!

Status of first-row unitarity

Fit to both gives $\Delta_{CKM} = -2.8\sigma$ and 3.1σ evidence for right-handed currents

 $K_{\mu 2}$ result shows better agreement with unitarity than $K_{\ell 3}$ result when $|V_{ud}|$ obtained from beta decays

New measurement of $K_{\mu3}/K_{\mu2}$ (e.g. from NA62) could be very helpful in distinguishing if origin of discrepancy is experimental

• Other measurements of main *K* BRs also very important!

Precision in kaon sector strongly motivates further progress on V_{ud} , especially in theoretical calculation of radiative corrections!

Kaon decays and the Cabibbo Angle Anomaly

Additional information

12th International Workshop on the CKM Unitarity Triangle (CKM 2023) Santiago de Compostela, 20 September 2023

Phase-space integrals 2021

Averages of form-factor parameters for dispersive parameterization Λ_+ and ln *C* **Integrals calculated from average values**

$\Lambda_+ imes 10^3$	=	25.55 ± 0.38
ln C	=	0.1992(78)
$\rho(\Lambda_+, \ln C)$	=	-0.110
χ^2 /ndf	=	7.5/7 (38%)

	Integrals			
<i>K</i> ⁰ _{<i>e</i>3}	0.15470(15)			
K^+_{e3}	0.15915(15)			
$K^0_{\mu 3}$	0.10247(15)			
$K^{+}_{\mu3}$	0.10553(16)			

Cori	relation	matrix	for integ	I rals
K ⁰ _{e3}	1	1	0.530	0.521
K^+_{e3}		1	0.530	0.521
$K^{0}_{\ \mu 3}$			1	1
$K^{+}_{\ \mu 3}$				1

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Dispersive parameters for $K_{\ell 3}$ form factors

 $K_{\ell 3}$ avgs from **KTeV KLOE ISTRA+ NA48/2**

NA48 K_{e3} data included in fits but not shown

 $\Lambda_{+} \times 10^{3} = 25.55 \pm 0.38$ $\ln C = 0.1992(78)$ $\rho(\Lambda_{+}, \ln C) = -0.110$ $\chi^{2}/\text{ndf} = 7.5/7 (38\%)$

2010 fit Current

Fit results include common uncertainty from H(t), G(t)

Without common uncertainty:

 $\sigma(\Lambda_+)$ (0.38 \rightarrow 0.22) \times 10⁻³

44

 $\sigma(\ln C)$ 0.0078 \rightarrow 0.0067

 $\sigma(K_{e3} \text{ int}) \quad 0.10\% \rightarrow 0.09\%$

 $\sigma(K_{\mu3} \text{ int}) \quad 0.15\% \rightarrow 0.11\%$

$K_{\ell 3}$ data and lepton universality

For each state of kaon charge, evaluate:

$r_{\mu e} = \frac{(R_{\mu})}{(R_{\mu})}$	$\frac{\Gamma_{\mu}}{\Gamma_{e}}$ $\frac{\Gamma_{\mu}}{\Gamma_{e}}$ $\frac{\Gamma_{\mu}}{\Gamma_{e}}$	$\frac{3}{3} \cdot \frac{I_{e3} \left(1 + \delta_{e3}\right)}{I_{\mu3} \left(1 + \delta_{\mu3}\right)} =$	$= \frac{[V_{us} f_+(0)]_{\mu 3,}^2}{[V_{us} f_+(0)]_{e 3,}^2}$	$\frac{g_{\mu}}{g_{e}} = \frac{g_{\mu}^{2}}{g_{e}^{2}}$
-	Modes	2004 BRs ^{*,†}	Current	
	K_L	1.054(14)	1.002(5)	
	K [±]	1.014(12)	0.999(9)	
	Avg	1.030(9)	1.001(4)	

*Assuming current values for form-factor parameters and Δ^{EM} † K_S not included

As statement on lepton universality

Compare to other precise tests:

- $\pi \rightarrow \ell v$ $(r_{\mu e}) = 1.0020(19)$ PDG with PIENU '15 result
- $\tau \rightarrow \ell v v$ $(r_{\mu e}) = 1.0036(28)$ HFLAV May '19 unofficial prelim.

As statement on calculation of Δ^{EM} Confirmed at per-mil level

SU(2)-breaking correction

Strong isospin breaking

Quark mass differences, η - π^0 mixing in $K^+\pi^0$ channel

46

$$= \frac{3}{4} \frac{1}{Q^2} \begin{bmatrix} \frac{\overline{M}_K^2}{\overline{M}_\pi^2} + \frac{\chi_{p^4}}{2} \left(1 + \frac{m_s}{\hat{m}}\right) \end{bmatrix} \qquad Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2} \qquad \begin{array}{l} \chi_p^4 = 0.252 \\ \text{NLO in strong interaction} \\ \text{O}(e^2 p^2) \text{ term } \varepsilon_{\text{EM}}^{(4)} \sim 10^{-6} \end{array}$$

Cirigliano et al., '02; Gasser & Leutwyler, '85

= +2.52(11)% Calculated using:

 $\Delta^{SU(2)} \equiv rac{f_+(0)^{K^+\pi^0}}{f_-(0)^{K^0\pi^-}} - 1$

Q = 22.5(5)
 $m_s/m = 27^{23}(10)$ $\begin{bmatrix} FLAG '21, N_f = 2+1+1 \text{ avg.} \\ Good agreement with ChPT \\ Cf. Colangelo et al., <math>Q = 22.1(7) \text{ from } \eta \rightarrow 3\pi$ $M_K = 494.2(3)$
 $M_{\pi} = 134.8(3)$ $\begin{bmatrix} Isospin-limit meson masses from FLAG '17 \\ No difference if <math>M_K = 494.58, M_{\pi} = m_{\pi}$

Test by evaluating V_{us} from K^{\pm} and K^{0} data with **no** corrections: Equality of V_{us} values would require $\Delta^{SU(2)} = 2.76(33)\%$

Impact of hypothetical $K_{\mu3}/K_{\mu2}$ result

	current fit	$K_{\mu3}/K_{\mu2}$ BR at 0.5%			K_{μ}	$_{\mu3}/K_{\mu2}$ BR at 0.29	76
		central	$+2\sigma$	-2σ	central	$+2\sigma$	-2σ
χ^2/dof	25.5/11	25.5/12	31.8/12	32.1/12	25.5/12	35.6/12	35.9/12
<i>p</i> -value [%]	0.78	1.28	0.15	0.13	1.28	0.04	0.03
BR(μν) [%]	63.58(11)	63.58(09)	63.44(10)	63.72(11)	63.58(08)	63.36(10)	63.80(11)
$S(\mu\nu)$	1.1	1.1	1.3	1.4	1.2	1.6	1.7
BR($\pi\pi^{0}$) [%]	20.64(7)	20.64(6)	20.73(7)	20.55(8)	20.64(6)	20.78(7)	20.50(10)
$S(\pi\pi^0)$	1.1	1.2	1.3	1.5	1.2	1.5	2.0
BR(πππ) [%]				5.56(4)			
$S(\pi\pi\pi)$				1.0			
$BR(K_{e3})$ [%]	5.088(27)	5.088(24)	5 113(25)	<u>5 061(31)</u>	<u>5.088(23)</u>	5.128(24)	5.046(32)
$S(K_{e3})$	1.2	1.2	1.2	1.6	1.3	1.3	1.8
$BR(K_{\mu 3})$ [%]	3.366(30)	3.366(13)	3.394(16)	3.336(27)	3.366(7)	3.411(13)	3.320(18)
$S(K_{\mu3})$	1.9	1.2	1.5	2.6	1.1	2.2	3.1
BR $(\pi \pi^0 \pi^0)$ [%]				1.764(25)			
$S(\pi\pi^0\pi^0)$				1.0			
$ au_{\pm}$ [ns]	12.384(15)	12.384(15)	12.382(15)	12.385(15)	12.384(15)	12.381(15)	12.386(15)
$S(au_{\pm})$				1.2			

Hypothetical $K_{\mu3}/K_{\mu2}$ measurement to 0.2% giving result $\pm 2\sigma$ from current fit:

- Changes BR(K_{e3}) and BR($K_{\mu3}$) by $\pm 1.5\sigma$
- Changes BR($K_{\mu 2}$) by $\mp 2\sigma$ (i.e. in opposite direction)

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Impact of $K_{\mu3}/K_{\mu2}$ on unitarity tests

$$\Delta_{\text{CKM}}^{(1)} = \left| V_{ud}^{\beta} \right|^2 + \left| V_{us}^{K_{\ell_3}} \right|^2 - 1$$
$$\Delta_{\text{CKM}}^{(2)} = \left| V_{ud}^{\beta} \right|^2 + \left| V_{us}^{K_{\ell_2}/\pi_{\ell_2},\beta} \right|^2 - 1$$
$$\Delta_{\text{CKM}}^{(3)} = \left| V_{ud}^{K_{\ell_2}/\pi_{\ell_2},K_{\ell_3}} \right|^2 + \left| V_{us}^{K_{\ell_3}} \right|^2 - 1$$

 V_{us} from $K_{\ell 3}$ + V_{ud} from β decays

 V_{us}/V_{ud} from $K_{\mu 2}$ + V_{ud} from β decays

48

 V_{us} from $K_{\ell 3}$ + V_{us}/V_{ud} from $K_{\mu 2}$

	current fit	$K_{\mu3}/K_{\mu2}$ BR at 0.5%			$K_{\mu3}/K_{\mu2}$ BR at 0.2%		
		central	$+2\sigma$	-2σ	central	$+2\sigma$	-2σ
$\frac{V_{us}}{V_{ud}}\Big _{K_{\ell 2}/\pi_{\ell 2}}$	0.23108(51)	0.23108(50)	0.23085(51)	0.23133(51)	0.23108(49)	0.23071(51)	0.23147(52)
$V_{us}^{K_{\ell 3}}$	0.22330(53)	0.22337(51)	0.22360(52)	0.22309(54)	0.22342(49)	0.22386(52)	0.22287(52)
$\Delta_{\rm CKM}^{(1)}$	-0.00176(56)	-0.00173(55)	-0.00162(56)	-0.00185(56)	-0.00171(55)	-0.00151(56)	-0.00195(56)
	-3.1σ	-3.1σ	-2.9σ	-3.3σ	-3.1σ	-2.7σ	-3.5σ
$\Delta_{\rm CKM}^{(2)}$	-0.00098(58)	-0.00098(58)	-0.00108(58)	-0.00087(58)	-0.00098(58)	-0.00114(58)	-0.00081(58)
	-1.7σ	-1.7σ	-1.9σ	-1.5σ	-1.7σ	-2.0σ	-1.4σ
$\Delta_{\rm CKM}^{(3)}$	-0.0164(63)	-0.0157(60)	-0.0118(62)	-0.0202(63)	-0.0153(59)	-0.0083(62)	-0.0233(62)
	-2.6σ	-2.6σ	-1.9σ	-3.2σ	-2.6σ	-1.40	-3.8σ

- $\Delta^{(3)}_{\rm CKM}$ has no inputs from β decays
- Less sensitive as an absolute unitarity test but clearly shows impact of new measurements of V_{us}

V_{us} from τ decays

Based mainly on work by HFLAV and talks by Alberto Lusiani

$$\begin{split} V_{us} \text{ from exclusive } \tau \text{ decays} \\ \Gamma(\tau \to K v_{\tau}) &= \frac{G_F^2}{16\pi\hbar} |V_{us}|^2 f_{K^{\pm}}^2 m_{\tau}^3 (1 - \frac{m_K^2}{m_{\tau}^2})^2 S_{\text{EW}} (1 + \delta R_K) \\ \frac{\Gamma(\tau \to K v_{\tau})}{\Gamma(\tau \to \pi v_{\tau})} &= \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_{K^{\pm}}^2}{f_{\pi^{\pm}}^2} \frac{(m_{\tau}^2 - m_K^2)^2}{(m_{\tau}^2 - m_{\pi}^2)^2} (1 + \delta R_{K/\pi}) \end{split}$$

Inputs from experiment:

HFLAV '22 Fit: BR(K^-v_τ) = 0.006957(96) BR(π^-v_τ) = 0.10808(53) BR(K^-v_τ/π^-v_τ) = 0.06437(92)

Radiative corrections:

Arroyo-Ureña et al., PRD104 (2021) Large- N_c expansion

 $\delta R_K = (-0.15 \pm 0.57)\%$ $\delta R_{K/\pi} = (0.10 \pm 0.80)\%$

Results:

HFLAV '22 web update A. Lusiani, ELECTRO '22

$$\tau \rightarrow Kv_{\tau}$$

 $V_{us} = 0.2219(17)$
 $\tau \rightarrow Kv_{\tau}/\tau \rightarrow \pi v_{\tau}$
 $V_{ud}/V_{us} = 0.2290(17)$
 $N_f = 2+1+1$, FLAG '19:
 $f_{K\pm} = 155.7 \pm 0.3$ MeV
 $f_{K\pm}/f_{\pi\pm} = 1.1932(21)$

V_{us} from exclusive τ decays

51

A. Lusiani, update of HFLAV τ avergages for Electro 2022

V_{us} from inclusive hadronic τ decays

$$R_{\tau} = \frac{\Gamma(\tau^- \to [\text{hadrons}]^- v_{\tau}(\gamma))}{\Gamma(\tau^- \to e^- \bar{v}_e v_{\tau}(\gamma))}$$

 $= R_{\tau \text{ non-strange}} + R_{\tau \text{ strange}}$ vector + axial
current

SU(3) breaking:

 $\delta R_{\tau}^{\text{th}} = \frac{R_{\tau \text{ non-strange}}}{|V_{ud}|^2} - \frac{R_{\tau \text{ strange}}}{|V_{us}|^2} - \frac{R_{\tau \text{ strange}}}{|V_{us}|^2}$

Experimental inputs:

$$\frac{R_{\tau \text{ non-strange}}}{V_{ud}}|^2 \approx 3.7$$

$$R_{\tau \text{ strange}} \approx 0.17$$

Theoretical inputs:

 $\delta R_{\tau}^{\text{th}} = 0.238(33) \text{ for } m_s(m_{\tau}) = 93.0 \pm 8.5 \text{ MeV}$

 OPE with fixed-order or contour-improved perturbation theory for contributions up to D = 2

E. Gamiz et al., hep-ph/0612154v1

 $\delta R_{\tau}^{\text{th}}$ from finite-energy sum rules (FESR):

$$R_{\tau}^{w}(s_{0}) \equiv \int_{0}^{s_{0}} ds \, \frac{w(s)}{w_{\tau}(s)} \, \frac{dR_{\tau}(s)}{ds}$$

$$\delta R_{\tau}^{w}(s_0) = \frac{R_{\tau \text{ non-strange}}^{w}(s_0)}{|V_{ud}|^2} - \frac{R_{\tau \text{ strange}}^{w}(s_0)}{|V_{us}|^2}$$

- $\delta R_{\tau}^{w}(s_{0})$ has contributions up to D = 8
- $\delta R_{\tau}^{w}(s_{0})$ has substantial dependence on s_{0} , w if contributions with D > 4 not negligible

Hudspith et al., 2017

• Can use lattice QCD inputs for *D* = 6, 8 contributions

Boyle et al. (RBC/UKQCD), 2018

V_{us} from inclusive hadronic τ decays

A. Lusiani, update of HFLAV τ averages for Electro 2022

V_{us} from τ decays: Status and prospects

Currently uncertainty about 3x larger than for *K* decays Significance of CAA is about the same (τ value for V_{us} a bit lower)

Prospects for improvement:

Enormous increases in statistics expected from Belle II (50-100x *BABAR*, Belle) To be competitive with *K* decays, need statistics from FCC-*ee* (1000x ALEPH)

Experimental determination of V_{ud}

- 1. $0^+ \rightarrow 0^+$ nuclear β decays (superallowed Fermi transitions)
- 2. Neutron β decay
- 3. T = 1/2 nuclear mirror decays
- 4. Pion β decay

J. Hardy, Amherst 2019

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

$|V_{ud}| \text{ from } 0^+ \to 0^+: \text{ Corrections}$ $\mathcal{F}t \equiv ft(1+\delta'_R)(1+\delta_{\text{NS}}-\delta_C) = \frac{K}{2G_V^2(1+\Delta_R^V)}$

- $\Delta_{R} \quad \text{Universal radiative correction} \\ \text{High-energy } \gamma W \text{box} + ZW \text{box amplitudes} \\ \end{array}$
- δ_{R}' Long-distance radiative correction One-photon bremsstrahlung + low-energy γW box
- δ_{C} Coulomb correction Charge-dependent mismatch between parent and daughter analog states (members of same isospin triplet)
- δ_{NS} Nuclear structure O(α) axial photonic contributions

Consistency check: CVC demands equivalence of $\mathcal{F}t$ values after corrections

$|V_{ud}|$ from pion β decays

$$\Gamma_{\pi\beta} = \frac{G_{\mu}^{2} |V_{ud}|^{2}}{30\pi^{3}} \left(1 - \frac{\Delta}{2M_{+}}\right)^{3} \Delta^{5} f(\epsilon, \Delta)(1 + \delta) \qquad \begin{array}{l} \Delta = m_{\pi^{+}} - m_{\pi^{-}} \\ \epsilon = (m_{e}/\Delta)^{2} \\ f(\epsilon, \Delta) = \text{Fermi function} \end{array}$$

- Experimentally, need to measure BR($\pi^+ \rightarrow \pi^0 ev$) and lifetime τ_{π^+}
- Radiative correction δ ~ 3.3%, very well controlled New lattice calculation (Feng et al., 2020)

PIBETA PRL 93 (2004)

BR(π^+ → $\pi^0 ev$) = 1.036(4)_{stat}(4)_{sys}(3)_{$\pi e2$} × 10⁻⁸ Decays at rest

 $V_{ud}^{\pi\beta} = 0.97386(281)_{BR}(9)_{\tau}(14)_{\delta}(28)_{f}$

Cirigliano et al. $\tau_{\pi+}$ from2208.11707PDG 2022

- Phase-2 goal of recently proposed PIONEER experiment: Reduce uncertainty on BR: 0.6% → 0.02% (competitive with 0⁺ → 0⁺)
- Completely independent of 0⁺ → 0⁺: No nuclear-structure corrections and different radiative corrections

What can we learn today from $\pi^+ \rightarrow \pi^0 ev$?

Czarnecki, Marciano, Sirlin, PRD 101 (2020)

$$\frac{\Gamma(K_L \to \pi e \nu(\gamma))}{\Gamma(\pi^+ \to \pi^0 e \nu(\gamma))} = \frac{1}{3} \left(\frac{m_{K^0}}{m_{\pi^+}}\right)^5 \left(\frac{V_{us} f_+^K(0)}{V_{ud} f_+^\pi(0)}\right)^2 \left(\frac{I_K}{I_\pi}\right) \left(\frac{1 + \mathrm{RC}_K}{1 + \mathrm{RC}_\pi}\right)$$

Ratio not sensitive to short-distance EW radiative corrections

- $(1 + RC_K RC_\pi) = 1.000(2)_K(1)_\pi$
- Cancellation of S_{EW} and short-distance radiative corrections
- Δ_{EM}^{K} (long-distance correction) fortuitously cancels (?) when using K_{Le3}

Consider *K*_{*Le*³} mode as an example:

Most precise value of V_{us}

$$\frac{V_{us}f_{+}^{K}(0)}{V_{ud}f_{+}^{\pi}(0)} = 0.22221(53)_{\Gamma(K)}(64)_{\Gamma(\pi)}(22)_{\rm RC}(12)_{\rm int} = 0.22221(87)$$

	K_{Le3}/π_{e3}^*	$K_{\mu 2}/K_{\pi 2}^{\dagger}$	$K_{\ell 3}^{*} \& V_{ud}(\beta)$
V_{us}/V_{ud}	0.2291(9) _{exp} (4) _{lat}	t 0.2311(5)	0.22930(54) _{us} (6) _{ud}
diff with K_{Le3}/π_e		+1.7σ	+0.2 σ
$\star $	$2000(17)$ and $(\pi(0))$ 1	CI(0) line it	$\frac{1}{10000000000000000000000000000000000$

*with $f_{+}^{K}(0) = 0.9698(17)$ and $f_{+}^{\pi}(0) = 1$ in SU(2) limit [†] with $f_{K}/f_{\pi} = 1.1978(22)$

New physics implications of Δ_{CKM}

Model independent SMEFT approach

Cirigliano et al., NPB 830 (2010) González-Alonso et al., PPNP 104 (2019)

60

Effective Lagrangian for
$$\mu \sim 1$$
 GeV with general set of dim-6 operators giving rise to (semi)leptonic transitions

$$\mathscr{L}_{\mathrm{eff}} = \mathscr{L}_{\mathrm{eff,SM}} + \mathscr{L}_{\mathrm{eff,NF}}^{\mathrm{dim-6}}$$
 $\mathscr{L}_{\mathrm{eff,NP}}^{\mathrm{dim-6}} = \sum_{i} \frac{C_{i}}{\Lambda^{2}} \mathscr{O}_{i}$

Consider the **flavor-blind** limit (or similar: minimal flavor violation, etc.) New physics appears as a small difference between G_F and G_{μ}

From comparison of operators for $d \rightarrow ulv$ and $\mu \rightarrow evv$

$$\Delta_{\rm CKM} = 2 \frac{v^2}{\Lambda^2} \begin{bmatrix} C_{Hq}^{(3)} - C_{H\ell}^{(3)} + C_{\ell\ell} - C_{\ell q}^{(3)} \end{bmatrix} \xrightarrow{\Delta_{\rm CKM} \text{ provides important constraints for EW fits}} \\ \sum_{k=1}^{N} \sum_{l=1}^{N} \sum_{k=1}^{N} \sum_{l=1}^{N} \sum_{k=1}^{N} \sum_{l=1}^{N} \sum_{l=1}^{N} \sum_{k=1}^{N} \sum_{l=1}^{N} \sum_{$$

Types of SM	NP in μ decay	NP in β decay	-
extensions that	Scalar singlet	Vector boson triplet	See, e.g.: Manzari
can generate	Vector boson singlet	Vector-like quarks	2111.04519
contributing to	Vector boson triplet	Vector-like leptons	Bagnaschi et al. JHEP 2022 308
Δ_{CKM}	Vector-like leptons	Leptoquarks	_