The new $K_s \rightarrow \pi e \vee$ branching fraction **measurement at KLOE**

A.Passeri, INFN Roma Tre

on behalf of the KLOE-2 Collaboration

12° International Workshop on the CKM Unitarity Triangle Santiago de Compostela, 18-22 september 2023

DA^D**NE** and **KLOE**

DA Φ **NE** is a e+e- collider $\hat{\alpha}$, \sqrt{s} = 1020 MeV, **located in Frascati National Laboratories. Worked for KLOE (2000-2006):Max peak lumi: 1.5 10³² cm-1 s -1 Best daily int. lumi: 8.5 pb-1**

Upgraded in 2008 with crab-waist scheme Worked for KLOE-2 (2014-2018): Max peak lumi: 2.4 10³² cm-1 s -1 Best daily int. lumi: 11 pb-1

> **KLOE collected 2.5 fb⁻¹ at the** ϕ **resonance peak and 250 pb-1 at √s = 1000 MeV.**

The KLOE detector

Interaction region: Instrument quadrupoles, Al-Be spherical beam pipe **Large volume Drift Chamber (13K cells, He gas mixt.) :**

> **4m-, 3.75m-length, all-stereo** $\sigma_{\mathbf{p}}/\mathbf{p} = 0.4$ % (tracks with θ > 45°) s**x hit** = **150** m**m (xy), 2 mm (z)** $\sigma_{\mathbf{x}}^{\mathsf{vertex}}$ ~1 mm $\sigma_{\mathsf{M}\pi\pi}$ ~ 1 MeV

Pb-SciFi Calorimeter $($ barrel + endcap, 15 X_0 depth, **98% solid angle coverage) :**

> $\sigma_{\rm E}$ /E = 5.7% / $\sqrt{\rm E(GeV)}$ σ_{τ} = 54 ps / $\sqrt{\mathsf{E}(\mathsf{GeV})} \oplus 100 \text{ ps}$

• **PID capabilities mostly from TOF**

 σ_{ϕ} ~3 µb -> 10⁹ neutral **kaon pairs per fb-1**

The f**-factory advantage**

• The final $\overline{\text{KK}}$ state has the same quantum numbers as the ϕ **i.e. is a pure J PC = 1- - quantum state**

$$
|i\rangle \propto \frac{1}{\sqrt{2}}(|K_L, \mathbf{p}\rangle |K_S, -\mathbf{p}\rangle - |K_L, -\mathbf{p}\rangle |K_S, \mathbf{p}\rangle)
$$

• $P_k = -P_{\overline{k}} \sim 110 \text{ MeV/c}$

• $\lambda(K_s) = 6$ mm ($\tau = 90$ ps), $\lambda(K_l) = 3.5$ m ($\tau = 51.7$ ns)

The presence of one kaon tags the other opposite one. All K_c decay near the i.p.

KLOE has the unique capability of selecting pure KS and KL beams

Moreover: interference pattern and entanglement of K_S K_L state allows to study fundamental simmetries and quantum mechanics

Neutral kaon tagging at KLOE

 $20/09/2023$ \rightarrow 5 K_S tagged by K_L interaction in EmC K_L velocity in φ rest frame $\beta^* = 0.218$ Efficiency ~ 30% (largely geometrical) K_S angular resolution: $\sim 1^{\circ}$ (0.3° in ϕ) K_S momentum resolution: ~ 2 MeV

 K_L tagged by $K_S \to \pi^+\pi^-$ vertex at IP Efficiency ~ 70% (mainly geometrical) K_L angular resolution: $\sim 1^{\circ}$ K_L momentum resolution: $\sim 2 \text{ MeV}$

The KSe3 decay and the Cabibbo angle

In the SM :

$$
\mathcal{B}(K_S \to \pi \ell \nu) = \frac{G^2 (f_+(0) |V_{us}|)^2}{192 \pi^3} \tau_S m_K^5 I_K^{\ell} S_{\rm EW} (1 + \delta_{\rm EM}^{K \ell})
$$

The KSe3 determination of $|V_{us}|f_{\text{\tiny{+}}}(0)$ is the less accurate (apart from the recently measured and rarer KSu3 mode Phys.Lett.B 804 (2020) 135378).

The presently available BR(KSe3) value is dominated by the KLOE measurement based on 0.4 fb⁻¹ data sample:

 $BR(K_s \rightarrow \pi e \nu) = (7.046 \pm 0.078 \pm 0.049) \times 10^{-4}$ PLB 636 (2006) 173

1.4% total uncertainty $(1.1\% \text{ stat} \pm 0.7\% \text{ syst})$

We present here a new measurement based on 1.63 fb-1 independent KLOE data sample.

M.Moulson and E.Passemar, CKM 2021

What we measure

$$
\mathcal{R} = \frac{\Gamma(K_S \to \pi e \nu)}{\Gamma(K_S \to \pi^+ \pi^-)} = \frac{N_{\pi e \nu}}{\epsilon_{\pi e \nu}} \times \frac{\epsilon_{\pi \pi}}{N_{\pi \pi}} \times R_{\epsilon}
$$

 ${\cal N}_{\pi\!e\,\nu}$ *,* ${\cal N}_{\pi\pi}$ *:* number of selected events for K_s-> π ev and K_s -> $\pi^*\pi^ \mathcal{E}_{\pi\mathsf{e}\,\nu}$, $\mathcal{E}_{\pi\pi}$: selection efficiencies

 R_{ε} : ratio of common efficiencies for trigger, online filter, event classification and preselection

Preselection and normalization sample

K^L -crash:

- **-** one neutral cluster with $E > 100$ MeV and polar angle $15^{\circ} < \theta < 165^{\circ}$
- **-** velocity $0.17 < \beta^* < 0.28$ in the ϕ c.m.s. (in the lab: $\beta = r_{\text{clu}}/ct_{\text{clu}}$)

KS side selection:

two charged tracks of opposite curvature forming a vertex inside the cylinder $(\rho < 5 \text{ cm}; z < 10 \text{ cm})$

The normalization sample of K_s \to π^+ π^- decays is selected at this stage by requiring each of the two charged tracks momentum to be 140 MeV < p < 280 MeV. We obtain:

Npp **= (282.314 ± 0.017) x 10⁶ events**

Efficiency 97.4 and purity 99.9% determined by simulation.

Sample composition after preselection

Signal selection is then performed in two steps based on uncorrelated information:

1) the event kinematics using only DC tracking variables

2) the time-of-flight measured with the calorimeter

Multivariate selection based on tracking variables/1

5 discriminating variables are selected. In the signal region they show satisfactory data-MC agreement

Multivariate selection based on tracking variables/2

BDT classifier trained on 5000 signal events and 50000 background simulated events Tested on same size samples and run over the both full data and MC samples.

Events with BDT output > 0.15 are retained to reduces main backgrounds from charged kaons and K_S -> $\pi\pi$

Time of flight selection/1

Track-to-cluster association (TCA) is required for both tracks:

clusters must have $E_{\text{clu}} > 20$ MeV, $\theta_{\text{clu}} > 15^{\circ}$, centroid within 30 cm of the track extrapolation.

For each track:

$$
\delta t_i = t_{\text{clu},i} - L_i / c \beta_i(m_i) \qquad L_i \text{ track length, } \beta_i = p_i / \sqrt{p_i^2 - p_i^2}
$$

Correct mass hypothesis yields null δt_i $\delta t = \delta t_1 - \delta t_2$ minimize event T₀ uncertainty

Test of the $\pi\pi$ **hypothesis:**

$$
\delta t_{\pi\pi} = \delta t_{1,\pi} - \delta t_{2,\pi}
$$

Selection applied: $2.5 \text{ ns} < |\delta t_{\pi\pi}| < 10 \text{ ns}$

Time of flight selection/2

Test of π **e vs e** π **hypotheses:**

$$
\delta t_{\pi e} = \delta t_{1,\pi} - \delta t_{2,e} \qquad \text{vs} \qquad \delta t_{e\pi} = \delta t_{1,e} - \delta t_{2,\pi} \qquad \text{(random track ordering)}
$$

Lowest $|\delta t|$ is chosen as the correct hypothesis δt_e $|\delta t_e|$ < 1 ns is required

Signal extraction

Selected sample is now signal dominated. m_e^2 distribution is used to fit number of events:

 $m_e^2 = (E_{KS} - E_\pi - p_{miss})^2 - p_e^2$ (E_{KS} and p_{KS} from KL-crash)

Fit with 3 components (π ev, $\pi\pi$, others) yields:

$$
N_{\pi e\nu} = 49647 \pm 316
$$
 χ^2 /ndf = 76/96

Evaluation of efficiencies

The KL -> π e v control sample (CS) allows to determine efficiencies from data:

$$
\epsilon_{\pi e\nu} = \epsilon_{\rm CS} \times \frac{\epsilon^{\rm MC}_{\pi e\nu}}{\epsilon^{\rm MC}_{\rm CS}}
$$

CS Selected by K_S tag, requiring K_L decay radius in the range (1 cm, 5 cm). Missing mass cut discards $\pi^+\pi^-\pi^0$ component.

Two high purity (>95%) CS are built by cutting on TOF variables (for $\varepsilon_{\text{kine}}$ evaluation) or kine variables (for ε_{tot} evaluation).

Good comparison of CS and signal samples observed in MC

We obtain:

The K_S -> $\pi^+\pi^-$ selection efficiency is evaluated from the preselected sample with 2 methods and their difference is used as systematics. We get:

 $\varepsilon_{\pi\pi}$ = (96.657 ± 0.002) %

From simulation: $R_e = 1.1882 \pm 0.0012$

Systematic uncertainty

BDT cut is varied in the range (0.135,0.17) and good $N_{\pi ev}$ stability is observed. Spread is used as uncertainty.

TCA checked in CS. δt resolution checked to be identical in signal and control samples.

Lower $\delta t_{\pi\pi}$ cut varied in (2-3 ns) range, $|\delta t_e|$ cut varied in (0.8-1.2 ns) range.

 m_e^2 fit repeated varying range and bin width. Separate components for KS μ 3 and ϕ ->K⁺K⁻ backgrounds are tested.

 R_{ε} systematics evaluated to be 0.48% by comparing data and MC for each of the included common selections

 $N_{\pi\pi} = (282.314 \pm 0.017) \times 10^6$ $\epsilon_{\pi^+\pi^-} = (96.657 \pm 0.088)\%$ Including $\epsilon_{\pi e\nu} = (19.38 \pm 0.10)\%$ systematics $R_{\epsilon} = 1.1882 \pm 0.0059$

 $N_{\pi e\nu} = 49647 \pm 316$

$$
\mathcal{R} = \frac{\Gamma(K_S \to \pi e \nu)}{\Gamma(K_S \to \pi^+ \pi^-)} = \frac{N_{\pi e \nu}}{\epsilon_{\pi e \nu}} \times \frac{\epsilon_{\pi \pi}}{N_{\pi \pi}} \times R_{\epsilon}
$$

$$
\text{New KLOE result:} \hspace{0.2cm} \left|{\mathcal R}=(1.0421\pm 0.0066_{\rm stat}\pm 0.0075_{\rm syst})\times 10^{-3}\right.
$$

Previous KLOE result: 0.41 fb⁻¹ independent data sample. Phys.Lett. B 636 (2006) 173

$$
\mathcal{R}\,=\,(1.019\pm0.011_{\rm stat}\pm0.007_{\rm syst})\times10^{-3}
$$

Systematics correlation factor between the two measurements is 12%, due to the determination of the preselection and time of flight efficiencies. Combination yields:

$$
\mathcal{R} = (1.0338 \pm 0.0054_{\rm stat} \pm 0.0064_{\rm syst}) \times 10^{-3} \, \text{Jm}
$$

JHEP 02 (2023) 098

KSe3 Branching Ratio and V_{us}

• Using the value: $BR(K_S \to \pi^+ \pi^-) = 0.69196 \pm 0.00051$ measured by KLOE Eur. Phys. J. C 48 (2006) 767 We obtain:

 $\mathcal{B}(K_S \to \pi e \nu) = (7.153 \pm 0.037_{\text{stat}} \pm 0.044_{\text{syst}}) \times 10^{-4} = (7.153 \pm 0.058) \times 10^{-4}$

Using the SM formula: $\mathcal{B}(K_S \to \pi \ell \nu) = \frac{G^2 (f_+(0) |V_{us}|)^2}{192 \pi^3} \tau_S m_K^5 I_K^\ell S_{\text{EW}} (1 + \delta_{\text{EM}}^{K \ell})$

and taking the PDG values for τ_{ς} and m_k and the most recent calculations of the theoretical correction factors (Phys.Rev.D 105, (2022) 013005) we obtain:

$$
f_{+}(0)|V_{us}| = 0.2170 \pm 0.0009
$$

Accuracy better than the one reached with charged kaon semileptonic decays

A brief KSu3 reminder PLB 804 (2020) 135378

Same analysis technique as KSe3:

- Different $\delta t_{\pi\pi}$ selection window 1 ns < $|\delta t_{\pi\pi}|$ < 3 ns
- Cut on $|\delta t_{\mu}|$ < 0.5 and fit to m_{μ}^2 distribution
- Similar efficiency and systematics estimation via control sample

First ever measurement of this decay:

$$
\mathcal{R}_{\mu} = (6.59 \pm 0.28) \times 10^{-4}
$$

Partial anti-correlation with KSe3 measurement to be quantified

Conclusions

The KLOE experiment has performed a new measurement of the $K_s \rightarrow \pi$ e v branching fraction based on a 1.63 fb-1 data sample collected in 2004-05, with a < 1% overall uncertainty.

Combination with the previous KLOE measurement yields a new determination of ($K_s \rightarrow \pi$ **e v) branching fraction with 0.8% precision.**

The corresponding estimate of $f_*(0)x|V_{us}|$ is competitive with those obtained by other K semileptonic decays

The sum of the four main K_s branching ratios measured by KLOE yields:

$$
B_{\pi+\pi-} + B_{\pi0\pi0} + B_{\pi e\nu} + B_{\pi\mu\nu} > 0.9983 \text{ @} 95\% \text{ CL}
$$

SPARES

R_{ε} components from MC

δt_e resolution for signal and control sample

