Effective Field Theory for neutron β decay

Wouter Dekens

with V. Cirigliano, E. Mereghetti, and O. Tomalak arXiv:2306.03138

Seng, Gorchtein, Patel, Ramsey-Musolf '18, '19; Czarnecki, Marciano, Sirlin '19; Hayen, '20; Shiells, Blunden, Melnitchouk, '21; Ma et al, '23

Matching SM-LEFT: tree level

Matching SM-LEFT: loop level

• G_F obtained from μ decay $C_{\beta}(m_W) = 1 + \frac{\alpha}{\pi} \left[\ln \frac{m_Z}{m_W} - \frac{3}{4} + \frac{a}{6} \right] + \mathcal{O}(\alpha^2, \alpha_s \alpha)$ Stoffer, WD, '19;

Matching SM-LEFT: loop level

• G_F obtained from μ decay $C_{\beta}(m_W) = 1 + \frac{\alpha}{\pi} \left[\ln \frac{m_Z}{m_W} - \frac{3}{4} + \frac{a}{6} \right] + \mathcal{O}(\alpha^2, \alpha_s \alpha)$ Stoffer, WD, '19;

• Depends on the (evanescent) scheme, allows for checks later on

Matching LEFT-ChEFT

Form of operators determined by chiral symmetry

The operators come with unknown low energy constants (LECs)

Manohar, Georgi, `84; Weinberg, `90, `91

Matching LEFT-ChEFT: Tree level

Meissner, Steininger, '97 Gasser et. al. '02

• Include QED: promote $q_{L,R,W} \rightarrow q_{L,R,W}(x)$ to spurions

Meissner, Steininger, '97 Gasser et. al. '02

• Include QED: promote $q_{L,R,W} \rightarrow q_{L,R,W}(x)$ to spurions

• ChPT contains interactions with $\mathcal{O}(e^2)$ LECs

Meissner, Steininger, '97 Gasser et. al. '02

• Include QED: promote $q_{L,R,W} \rightarrow q_{L,R,W}(x)$ to spurions

• ChPT contains interactions with $\mathcal{O}(e^2)$ LECs

Meissner, Steininger, '97 Gasser et. al. '02

• Include QED: promote $q_{L,R,W} \rightarrow q_{L,R,W}(x)$ to spurions

ChPT contains interactions with O(e²) LECs
Determine the effective vector coupling

$$g_V = \left[1 + e^2 \left[2(V_1 + V_2 + V_3 + V_4) - X_6/2 - g_9\right]\right] C_\beta$$

$$\frac{\delta^2 Z_{\text{LEFT}}}{\delta \boldsymbol{q}_W \delta \boldsymbol{q}_V} = \frac{\delta^2 Z_{\chi}}{\delta \boldsymbol{q}_W \delta \boldsymbol{q}_V} \implies \qquad g_V(\mu_{\chi}) = \left[1 + \frac{\alpha}{\pi} [\text{perturbative}] + \overline{\Box}_{\text{Had}}^V\right] C_{\beta}(\mu_{\chi})$$

$$\frac{\delta^2 Z_{\text{LEFT}}}{\delta \boldsymbol{q}_W \delta \boldsymbol{q}_V} = \frac{\delta^2 Z_{\chi}}{\delta \boldsymbol{q}_W \delta \boldsymbol{q}_V} \implies \qquad g_V(\mu_{\chi}) = \left[1 + \frac{\alpha}{\pi} [\text{perturbative}] + \overline{\Box}_{\text{Had}}^V\right] C_{\beta}(\mu_{\chi})$$

Matching LEFT-ChEFT: LECs

Matching LEFT-ChEFT: LECs

Matching LEFT-ChEFT: LECs

•Allows one to check scheme independence

Needed non-perturbative input:

$$\overline{\Box}_{\text{Had}}^{V}(\mu_{0}) = -e^{2} \int \frac{i \mathrm{d}^{4} q}{(2\pi)^{4}} \frac{\nu^{2} + Q^{2}}{Q^{4}} \frac{T_{3}(\nu, Q^{2})}{2m_{N}\nu} + \dots$$

Needed non-perturbative input:

$$\overline{\Box}_{\text{Had}}^{V}(\mu_{0}) = -e^{2} \int \frac{i \mathrm{d}^{4} q}{(2\pi)^{4}} \frac{\nu^{2} + Q^{2}}{Q^{4}} \left(\frac{T_{3}(\nu, Q^{2})}{2m_{N}\nu} + \dots \right) + \dots$$

Structure function T_3 arises through the correlator:

$$T_{3}(q,\nu) \sim \varepsilon^{\mu\nu\alpha\beta} q_{\beta} v_{\alpha} \int_{x} e^{iq \cdot x} \langle N | T[\bar{q}\gamma^{\mu}q(x)\bar{q}\gamma^{\nu}\gamma_{5}\tau^{a}q] | N \rangle \sim \frac{\delta^{2} Z_{\text{LEFT}}}{\delta q_{W} \delta q_{V}}$$

Needed non-perturbative input:

$$\overline{\Box}_{\text{Had}}^{V}(\mu_{0}) = -e^{2} \int \frac{i \mathrm{d}^{4} q}{(2\pi)^{4}} \frac{\nu^{2} + Q^{2}}{Q^{4}} \left(\frac{T_{3}(\nu, Q^{2})}{2m_{N}\nu} + \dots \right)$$

Structure function T_3 arises through the correlator:

 $T_{3}(q,\nu) \sim \varepsilon^{\mu\nu\alpha\beta} q_{\beta} v_{\alpha} \int_{x} e^{iq \cdot x} \langle N | T[\bar{q}\gamma^{\mu}q(x)\bar{q}\gamma^{\nu}\gamma_{5}\tau^{a}q] | N \rangle \sim \frac{\delta^{2} Z_{\text{LEFT}}}{\delta q_{W} \delta q_{V}}$

Needed non-perturbative input:

$$\overline{\Box}_{\text{Had}}^{V}(\mu_{0}) = -e^{2} \int \frac{i \mathrm{d}^{4} q}{(2\pi)^{4}} \frac{\nu^{2} + Q^{2}}{Q^{4}} \left(\frac{T_{3}(\nu, Q^{2})}{2m_{N}\nu} + \dots \right)$$

Structure function T_3 arises through the correlator:

 $T_{3}(q,\nu) \sim \varepsilon^{\mu\nu\alpha\beta} q_{\beta} v_{\alpha} \int_{x} e^{iq \cdot x} \langle N | T[\bar{q}\gamma^{\mu}q(x)\bar{q}\gamma^{\nu}\gamma_{5}\tau^{a}q] | N \rangle \sim \frac{\delta^{2} Z_{\text{LEFT}}}{\delta q_{W} \delta q_{V}}$

 $\overline{\Box}_{\text{Had}}^V$ requires knowledge of T_3 $Q^2 \le 2$ GeV: elastic & inelastic regions

 $Q^2 \ge 2$ GeV: operator product expansion

Use determination of Seng et. al. '18

• In agreement with first Lattice determination

Ma et al. '23

Running ChPT/pion-less EFT

• No matching contributions to g_V at $\mu = m_{\pi}$

Cirigliano, de Vries, Mereghetti, Walker-Loud '22

• No matching contributions to g_V at $\mu = m_{\pi}$

Cirigliano, de Vries, Mereghetti, Walker-Loud '22

• Anomalous dimensions known from HQET

$$g_V(m_e) = \left[1 + \mathcal{O}\left(\alpha^n \ln^n \frac{m_N}{m_e}\right) + \mathcal{O}\left(\alpha^{n+1} \ln^n \frac{m_N}{m_e}\right) \right] g_V(m_N)$$

Giménez '92; Broadhurst et al. '91; Hoang '97;

• Anomalous dimensions known from HQET

•

$$g_V(m_e) = \left[1 + \mathcal{O}\left(\alpha^n \ln^n \frac{m_N}{m_e}\right) + \mathcal{O}\left(\alpha^{n+1} \ln^n \frac{m_N}{m_e}\right)\right] g_V(m_N)$$

$$\tilde{\gamma}_0$$

Giménez '92; Broadhurst et al. '91; Hoang '97;

•

•

Jaus, Rasche '97; Sirlin, Zucchini '86

- Use pion-less interactions at $\mu \simeq m_e$ to compute Γ_n
 - Need amplitude $n \rightarrow pe\nu$ at $\mathcal{O}(\alpha)$: loops, real radiation

• Complication, Coulomb terms scale as

$$\sim \left(\frac{\pi\alpha}{\beta}\right)^n, \qquad \beta = |\mathbf{p}_e|/E_e$$
$$\left(\frac{\alpha}{\pi}\right)^n$$

- Enhanced compared to naive expectation
- Need some higher-order terms

- Enhanced compared to naive expectation
- Need some higher-order terms
- Known from NRQCD literature \implies non-relativistic Fermi function •

Hoang '97; Czarnecki, Melnikov '98; Beneke et al. '99;

Summary

- Neutron β decay, $0^+ \rightarrow 0^+$ sensitive probes of (B)SM physics

 - V_{ud} determination CKM unitarity test Reach of scales $\Lambda \sim \mathcal{O}(10 \,\mathrm{TeV})$
- Requires control of SM uncertainties \bullet

Summary

0.228

Summary

- Neutron β decay, $0^+ \rightarrow 0^+$ sensitive probes of (B)SM physics
 - V_{ud} determination
 - CKM unitarity test
 - Reach of scales $\Lambda \sim \mathcal{O}(10\,\mathrm{TeV})$
- Requires control of SM uncertainties
- Effective Field Theory framework
 - Explicit separation of scales
 - Resum logs
 - Systematically improvable
 - Several differences with the literature

Outlook

- Axial current, g_A
- Superallowed nuclear decays (A > 1)
 - Nuclear-structure dependence
 - Z dependence/Fermi function Hill, Plestid, '23

See M. Gorchtein's talk tomorrow

Back up slides
Matching $\mathcal{O}(e^2)$ Operators

Application to $0^+ \rightarrow 0^+$

- Usual approach: $\Delta_R^V \big|_{\text{Traditional}} = \left[g_V(m_N)\right]^2 \left(1 + \frac{5\alpha(m_N)}{8\pi}\right) - 1 = 2.471(25)\%,$
 - In the EFT

$$\Delta_R^V \big|_{\text{EFT}} = \left[g_V \left(m_e \right) \right]^2 \left(1 + \frac{5\alpha \left(m_e \right)}{8\pi} \right) - 1,$$

- Needs to be combined with matrix element computed in the same scheme
- Requires EFT versions of
 - Fermi function
 - δ'_R
 - Nuclear-structure dependence $\delta_{\!N\!S}$