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|Vud |2 + |Vus |2 + |Vub |2 = 0.9985(6)Vud
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Inconsistencies between measurements of  and  and SM predictions

Main reason for Cabibbo-angle anomaly: shift in  (and small uncertainties?)

Vud Vus
Vud
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 uncertainty: factor 2 reductionΔV
R

C-Y Seng et al., Phys.Rev.Lett. 121 (2018) 24, 241804;

C-Y Seng, MG, M.J. Ramsey-Musolf, Phys.Rev. D 100 (2019) 1, 013001;

MG, Phys.Rev.Lett. 123 (2019) 4, 042503;

C-Y Seng, X. Feng, MG, L-C Jin, Phys.Rev. D 101 (2020) 11, 111301;

A. Czarnecki, B. Marciano, A. Sirlin, Phys.Rev. D 100 (2019) 7, 073008

C-Y Seng, X. Feng, MG, L-C Jin, 2308.16755;

X. Feng, MG, L-C Jin, P-X Ma, C-Y Seng, Phys.Rev.Lett. 124 (2020) 19, 192002

Yoo,J.S.;Bhattacharya,T.;Gupta,R.;Mondal,S.;Yoon,B.. 2305.03198

PERKEO-III B. Märkisch et al, Phys.Rev.Lett. 122 (2019) 24, 242501gA = − 1.27641(56)
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Universal correction  to free and bound neutron decay

Identified 40 years ago as the bottleneck for precision improvement

Novel approach dispersion relations + experimental data + EFT + lattice QCD

ΔV
R

Theory: Major reduction of uncertainties in the past few years

RC to semileptonic pion decay

 Factor 3 reductionδ

Experiment

Factor 4 reduction

UCN  F. M. Gonzalez et al. Phys. Rev. Lett. 127 (2021) 162501ττn = 877.75(28)+16
−12

Factor 2-3 reduction

aSPECT M. Beck et al, Phys. Rev. C101 (2020) 5, 055506; 2308.16170gA = − 1.2677(28)

 uncertainty: factor 3 increase!!!δNS

τn = 887.7(2.3) BL1 (NIST) Yue et al, PRL 111 (2013) 222501

3.4σ

4σ

Status of Vud 

https://arxiv.org/abs/2308.16755
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0+-0+ nuclear decays: long-standing champion

|Vud |2 =
2984.43s

ℱt(1+ΔV
R) |V0+−0+

ud | = 0.97370 (1)exp, nucl (3)NS (1)RC[3]total

Nuclear uncertainty x 3

|Vud |2 =
5024.7 s

τn(1 + 3gA2)(1+ΔR)

Neutron decay: discrepancies in lifetime  and axial charge ; competitive!τn gA

|V free n
ud | = 0.9733 (2)τn

(3)gA
(1)RC[4]total

Single best measurements only

PDG average
|V free n

ud | = 0.9733 (3)τn
(8)gA

(1)RC[9]total

RC not a limiting factor: more precise experiments  a-coming

|Vπℓ3
ud | = 0.9739 (27)exp (1)RC

Pion decay : theoretically cleanest, experimentally toughπ+ → π0e+νe

|Vud |2 =
0.9799
(1+δ)

Γπℓ3

0.3988(23) s−1 Future exp: 1 o.o.m. (PIONEER)

Status of Vud 

Martin’s	talk

Bastian	and	Ulrich’s	talks



Superallowed nuclear decays



Precise  from superallowed decaysVud

7

Superallowed	0+-0+	nuclear	decays:	

- only	conserved	vector	current	

- many	decays

- all	rates	equal	modulo	phase	space

Experiment:	f	-	phase	space	(Q	value)	and	t	-	partial	half-life	(t1/2,	branching	ratio)
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ft	values:	same	within	~2%	but	not	exactly!

Reason:	SU(2)	slightly	broken

a. RC	(e.m.	interaction	does	not	conserve	isospin)

b. Nuclear	WF	are	not	SU(2)	symmetric	

						(proton	and	neutron	distribution	not	the	same)

33

Superallowed 0+ → 0+ nuclear beta decay

The simplest 
nuclear beta
decay!

“Outer correction”
Nuclear structure

effects in inner RC
Isospin-breaking

correction

experimental
ft-value free-nucleon 

inner RC

(discussed before)

(well under control)



Vud extraction: Universal RC and Universal Ft

8

To obtain Vud —> absorb all decay-specific corrections into universal Ft

ft(1 + RC + ISB) = ℱt(1 + ΔV
R) = ft(1 + δ′￼R)(1 − δC + δNS)(1 + ΔV

R)

Outer: QED Isospin-breaking Nuclear structure Universal inner
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Ft = 3072.1± 0.7

Average	of	14	decays	-	0.02%

Hardy,	Towner	1972	-	2020
|Vud |2 =

2984.43s
ℱt(1+ΔV

R)

~ Measured



RC to nuclear beta decay: overall setup



RC to nuclear beta decay: overall setup

Tree-level amplitude

10

Electron carries away energy E < Q-value of a decay

i = n, A(0+) f = p, A′￼(0+)

e±

νe(ν̄e) ∼ Vud

Radiative corrections to tree-level amplitude ∼ α/2π ≈ 10−3

Precision goal for Vud extraction 1 × 10−4

α
2π ( E

Λ
, ln

E
Λ

, …)E-dep RC:

Energy scales Λ



RC to nuclear beta decay: overall setup

Tree-level amplitude

10
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Electron carries away energy E < Q-value of a decay

i = n, A(0+) f = p, A′￼(0+)

e±

νe(ν̄e) ∼ Vud

Radiative corrections to tree-level amplitude ∼ α/2π ≈ 10−3

Precision goal for Vud extraction 1 × 10−4

α
2π ( E

Λ
, ln

E
Λ

, …)E-dep RC:

Nuclear scale

Λhad = 300 MeV
Hadronic scale

MZ, MW ∼ 90 GeV
Weak boson scale

me ≈ 0.5 MeV

Qif = Mi − Mf = 1 − 10 MeV

Electron mass

Decay Q-value (endpoint energy)

Λnuc = 10 − 30 MeV

Λ

Energy scales Λ
Universal 

Nuclear structure dependent 

(QCD)

Nucleus-specific

Nuclear structure independent 

(QED)



RC to beta decay: overall setup
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Generically: only IR and UV extremes feature large logarithms!

Works by Sirlin (1930-2022) and collaborators: all large logs under control

• Pioneering work by Sirlin (Phys.Rev. 164, 1767 (1967) , before the 
establishment of SM) was to separate RC into two pieces:

1. “Outer” correction: depends critically on the electron spectrum 
but not on the details of strong and weak interaction

2. “Inner” correction: depends on the details of strong and weak 
interaction but not so much on the electron spectrum

• The “outer” contributions are obtained by retaining only the IR-
singular pieces in the loop diagrams

• Bremsstrahlung diagrams are also needed to cancel IR divergence

Radiative Corrections:Pre-SM

5
Diagrams taken from Ando et al, PLB 595 (2004) 250

• Pioneering work by Sirlin (Phys.Rev. 164, 1767 (1967) , before the 
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1. “Outer” correction: depends critically on the electron spectrum 
but not on the details of strong and weak interaction

2. “Inner” correction: depends on the details of strong and weak 
interaction but not so much on the electron spectrum

• The “outer” contributions are obtained by retaining only the IR-
singular pieces in the loop diagrams

• Bremsstrahlung diagrams are also needed to cancel IR divergence

Radiative Corrections:Pre-SM

5
Diagrams taken from Ando et al, PLB 595 (2004) 250

Sirlin function (outer correction):

All IR-div. pieces beyond Coulomb distortion

Fermi function: resummation of (Z𝛼)n —> Dirac - Coulomb problem

IR: Fermi function + Sirlin function

9

W

J ,Zb  

Q
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h 'h
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J , ,WZb  
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W W

Q

e

h 'h

Z

Contributions of these diagrams are either exactly known (by CA) or depend only on UV 
physics which can be computed perturbatively

Radiative Corrections: Modern Treatment

W,Z - loops

UV structure of SM

Inner RC: 

energy- and model-independent

UV: large EW logs + pQCD corrections

-box: sensitive to all scalesγW
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The only piece that depends on physics at hadronic scale is the V*A term in the WJ�box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment

New method for computing EW boxes: dispersion theory

Combine exp. data with pQCD, lattice, EFT, ab-initio nuclear



RC to  decay - scale separation: historyβ
Fermi function (pure Coulomb + nuclear size & recoil + atomic) —> phase-space f


Soft Bremsstrahlung: universal Sirlin’s function + nucleus specific corrections —> 

All IR-sensitive pieces: recent review

δ′￼R

Fermi,	Behrens-Bühring,	Wilkinson…

12

Hayen	et	al	RMP	2018
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Hayen	et	al	RMP	2018

UV-sensitive RC on free neutron : Sirlin, Marciano, Czarnecki 1967 - 2006 
ΔV
R

g2
V = |Vud |2 [1 +

α
2π {3 ln

MZ

Mp
+ ln

MZ

MW
+ ãg} + δHO

QED + 2 □γW ] Wouter’s	talk
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Hayen	et	al	RMP	2018

UV-sensitive RC on free neutron : Sirlin, Marciano, Czarnecki 1967 - 2006 
ΔV
R

g2
V = |Vud |2 [1 +

α
2π {3 ln

MZ

Mp
+ ln

MZ

MW
+ ãg} + δHO

QED + 2 □γW ] Wouter’s	talk

ft(1 + RC + ISB) = ℱt(1 + ΔV
R) = ft(1 + δ′￼R)(1 − δC + δNS)(1 + ΔV

R)

Isospin breaking (non-RC): Coulomb repulsion b. protons —> δC MacDonald	1958

Nuclear structure  —> only since1990 δNS
Jaus,	Rasche	1990


Hardy,	Towner	1992-2020

All scales are assumed to be perfectly separated!



Nuclear-structure RC : historyδNS

 and W on same nucleon —> already in : drop!γ ΔV
R

Jaus,	Rasche	1990



Nuclear-structure RC : historyδNS

 and W on same nucleon —> already in : drop!γ ΔV
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Towner	1994
Nucleons are bound — free-nucleon RC modified: 

Nuclear WF — filter 0+ states (nuclear shell model)

δA
NS
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Nuclear-structure RC : historyδNS

 and W on same nucleon —> already in : drop!γ ΔV
R

Jaus,	Rasche	1990

Towner	1994
Nucleons are bound — free-nucleon RC modified: 

Nuclear WF — filter 0+ states (nuclear shell model)

δA
NS

 and W on distinct nucleons —> only in nuclei: γ δB
NS

Jaus,	Rasche	1990;	Hardy,	Towner	1992-2020

Implementation δNS ∼ ∫ d4xeiqx⟨ϕ0+(Pf ) |T{Jν†
W (x)Jμ

γ (0)} |ϕ0+(Pi)⟩

One-body nucleon currents

(Only axial and magnetic needed)

Jν
A(q) → GA(q2)ū(p1 + q)γμγ5u(p1)

Jν
A(q) → GM(q2)ū(p1 + q)

Fμνσμν

4M
u(p1)



Nuclear-structure RC : historyδNS
However, this implementation is flawed! 

∫ d4xeiqx⟨ϕ0+(0⃗) |T{Jν†
W (x)Jμ

γ (0)} |ϕ0+(0⃗)⟩ = ∑
X

⟨ϕ0+(0⃗) |Jν†
W |X⟩⟨X |Jμ

γ |ϕ0+(0⃗)⟩
ν − νX + iϵ

+
⟨ϕ0+(0⃗) |Jμ

γ |X⟩⟨X |Jν†
W |ϕ0+(0⃗)⟩

ν + νX + iϵ

—> Nuclear Green’s function G — complete information about a nuclear system

G encodes all possible intermediate states


Importantly: nuclear photoabsorption 

features low-lying discrete states, QE peak, 

and is not limited to low energies (shadowing etc.)

Since 2018 we have a new tool: Dispersion Relations 

DR can naturally be used to test all assumptions:


1B currents; nuclear resonances; scale separation; nuclear effects at high energies; …

14



Dispersion Formalism for -boxγW
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4

Single-nucleon radiative correction

Superallowed 0+ → 0+ :  

Experiment + nuclear corrections Single-nucleon radiative correction (RC)

Uncertainty halved but central value shifted!

Major source of theory uncertainty: “gW-box diagram”

Estimate by Marciano and Sirlin, state-of-the-art result
from 2006 to 2018:

Year 2018: new evaluation with dispersion relation (DR) :

CYS, Gorchtein, Patel and
Ramsey-Musolf, 2018 PRL
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Hayen, 2020
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-box from dispersion relationsγW

Generalized Compton tensor 

time-ordered product — complicated!

Commutator (Im part) - only on-shell 

hadronic states — related to data

∫ dxeiqx⟨Hf(p) | [Jμ
em(x), Jν,±

W (0)] |Hi(p)⟩∫ dxeiqx⟨Hf(p) |T{Jμ
em(x)Jν,±

W (0)} |Hi(p)⟩

Model-dependent part or RC: -boxγW

Long- and intermediate-range part of the box ~ hadronic/nuclear polarizabilities

Polarizabilities related to the excitation spectrum via dispersion relation 

Generalized (non-diagonal) Compton amplitudes Interference structure functions

ImTμν
γW = … +

iεμναβpαqβ

2(pq)
FγW

3 (x, Q2)Interference  structure functionsγW
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-box from dispersion relationsγW

Figure 4: (Color online) Blue curve: The Wick rotation contour of the ⌫-integral. Red lines and

dots: Cuts and poles at ⌫ = ⌫ 0. Green dot: The pole ⌫ = Ee + |~pe � ~q|� i". Purple dots: Possible

positions of the pole ⌫ = Ee � |~pe � ~q|+ i".

combining the Wick and residue contributions we obtain
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where Emin ⌘ (⌫ 0 +
p
⌫ 02 +Q2)/2. One finds that the even piece is associated to F3,� and

the odd piece to F3,+. Finally, a small-Ee expansion gives:
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which recovers Eq.(10) in Ref.[73] upon correcting the typos in the latter. Notice that

we removed the factor M2
W/(M2

W + Q2) in ⇤b,odd
�W because the integral does not probe the

Q2
⇠ M2

W region.

Next we study ⇤a
�W , with Eq.(26) as the starting point. Rather than giving the dispersive

representation of T1,± and T2,± with the full Ee-dependence, we retain only the O(Ee) terms
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After some algebra 

(isospin decomposition, loop integration)

ΔV
R ∝ Ffree n

3 ∝ ∫ dxeiqx ∑
X

⟨p |Jμ,(0)
em (x) |X⟩⟨X |Jν,+

W (0) |n⟩

ΔV
R + δNS ∝ FNucl.

3 ∝ ∫ dxeiqx ∑
X′￼

⟨A′￼|Jμ,(0)
em (x) |X′￼⟩⟨X′￼|Jν,+

W (0) |A⟩

RC on a free neutron

RC on a nucleus

NS correction reflects extraction of the free box δNS = 2[ □VA, nucl
γW − □VA, free n

γW ]
Same formulas for free neutron and nuclei; 
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Dispersion relation of the invariant amplitude

“Even” and “odd” components of the invariant amplitude:

They satisfy different dispersion relations:

where the structure function/response function reads:



Splitting the γW-box into Universal and Nuclear Parts 
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Input in the DR for the universal RC Input in the DR for the RC on a nucleus

Towards a coherent and unified picture of neutrino-nucleus interactions

* An accurate understanding of nuclear structure and dynamics is required to

disentangle new physics from nuclear effects *

* ω ∼ few MeV, q ∼ 0: β -decay, ββ -decays

* ω ∼ few MeV, q ∼ 102 MeV: Neutrinoless ββ -decays

* ω ! tens MeV: Nuclear Rates for Astrophysics

* ω ∼ 102 MeV: Accelerator neutrinos, ν-nucleus scattering

2 / 23

δNS =
2α
πM ∫

few GeV2

0
dQ2 ∫

νπ

νthr

dν
ν [ ν + 2q

(ν + q)2 (F(0) Nucl.
3 − F(0), B

3 ) +
2⟨E⟩

3
ν + 3q

(ν + q)3
F(−) Nucl.

3 ]
 from DR with energy dependence averaged over the  spectrumδNS β

Can already test some assumptions: 

extraction of a free-nucleon RC; energy independence
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Elastic nucleon box —> single N QE knockout

12

Correspondingly, the calculation of the �W -box cor-
rection in the nuclear case will need to be modified. The
standard approach to organizing the radiative corrections
to nuclear beta decay advocated in Refs. [3, 4, 30] is sum-
marized in Eq. 1 which we repeat here,

|Vud|
2 =

2984.43s

Ft(1 +�V
R)

, (51)

with Ft = ft(1 + �0R)(1 + �NS � �C). Apart from �0R,
all other terms are inner corrections that are indepen-
dent of the electron energy. The identification of various
terms follows a clear logics: �V

R is the universal part
that stems from the �W -box on a free nucleon, while all
of the nuclear structure dependence is retained in �NS

and �C . This procedure corresponds to extracting the
free nucleon correction from the nuclear one,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
,(52)

the first term is then absorbed in �V
R , while the second

term makes part of �NS��C . No approximation has been
made at this step since it is an identical rewriting of the
nuclear �W -box. However, technically this manipulation
does matter because the two terms are treated very dif-
ferently. The nucleon term is treated via loop integration
techniques with some phenomenological input [3] or via
dispersion relations as in this work. The second term
is at present calculated in nonrelativistic nuclear models
[4]. As a consequence, all nuclear e↵ects are assumed
to reside in the low-energy part of the spectrum of the

nuclear F (0)
3, �W since nuclear shadowing e↵ects [31] can-

not be addressed in nonrelativistic nuclear models. This
means that, apart from purely nuclear e↵ects that involve
a mismatch of proton and neutron distributions inside the
parent and the daughter nucleus (�C), or a coupling of
� and W to two di↵erent nucleons in the nucleus (�NS),
the only term that requires a modification is the Born
contribution. This modification, coined as quenching of
the Born contribution, was first introduced and calcu-
lated in Ref. [30], and has been included in the nuclear
structure term �NS ever since, with very modest changes.
Recalling that ⇤VA

�W = ↵
2⇡ [CB + . . . ], ellipses denoting all

contributions other than Born, one writes

C free n
B ! C Nucl.

B = C free n
B + [q(0)S qA � 1]C free n

B . (53)

The isoscalar magnetic and isovector axial couplings

quenching parameters q(0)S and qA, respectively, describe
the reduction of the spin-flip interaction strengths in the

nuclear environment, with q(0)S , qA  1. Ref. [30]’s ap-
proach to determining the quenching parameters relies
on using nuclear shell model calculations of quenching
of the nucleon’s magnetic moment and axial charge in
magnetic and Gamow-Teller transitions between two nu-
clear states, then assuming that these couplings simply
rescale the free nucleon Born contribution to �W -box
which entails assuming that the Q2-dependence inside

the nucleon and nuclear box is the same. With these as-
sumptions and using CB = 0.89, Refs. [30, 32] obtain
the quenched Born contribution for nuclei of interest to
monotonically decrease from �0.189 for 10C to �0.306
for 74Rb. These results have propagated in all further
evaluations of �NS . Refs. [30, 32] assigned a generic
10% uncertainty to this contribution. We note here that
both assumptions in the approach of Ref. [30] are not
well-justified: the quasielastic contribution to �W -box
requires a quasi-free active nucleon between the � and
W couplings instead of a bound nucleon inside an excited
nuclear state, compare Fig. 9b) and a), respectively; The
Q2-dependence under the integral in the nuclear box is
likely to di↵er very strongly from that on a free nucleon.

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[30, 32] , diagram a) with the parent (daughter) nucleus A

(A0), and an excited nuclear state Ã accessed via a Gamow-
Teller transition from the parent and via a magnetic transition
from the daughter. Panel b) shows the quasielastic picture
with a single-nucleon knockout.

In this section we propose an alternative method to
calculate the nuclear corrections, based on the dispersion
formalism. We start from the dispersion representation
of the �W -box correction in Eq. (23) with the nuclear

structure function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (54)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. Here we will neglect discrete
excited nuclear states and nuclear e↵ects at high ener-
gies (these will be addressed in an upcoming work), and
concentrate on the quasielastic part of the spectrum be-
low pion production threshold, see Fig. 8. Then, we
can estimate the part of nuclear e↵ects encoded in the
quasielastic contribution similar to quenching of the Born
contribution discussed above,

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (55)

Instead of defining the quenching via a simple rescaling of
the Born we will directly calculate CQE from a dispersion

Splitting the γW-box into Universal and Nuclear Parts 
C-Y Seng, MG, M J Ramsey-Musolf 1812.03352

MG 1812.04229

ℱt = 3072.1(7)s δℱt = − (3.5±1.0)s + (1.6±0.5)s
δℱt = − (1.8 ± 0.4)s + (0 ± 0)sHT value 2018:

New estimate:
Old estimate:

Nuclear structure uncertainty tripled! ℱt = (3072 ± 2)s

δA
NS =

2α
πNM ∫

few GeV2

0
dQ2 ∫

νπ

νthr

dν
ν [ ν + 2q

(ν + q)2 (F(0) QE
3 − F(0), B

3 ) +
2⟨E⟩

3
ν + 3q

(ν + q)3
F(−) QE

3 ]

QE contribution from DR: δQE
NS = δQE, 0

NS + ⟨E⟩δQE, 1
NS

 from DR with energy dependenceδA
NS
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Figure 4: (Color online) Blue curve: The Wick rotation contour of the ⌫-integral. Red lines and

dots: Cuts and poles at ⌫ = ⌫ 0. Green dot: The pole ⌫ = Ee + |~pe � ~q|� i". Purple dots: Possible
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combining the Wick and residue contributions we obtain
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where Emin ⌘ (⌫ 0 +
p
⌫ 02 +Q2)/2. One finds that the even piece is associated to F3,� and

the odd piece to F3,+. Finally, a small-Ee expansion gives:
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which recovers Eq.(10) in Ref.[74] upon correcting the typos in the latter. Notice that

we removed the factor M2
W/(M2

W + Q2) in ⇤b,odd
�W because the integral does not probe the

Q2
⇠ M2

W region.

Next we study ⇤a
�W , with Eq.(26) as the starting point. Rather than giving the dispersive

representation of T1,± and T2,± with the full Ee-dependence, we retain only the O(Ee) terms
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Next step: ab-Initio δNS
Only a warm-up calculation — ab-initio  necessary!δNS

Dispersion theory of : isospin structure + multipole expansion 


Interesting effects detected for the first time:


Mixed isospin structure due to 2B currents (absent for n, )


Anomalous threshold possible —> residue upon Wick rotation


Currently, effort on light systems C-10, O-14


No-Core Shell Model  Michael Gennari, Petr Navratil, Mehdi Drissy
Green’s Function MC Garrett King, Saori Pastore

Coupled Clusters Sonia Bacca, Asia Sobczyk, Gaute Hagen


Important cross checks should become possible very soon: stay tuned!

δNS

πe3

Seng, MG 2211.10214
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Nuclear beta decay review: MG, Seng (Annual Review of Nucl. Part. Sci. - deadline Nov 2)
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II. COMPLETE EXPRESSION

Apart from the electromagnetic corrections to the �
spectrum shape, several other smaller corrections are to
be included when a precision at the 10�4 level is required.
The detailed description of the allowed � spectrum shape,
including these smaller corrections, is given by

N(W )dW =
G2

V
V 2
ud

2⇡3
F0(Z, W ) L0(Z, W ) U(Z, W ) DFS(Z, W, �2) R(W, W0) RN (W, W0, M)

⇥ Q(Z, W ) S(Z, W ) X(Z, W ) r(Z, W ) C(Z, W ) DC(Z, W, �2) pW (W0 � W )2 dW

⌘ G2
V

V 2
ud

2⇡3
K(Z, W, W0, M) A(Z, W ) C 0(Z, W ) pW (W0 � W )2 dW. (4)

Here, Z is the proton number of the daughter nucleus,
W = E/mec2+1 is the total � particle energy in units of
the electron rest mass, W0 is the total energy at the spec-
trum endpoint, p =

p
W 2 � 1 the � particle momentum

in units of mec, GV the vector coupling strength in nu-
clei, and V 2

ud
= cos2 ✓C , with ✓C the Cabibbo-angle, is the

square of the up-down matrix element of the Cabibbo-
Kobayashi-Maskawa quark-mixing matrix.

The factor F0(Z, W ) is the point charge Fermi function
that takes into account the Coulomb interaction between
the � particle and the daughter nucleus. The product
L0(Z, W ) U(Z, W ) DFS(Z, W, �2)) describes the required
corrections to this Fermi function after evaluation at the
origin, which depend on the size and shape of the daugh-
ter nucleus (Sec. IV). Whereas previous e↵ects are elec-
trostatic in origin, R(W, W0) takes into account radiative
corrections calculated using QED (Sec. V). Moving from
an infinitely massive nucleus to one of finite mass intro-
duces further kinematical corrections described by RN

and Q. All these factors are combined into the factor
K(Z, W, W0, M). The nuclear decay occurs in an atomic
environment, meaning additional atomic corrections have
to be taken into account. Here, S(Z, W ) is the screen-
ing correction (Sec. VII.A), X(Z, W ) takes into account
the so-called atomic exchange e↵ect (Sec. VII.B) while
r(Z, W ) accounts for the atomic mismatch (Sec. VII.D).
These e↵ects are combined into A(Z, W ). Finally, the nu-
clear structure sensitive e↵ects are written as C(Z, W ),
with DC its corresponding nuclear deformation correc-
tion. These are extensively discussed in Sec. (VI).

We comment here on the di↵erent e↵ects encompassed
by the name ‘finite size e↵ects’ used by di↵erent authors.
For this, we must first realize the Fermi function comes
about by extracting the electron amplitude at either the
origin or the nuclear radius from the transition ampli-
tude. We will perform the former in this work. As the
nucleus is an object of finite size and the electron wave

function is not a constant within this surface, this extrac-
tion requires corrections from convoluting its wave func-
tion with that of initial and final states. As the extracted
Fermi function is typically written down in analytical
form for a point charge through F0, this too requires
corrections stemming from the finite size and shape of
the daughter nucleus. We will call these e↵ects ‘electro-
static finite size’ corrections in order to clearly distinguish
their origin, and describe them mathematically through
L0, U , and DFS. This amounts simply to the extraction
of a more correct electron wave function evaluated at the
origin. We still require a convolution of the correct wave
function through the nuclear volume via initial and final
nuclear states contributing to the decay. This involves
a convolution with all relevant operators contributing to
the decay, which we do not artificially separate but write
completely as C. As this depends on the electron wave
function behavior inside the nucleus, Coulomb e↵ects are
present in the calculation thereof. In the approach by
Calaprice and Holstein (1976), Holstein (1974b) and oth-
ers these are artificially separated into nuclear structure
and Coulomb sensitive factors when describing the spec-
tral functions. Together with the ‘electrostatic finite size’
e↵ects defined above, these are collectively called ‘finite
size’ corrections. In the works inspired by Behrens and
Bühring (1982), on the other hand, only the part in-
volving the leptonic convolution is typically referred to
as the ‘finite size’ correction. Others still refer to only
our ‘electrostatic finite size’ e↵ects. By specifiying the
electrostatic origin of these corrections, we hope to put
these confusions to rest. As the nuclear structure sensi-
tive correction, C, is obviously non-zero even for point
nuclei, we refrain from calling these ‘finite size’ e↵ects
altogether even though we recognize the finite nuclear
wave function clearly influences these results. Appendix
E in particular aims to further discuss the overlap and
di↵erences in the di↵erent formalisms commonly found

Nuclear structure in ft
Differential decay spectrum:
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RC + Recoil QED

Atomic effects: QED
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II. COMPLETE EXPRESSION

Apart from the electromagnetic corrections to the �
spectrum shape, several other smaller corrections are to
be included when a precision at the 10�4 level is required.
The detailed description of the allowed � spectrum shape,
including these smaller corrections, is given by
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W = E/mec2+1 is the total � particle energy in units of
the electron rest mass, W0 is the total energy at the spec-
trum endpoint, p =

p
W 2 � 1 the � particle momentum

in units of mec, GV the vector coupling strength in nu-
clei, and V 2

ud
= cos2 ✓C , with ✓C the Cabibbo-angle, is the

square of the up-down matrix element of the Cabibbo-
Kobayashi-Maskawa quark-mixing matrix.

The factor F0(Z, W ) is the point charge Fermi function
that takes into account the Coulomb interaction between
the � particle and the daughter nucleus. The product
L0(Z, W ) U(Z, W ) DFS(Z, W, �2)) describes the required
corrections to this Fermi function after evaluation at the
origin, which depend on the size and shape of the daugh-
ter nucleus (Sec. IV). Whereas previous e↵ects are elec-
trostatic in origin, R(W, W0) takes into account radiative
corrections calculated using QED (Sec. V). Moving from
an infinitely massive nucleus to one of finite mass intro-
duces further kinematical corrections described by RN

and Q. All these factors are combined into the factor
K(Z, W, W0, M). The nuclear decay occurs in an atomic
environment, meaning additional atomic corrections have
to be taken into account. Here, S(Z, W ) is the screen-
ing correction (Sec. VII.A), X(Z, W ) takes into account
the so-called atomic exchange e↵ect (Sec. VII.B) while
r(Z, W ) accounts for the atomic mismatch (Sec. VII.D).
These e↵ects are combined into A(Z, W ). Finally, the nu-
clear structure sensitive e↵ects are written as C(Z, W ),
with DC its corresponding nuclear deformation correc-
tion. These are extensively discussed in Sec. (VI).

We comment here on the di↵erent e↵ects encompassed
by the name ‘finite size e↵ects’ used by di↵erent authors.
For this, we must first realize the Fermi function comes
about by extracting the electron amplitude at either the
origin or the nuclear radius from the transition ampli-
tude. We will perform the former in this work. As the
nucleus is an object of finite size and the electron wave

function is not a constant within this surface, this extrac-
tion requires corrections from convoluting its wave func-
tion with that of initial and final states. As the extracted
Fermi function is typically written down in analytical
form for a point charge through F0, this too requires
corrections stemming from the finite size and shape of
the daughter nucleus. We will call these e↵ects ‘electro-
static finite size’ corrections in order to clearly distinguish
their origin, and describe them mathematically through
L0, U , and DFS. This amounts simply to the extraction
of a more correct electron wave function evaluated at the
origin. We still require a convolution of the correct wave
function through the nuclear volume via initial and final
nuclear states contributing to the decay. This involves
a convolution with all relevant operators contributing to
the decay, which we do not artificially separate but write
completely as C. As this depends on the electron wave
function behavior inside the nucleus, Coulomb e↵ects are
present in the calculation thereof. In the approach by
Calaprice and Holstein (1976), Holstein (1974b) and oth-
ers these are artificially separated into nuclear structure
and Coulomb sensitive factors when describing the spec-
tral functions. Together with the ‘electrostatic finite size’
e↵ects defined above, these are collectively called ‘finite
size’ corrections. In the works inspired by Behrens and
Bühring (1982), on the other hand, only the part in-
volving the leptonic convolution is typically referred to
as the ‘finite size’ correction. Others still refer to only
our ‘electrostatic finite size’ e↵ects. By specifiying the
electrostatic origin of these corrections, we hope to put
these confusions to rest. As the nuclear structure sensi-
tive correction, C, is obviously non-zero even for point
nuclei, we refrain from calling these ‘finite size’ e↵ects
altogether even though we recognize the finite nuclear
wave function clearly influences these results. Appendix
E in particular aims to further discuss the overlap and
di↵erences in the di↵erent formalisms commonly found

Nuclear structure in ft
Differential decay spectrum:
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Fermi Fn: daughter Charge FF FCh(q2) RC + Recoil QED

Atomic effects: QED
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II. COMPLETE EXPRESSION

Apart from the electromagnetic corrections to the �
spectrum shape, several other smaller corrections are to
be included when a precision at the 10�4 level is required.
The detailed description of the allowed � spectrum shape,
including these smaller corrections, is given by

N(W )dW =
G2

V
V 2
ud

2⇡3
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Here, Z is the proton number of the daughter nucleus,
W = E/mec2+1 is the total � particle energy in units of
the electron rest mass, W0 is the total energy at the spec-
trum endpoint, p =
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W 2 � 1 the � particle momentum

in units of mec, GV the vector coupling strength in nu-
clei, and V 2
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= cos2 ✓C , with ✓C the Cabibbo-angle, is the

square of the up-down matrix element of the Cabibbo-
Kobayashi-Maskawa quark-mixing matrix.

The factor F0(Z, W ) is the point charge Fermi function
that takes into account the Coulomb interaction between
the � particle and the daughter nucleus. The product
L0(Z, W ) U(Z, W ) DFS(Z, W, �2)) describes the required
corrections to this Fermi function after evaluation at the
origin, which depend on the size and shape of the daugh-
ter nucleus (Sec. IV). Whereas previous e↵ects are elec-
trostatic in origin, R(W, W0) takes into account radiative
corrections calculated using QED (Sec. V). Moving from
an infinitely massive nucleus to one of finite mass intro-
duces further kinematical corrections described by RN

and Q. All these factors are combined into the factor
K(Z, W, W0, M). The nuclear decay occurs in an atomic
environment, meaning additional atomic corrections have
to be taken into account. Here, S(Z, W ) is the screen-
ing correction (Sec. VII.A), X(Z, W ) takes into account
the so-called atomic exchange e↵ect (Sec. VII.B) while
r(Z, W ) accounts for the atomic mismatch (Sec. VII.D).
These e↵ects are combined into A(Z, W ). Finally, the nu-
clear structure sensitive e↵ects are written as C(Z, W ),
with DC its corresponding nuclear deformation correc-
tion. These are extensively discussed in Sec. (VI).

We comment here on the di↵erent e↵ects encompassed
by the name ‘finite size e↵ects’ used by di↵erent authors.
For this, we must first realize the Fermi function comes
about by extracting the electron amplitude at either the
origin or the nuclear radius from the transition ampli-
tude. We will perform the former in this work. As the
nucleus is an object of finite size and the electron wave

function is not a constant within this surface, this extrac-
tion requires corrections from convoluting its wave func-
tion with that of initial and final states. As the extracted
Fermi function is typically written down in analytical
form for a point charge through F0, this too requires
corrections stemming from the finite size and shape of
the daughter nucleus. We will call these e↵ects ‘electro-
static finite size’ corrections in order to clearly distinguish
their origin, and describe them mathematically through
L0, U , and DFS. This amounts simply to the extraction
of a more correct electron wave function evaluated at the
origin. We still require a convolution of the correct wave
function through the nuclear volume via initial and final
nuclear states contributing to the decay. This involves
a convolution with all relevant operators contributing to
the decay, which we do not artificially separate but write
completely as C. As this depends on the electron wave
function behavior inside the nucleus, Coulomb e↵ects are
present in the calculation thereof. In the approach by
Calaprice and Holstein (1976), Holstein (1974b) and oth-
ers these are artificially separated into nuclear structure
and Coulomb sensitive factors when describing the spec-
tral functions. Together with the ‘electrostatic finite size’
e↵ects defined above, these are collectively called ‘finite
size’ corrections. In the works inspired by Behrens and
Bühring (1982), on the other hand, only the part in-
volving the leptonic convolution is typically referred to
as the ‘finite size’ correction. Others still refer to only
our ‘electrostatic finite size’ e↵ects. By specifiying the
electrostatic origin of these corrections, we hope to put
these confusions to rest. As the nuclear structure sensi-
tive correction, C, is obviously non-zero even for point
nuclei, we refrain from calling these ‘finite size’ e↵ects
altogether even though we recognize the finite nuclear
wave function clearly influences these results. Appendix
E in particular aims to further discuss the overlap and
di↵erences in the di↵erent formalisms commonly found
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r(Z, W ) accounts for the atomic mismatch (Sec. VII.D).
These e↵ects are combined into A(Z, W ). Finally, the nu-
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the daughter nucleus. We will call these e↵ects ‘electro-
static finite size’ corrections in order to clearly distinguish
their origin, and describe them mathematically through
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of a more correct electron wave function evaluated at the
origin. We still require a convolution of the correct wave
function through the nuclear volume via initial and final
nuclear states contributing to the decay. This involves
a convolution with all relevant operators contributing to
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completely as C. As this depends on the electron wave
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present in the calculation thereof. In the approach by
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and Coulomb sensitive factors when describing the spec-
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e↵ects defined above, these are collectively called ‘finite
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Bühring (1982), on the other hand, only the part in-
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the electron rest mass, W0 is the total energy at the spec-
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in units of mec, GV the vector coupling strength in nu-
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square of the up-down matrix element of the Cabibbo-
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The factor F0(Z, W ) is the point charge Fermi function
that takes into account the Coulomb interaction between
the � particle and the daughter nucleus. The product
L0(Z, W ) U(Z, W ) DFS(Z, W, �2)) describes the required
corrections to this Fermi function after evaluation at the
origin, which depend on the size and shape of the daugh-
ter nucleus (Sec. IV). Whereas previous e↵ects are elec-
trostatic in origin, R(W, W0) takes into account radiative
corrections calculated using QED (Sec. V). Moving from
an infinitely massive nucleus to one of finite mass intro-
duces further kinematical corrections described by RN

and Q. All these factors are combined into the factor
K(Z, W, W0, M). The nuclear decay occurs in an atomic
environment, meaning additional atomic corrections have
to be taken into account. Here, S(Z, W ) is the screen-
ing correction (Sec. VII.A), X(Z, W ) takes into account
the so-called atomic exchange e↵ect (Sec. VII.B) while
r(Z, W ) accounts for the atomic mismatch (Sec. VII.D).
These e↵ects are combined into A(Z, W ). Finally, the nu-
clear structure sensitive e↵ects are written as C(Z, W ),
with DC its corresponding nuclear deformation correc-
tion. These are extensively discussed in Sec. (VI).

We comment here on the di↵erent e↵ects encompassed
by the name ‘finite size e↵ects’ used by di↵erent authors.
For this, we must first realize the Fermi function comes
about by extracting the electron amplitude at either the
origin or the nuclear radius from the transition ampli-
tude. We will perform the former in this work. As the
nucleus is an object of finite size and the electron wave

function is not a constant within this surface, this extrac-
tion requires corrections from convoluting its wave func-
tion with that of initial and final states. As the extracted
Fermi function is typically written down in analytical
form for a point charge through F0, this too requires
corrections stemming from the finite size and shape of
the daughter nucleus. We will call these e↵ects ‘electro-
static finite size’ corrections in order to clearly distinguish
their origin, and describe them mathematically through
L0, U , and DFS. This amounts simply to the extraction
of a more correct electron wave function evaluated at the
origin. We still require a convolution of the correct wave
function through the nuclear volume via initial and final
nuclear states contributing to the decay. This involves
a convolution with all relevant operators contributing to
the decay, which we do not artificially separate but write
completely as C. As this depends on the electron wave
function behavior inside the nucleus, Coulomb e↵ects are
present in the calculation thereof. In the approach by
Calaprice and Holstein (1976), Holstein (1974b) and oth-
ers these are artificially separated into nuclear structure
and Coulomb sensitive factors when describing the spec-
tral functions. Together with the ‘electrostatic finite size’
e↵ects defined above, these are collectively called ‘finite
size’ corrections. In the works inspired by Behrens and
Bühring (1982), on the other hand, only the part in-
volving the leptonic convolution is typically referred to
as the ‘finite size’ correction. Others still refer to only
our ‘electrostatic finite size’ e↵ects. By specifiying the
electrostatic origin of these corrections, we hope to put
these confusions to rest. As the nuclear structure sensi-
tive correction, C, is obviously non-zero even for point
nuclei, we refrain from calling these ‘finite size’ e↵ects
altogether even though we recognize the finite nuclear
wave function clearly influences these results. Appendix
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the electron rest mass, W0 is the total energy at the spec-
trum endpoint, p =
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The factor F0(Z, W ) is the point charge Fermi function
that takes into account the Coulomb interaction between
the � particle and the daughter nucleus. The product
L0(Z, W ) U(Z, W ) DFS(Z, W, �2)) describes the required
corrections to this Fermi function after evaluation at the
origin, which depend on the size and shape of the daugh-
ter nucleus (Sec. IV). Whereas previous e↵ects are elec-
trostatic in origin, R(W, W0) takes into account radiative
corrections calculated using QED (Sec. V). Moving from
an infinitely massive nucleus to one of finite mass intro-
duces further kinematical corrections described by RN

and Q. All these factors are combined into the factor
K(Z, W, W0, M). The nuclear decay occurs in an atomic
environment, meaning additional atomic corrections have
to be taken into account. Here, S(Z, W ) is the screen-
ing correction (Sec. VII.A), X(Z, W ) takes into account
the so-called atomic exchange e↵ect (Sec. VII.B) while
r(Z, W ) accounts for the atomic mismatch (Sec. VII.D).
These e↵ects are combined into A(Z, W ). Finally, the nu-
clear structure sensitive e↵ects are written as C(Z, W ),
with DC its corresponding nuclear deformation correc-
tion. These are extensively discussed in Sec. (VI).

We comment here on the di↵erent e↵ects encompassed
by the name ‘finite size e↵ects’ used by di↵erent authors.
For this, we must first realize the Fermi function comes
about by extracting the electron amplitude at either the
origin or the nuclear radius from the transition ampli-
tude. We will perform the former in this work. As the
nucleus is an object of finite size and the electron wave

function is not a constant within this surface, this extrac-
tion requires corrections from convoluting its wave func-
tion with that of initial and final states. As the extracted
Fermi function is typically written down in analytical
form for a point charge through F0, this too requires
corrections stemming from the finite size and shape of
the daughter nucleus. We will call these e↵ects ‘electro-
static finite size’ corrections in order to clearly distinguish
their origin, and describe them mathematically through
L0, U , and DFS. This amounts simply to the extraction
of a more correct electron wave function evaluated at the
origin. We still require a convolution of the correct wave
function through the nuclear volume via initial and final
nuclear states contributing to the decay. This involves
a convolution with all relevant operators contributing to
the decay, which we do not artificially separate but write
completely as C. As this depends on the electron wave
function behavior inside the nucleus, Coulomb e↵ects are
present in the calculation thereof. In the approach by
Calaprice and Holstein (1976), Holstein (1974b) and oth-
ers these are artificially separated into nuclear structure
and Coulomb sensitive factors when describing the spec-
tral functions. Together with the ‘electrostatic finite size’
e↵ects defined above, these are collectively called ‘finite
size’ corrections. In the works inspired by Behrens and
Bühring (1982), on the other hand, only the part in-
volving the leptonic convolution is typically referred to
as the ‘finite size’ correction. Others still refer to only
our ‘electrostatic finite size’ e↵ects. By specifiying the
electrostatic origin of these corrections, we hope to put
these confusions to rest. As the nuclear structure sensi-
tive correction, C, is obviously non-zero even for point
nuclei, we refrain from calling these ‘finite size’ e↵ects
altogether even though we recognize the finite nuclear
wave function clearly influences these results. Appendix
E in particular aims to further discuss the overlap and
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the electron rest mass, W0 is the total energy at the spec-
trum endpoint, p =
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The factor F0(Z, W ) is the point charge Fermi function
that takes into account the Coulomb interaction between
the � particle and the daughter nucleus. The product
L0(Z, W ) U(Z, W ) DFS(Z, W, �2)) describes the required
corrections to this Fermi function after evaluation at the
origin, which depend on the size and shape of the daugh-
ter nucleus (Sec. IV). Whereas previous e↵ects are elec-
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corrections calculated using QED (Sec. V). Moving from
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environment, meaning additional atomic corrections have
to be taken into account. Here, S(Z, W ) is the screen-
ing correction (Sec. VII.A), X(Z, W ) takes into account
the so-called atomic exchange e↵ect (Sec. VII.B) while
r(Z, W ) accounts for the atomic mismatch (Sec. VII.D).
These e↵ects are combined into A(Z, W ). Finally, the nu-
clear structure sensitive e↵ects are written as C(Z, W ),
with DC its corresponding nuclear deformation correc-
tion. These are extensively discussed in Sec. (VI).

We comment here on the di↵erent e↵ects encompassed
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For this, we must first realize the Fermi function comes
about by extracting the electron amplitude at either the
origin or the nuclear radius from the transition ampli-
tude. We will perform the former in this work. As the
nucleus is an object of finite size and the electron wave

function is not a constant within this surface, this extrac-
tion requires corrections from convoluting its wave func-
tion with that of initial and final states. As the extracted
Fermi function is typically written down in analytical
form for a point charge through F0, this too requires
corrections stemming from the finite size and shape of
the daughter nucleus. We will call these e↵ects ‘electro-
static finite size’ corrections in order to clearly distinguish
their origin, and describe them mathematically through
L0, U , and DFS. This amounts simply to the extraction
of a more correct electron wave function evaluated at the
origin. We still require a convolution of the correct wave
function through the nuclear volume via initial and final
nuclear states contributing to the decay. This involves
a convolution with all relevant operators contributing to
the decay, which we do not artificially separate but write
completely as C. As this depends on the electron wave
function behavior inside the nucleus, Coulomb e↵ects are
present in the calculation thereof. In the approach by
Calaprice and Holstein (1976), Holstein (1974b) and oth-
ers these are artificially separated into nuclear structure
and Coulomb sensitive factors when describing the spec-
tral functions. Together with the ‘electrostatic finite size’
e↵ects defined above, these are collectively called ‘finite
size’ corrections. In the works inspired by Behrens and
Bühring (1982), on the other hand, only the part in-
volving the leptonic convolution is typically referred to
as the ‘finite size’ correction. Others still refer to only
our ‘electrostatic finite size’ e↵ects. By specifiying the
electrostatic origin of these corrections, we hope to put
these confusions to rest. As the nuclear structure sensi-
tive correction, C, is obviously non-zero even for point
nuclei, we refrain from calling these ‘finite size’ e↵ects
altogether even though we recognize the finite nuclear
wave function clearly influences these results. Appendix
E in particular aims to further discuss the overlap and
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with Zφ the atomic number of φ. For simplicity, we
will label Z,RCh of an isotriplet nuclear state |1, Tz〉 as
ZTz

, RCh,Tz
respectively. The r.h.s of the second line

in Eq.(14) consists of two isoscalar terms and an isovec-
tor term; the last is just the nuclear matrix element of

M (1)
0 . By constructing the difference between ZφR2

Ch,φ of
two nuclei within the same isotriplet, the isosinglet pieces
drop out and the remaining isovector term can then be
related to Eq.(13) in the isospin-symmetric limit through
the Wigner-Eckart theorem:

〈1, Tzb|M (1)
m |1, Tza〉 = C1,1;1,Tzb

1,Tza;1,m
〈1||M (1)||1〉 , (15)

with C1,1;1,Tzb

1,Tza;1,m
the Clebsch-Gordan coefficient and

〈1||M (1)||1〉 the reduced matrix element. With this we
finally obtain:

R2
CW = R2

Ch,1 + Z0(R
2
Ch,0 −R2

Ch,1)

= R2
Ch,1 +

Z−1

2
(R2

Ch,−1 −R2
Ch,1) , (16)

where we have used Z1 = Z0 − 1 = Z−1 − 2.
Eq.(16) is the central result of this work: it says that

R2
CW can be determined model-independently, modulo

negligible ISB corrections, if the charge radius of at least
two nuclei within the isotriplet are known experimentally.
There are two terms at the r.h.s of Eq.(16); the first
term is the MS charge radius of the most stable Tz =
+1 nucleus, while the second term involves a difference
R2

Ch,a − R2
Ch,b. Nevertheless, this term is numerically

comparable to the first term because it is multiplied to
a large factor Z; in fact, it is also the main source of
error because the experimental uncertainties in R2

Ch are
enhanced by the same factor. Therefore, we expect the
error of R2

CW determined with this method to be roughly
an order of magnitude larger than that of the individual
R2

Ch.
We present our model-independent determination of

R2
CW in Table I based on the currently-available data of

charge radii for nuclear isotriplets involved in measured
superallowed transitions [31–35]. One observes that in
many cases it is substantially larger than R2

Ch, which sig-
nifies the importance of the “difference” term in Eq.(16).
Also, unlike the charge radius, RCW does not seem to
increase monotonically with the mass number A, which
makes an accurate theory modeling of its value much
more difficult.

Recoil effects: Experiment vs model – Despite
being known since the 1970s, we are not aware of any lit-
erature that seriously implemented the aforementioned
idea in their numerical analysis of f ; instead, most of
them resort to nuclear models. For instance, Hardy and
Towner [36] computed the nuclear form factors directly
using the impulse approximation, where nucleons in a
nucleus are treated as non-interacting, and the nuclear
matrix element of a one-body operator Ô is expressed as

a product of the single-nucleon matrix element of Ô (with
the q2-dependence neglected) and the one-body density
matrix element, the latter is computed with shell model.
To what extent such an approximation captures the cor-
rect q2-dependence of the nuclear form factors is far from
transparent. A more traceable method was introduced
by Wilkinson [26], who estimated the difference between
R2

CW and R2
Ch using shell model and a modified-Gaussian

charge distribution:

R2
CW −R2

Ch ≈
4

3(5A′ + 2)

4n+ 2l− 1

5
R2

Ch , (17)

where {n, l} are the shell-model quantum numbers of the
single active nucleon that undergoes the beta decay, and
A′ is a parameter of the modified-Gaussian charge dis-
tribution fixed by the condition 2/(2 + 3A′) = Zl=0/Z
for the parent nucleus. As we will see later that the ef-
fects of S to the total decay rate can reach 0.1% or above
for medium and heavy nuclei, theory errors in the RCW-
modeling could lead to corrections at (0.01-0.1)% level
which are relevant for the precise extraction of Vud.

Based on the data in Table I, we can immediately
study the effect of S to the total decay rate model-
independently for 13 out of 23 [2] measured superallowed
transitions. We integrate Ee in Eq.(8) to obtain a to-
tal decay rate Γ, and we do it in four different ways: (1)
Γexp denotes our model-independent determination mak-
ing use of the experimental values of RCW given in Ta-
ble I; (2) Denoted by Γ0, we take S = 1, i.e. completely
neglect the recoil correction; (3) Denoted by Γ0

mod, we
replace RCW in S by the charge radius of the most stable
Tz = +1 isotope RCh,1; (4) Denoted by Γmod, we substi-
tute R2

CW by Wilkinson’s shell-model estimate, Eq.(17).
What we are interested is the relative difference between
the experimental result and the modelings (2)–(4), so we
use the ratio (Γexp−Γi)/Γexp to represent the systematic
error induced by the modeling type i.

Our results are summarized in Table II. From the first
column we see the size of the recoil correction: it is neg-
ative and at (0.1-1)% level as we advertised before, and
increases with the mass number. The second column
shows the induced systematic error if one would naïvely
replace RCW by RCh; we find that it ranges from -0.03%
to -0.35%, indicating again the significance of the “differ-
ence” term in Eq.(16). The third column shows how the
modeling of RCW in Eq.(17) saves the situation, and we
find that in most cases it only very mildly improves the
accuracy, indicating that Eq.(17) still largely underesti-
mates the difference R2

CW − R2
Ch. Finally, in the fourth

column we show the quoted relative uncertainty of the
statistical rate function f in the most recent review by
Hardy and Towner, Ref.[2]. We find that, in most cases
the central values in the third column largely exceed the
numbers in the fourth column. Of course the comparison
is not totally fair because it is not clear at this point that
the method used in Ref.[2] to effectively handle RCW is

3

with Zφ the atomic number of φ. For simplicity, we
will label Z,RCh of an isotriplet nuclear state |1, Tz〉 as
ZTz

, RCh,Tz
respectively. The r.h.s of the second line

in Eq.(14) consists of two isoscalar terms and an isovec-
tor term; the last is just the nuclear matrix element of

M (1)
0 . By constructing the difference between ZφR2

Ch,φ of
two nuclei within the same isotriplet, the isosinglet pieces
drop out and the remaining isovector term can then be
related to Eq.(13) in the isospin-symmetric limit through
the Wigner-Eckart theorem:

〈1, Tzb|M (1)
m |1, Tza〉 = C1,1;1,Tzb

1,Tza;1,m
〈1||M (1)||1〉 , (15)

with C1,1;1,Tzb

1,Tza;1,m
the Clebsch-Gordan coefficient and

〈1||M (1)||1〉 the reduced matrix element. With this we
finally obtain:

R2
CW = R2

Ch,1 + Z0(R
2
Ch,0 −R2

Ch,1)

= R2
Ch,1 +

Z−1

2
(R2

Ch,−1 −R2
Ch,1) , (16)

where we have used Z1 = Z0 − 1 = Z−1 − 2.
Eq.(16) is the central result of this work: it says that

R2
CW can be determined model-independently, modulo

negligible ISB corrections, if the charge radius of at least
two nuclei within the isotriplet are known experimentally.
There are two terms at the r.h.s of Eq.(16); the first
term is the MS charge radius of the most stable Tz =
+1 nucleus, while the second term involves a difference
R2

Ch,a − R2
Ch,b. Nevertheless, this term is numerically

comparable to the first term because it is multiplied to
a large factor Z; in fact, it is also the main source of
error because the experimental uncertainties in R2

Ch are
enhanced by the same factor. Therefore, we expect the
error of R2

CW determined with this method to be roughly
an order of magnitude larger than that of the individual
R2

Ch.
We present our model-independent determination of

R2
CW in Table I based on the currently-available data of
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Also, unlike the charge radius, RCW does not seem to
increase monotonically with the mass number A, which
makes an accurate theory modeling of its value much
more difficult.

Recoil effects: Experiment vs model – Despite
being known since the 1970s, we are not aware of any lit-
erature that seriously implemented the aforementioned
idea in their numerical analysis of f ; instead, most of
them resort to nuclear models. For instance, Hardy and
Towner [36] computed the nuclear form factors directly
using the impulse approximation, where nucleons in a
nucleus are treated as non-interacting, and the nuclear
matrix element of a one-body operator Ô is expressed as

a product of the single-nucleon matrix element of Ô (with
the q2-dependence neglected) and the one-body density
matrix element, the latter is computed with shell model.
To what extent such an approximation captures the cor-
rect q2-dependence of the nuclear form factors is far from
transparent. A more traceable method was introduced
by Wilkinson [26], who estimated the difference between
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where {n, l} are the shell-model quantum numbers of the
single active nucleon that undergoes the beta decay, and
A′ is a parameter of the modified-Gaussian charge dis-
tribution fixed by the condition 2/(2 + 3A′) = Zl=0/Z
for the parent nucleus. As we will see later that the ef-
fects of S to the total decay rate can reach 0.1% or above
for medium and heavy nuclei, theory errors in the RCW-
modeling could lead to corrections at (0.01-0.1)% level
which are relevant for the precise extraction of Vud.

Based on the data in Table I, we can immediately
study the effect of S to the total decay rate model-
independently for 13 out of 23 [2] measured superallowed
transitions. We integrate Ee in Eq.(8) to obtain a to-
tal decay rate Γ, and we do it in four different ways: (1)
Γexp denotes our model-independent determination mak-
ing use of the experimental values of RCW given in Ta-
ble I; (2) Denoted by Γ0, we take S = 1, i.e. completely
neglect the recoil correction; (3) Denoted by Γ0

mod, we
replace RCW in S by the charge radius of the most stable
Tz = +1 isotope RCh,1; (4) Denoted by Γmod, we substi-
tute R2

CW by Wilkinson’s shell-model estimate, Eq.(17).
What we are interested is the relative difference between
the experimental result and the modelings (2)–(4), so we
use the ratio (Γexp−Γi)/Γexp to represent the systematic
error induced by the modeling type i.

Our results are summarized in Table II. From the first
column we see the size of the recoil correction: it is neg-
ative and at (0.1-1)% level as we advertised before, and
increases with the mass number. The second column
shows the induced systematic error if one would naïvely
replace RCW by RCh; we find that it ranges from -0.03%
to -0.35%, indicating again the significance of the “differ-
ence” term in Eq.(16). The third column shows how the
modeling of RCW in Eq.(17) saves the situation, and we
find that in most cases it only very mildly improves the
accuracy, indicating that Eq.(17) still largely underesti-
mates the difference R2

CW − R2
Ch. Finally, in the fourth

column we show the quoted relative uncertainty of the
statistical rate function f in the most recent review by
Hardy and Towner, Ref.[2]. We find that, in most cases
the central values in the third column largely exceed the
numbers in the fourth column. Of course the comparison
is not totally fair because it is not clear at this point that
the method used in Ref.[2] to effectively handle RCW is

Large factors ~Z multiply small radii differences



Isospin symmetry + Charge Radii in isotripletT = 1, O+
4

A RCh,−1 (fm) RCh,0 (fm) RCh,1 (fm) R2
Ch,1 (fm2) R2

CW (fm2)

10 10
6 C 10

5 B(ex) 10
4 Be: 2.3550(170)a 5.546(80) N/A

14 14
8 O 14

7 N(ex) 14
6 C: 2.5025(87)a 6.263(44) N/A

18 18
10Ne: 2.9714(76)a 18

9 F(ex) 18
8 O: 2.7726(56)a 7.687(31) 13.40(53)

22 22
12Mg: 3.0691(89)b 22

11Na(ex) 22
10Ne: 2.9525(40)a 8.717(24) 12.93(71)

26 26
14Si 26m

13 Al 26
12Mg: 3.0337(18)a 9.203(11) N/A

30 30
16S

30
15P(ex) 30

14Si: 3.1336(40)a 9.819(25) N/A

34 34
18Ar: 3.3654(40)a 34

17Cl 34
16S: 3.2847(21)a 10.789(14) 15.62(54)

38 38
20Ca: 3.467(1)c 38m

19 K: 3.437(4)d 38
18Ar: 3.4028(19)a 11.579(13) 15.99(28)

42 42
22Ti 42

21Sc: 3.5702(238)a 42
20Ca: 3.5081(21)a 12.307(15) 21.5(3.6)

46 46
24Cr 46

23V
46
22Ti: 3.6070(22)a 13.010(16) N/A

50 50
26Fe 50

25Mn: 3.7120(196)a 50
24Cr: 3.6588(65)a 13.387(48) 23.2(3.8)

54 54
28Ni: 3.738(4)e 54

27Co 54
26Fe: 3.6933(19)a 13.640(14) 18.29(92)

62 62
32Ge 62

31Ga 62
30Zn: 3.9031(69)b 15.234(54) N/A

66 66
34Se 66

33As 66
32Ge N/A N/A

70 70
36Kr 70

35Br 70
34Se N/A N/A

74 74
38Sr 74

37Rb: 4.1935(172)b 74
36Kr: 4.1870(41)a 17.531(34) 19.5(5.5)

Table I: Determinations of R2
CW based on available data of nuclear charge radii for isotriplets in measured superallowed decays.

Superscripts denote the source of data: Ref.[31]a, Ref.[32]b, Ref.[33]c, Ref.[34]d and Ref.[35]e.

Parent
Γexp−Γ0

Γexp

Γexp−Γ0
mod

Γexp

Γexp−Γmod

Γexp

δf
f

in [2]

Tz,i = −1

18Ne -0.06(0) -0.03(0) -0.02(0) 0.13
22Mg -0.10(1) -0.03(1) -0.03(1) 0.03
34Ar -0.29(1) -0.09(1) -0.06(1) 0.01
38Ca -0.36(1) -0.10(1) -0.07(1) 0.01
42Ti -0.55(9) -0.23(9) -0.19(9) 0.02
50Fe -0.82(13) -0.35(13) -0.29(13) 0.40
54Ni -0.75(4) -0.19(4) -0.13(4) 0.27

Tz,i = 0

34Cl -0.23(1) -0.07(1) -0.05(1) 0.00
38mK -0.29(1) -0.08(1) -0.05(1) 0.00
42Sc -0.45(8) -0.19(8) -0.15(8) 0.01
50Mn -0.71(12) -0.30(12) -0.25(12) 0.00
54Co -0.66(3) -0.17(3) -0.11(3) 0.02
74Rb -1.17(33) -0.12(33) -0.03(33) 0.20

Table II: Comparison between different determinations of the
superallowed decay rate. The uncertainty comes primarily
from RCW in Γexp. All number are in %.

similar to that in Eq.(17). Nevertheless, it still provides
a strong indication that the systematic error in f due to
theory modelings of the CW form factor might have been
underestimated.

Final discussions – To fully make use of our model-
independent determination of RCW, one should care-
fully sort out the theory modelings of the nuclear CW
form factors in recent literature that compute f , e.g.
Refs.[2, 24, 25, 36, 37], and replace them consistently

by the experimental results. Also, to incorporate the
Coulomb effects between the positron and the nucleus,
updated charge distributions that are fully compatible
with the most recent charge radii measurements are
needed. This is not restricted to the 13 transitions that
we analyzed above, but should also be applied to all re-
maining superallowed transitions once new data of charge
radii are available in the future. Also, a straightforward
generalization of Eq.(16) to T = 1/2 systems provides
model-independent determination of charged weak form
factors of neutron and nuclear mirrors [38], both serving
as alternative avenues to measure |Vud|.

Our finding hints towards a possible solution of the
CKM anomaly. For instance, if we would naïvely reduce
the overall Ft-value by the average of the central val-
ues of column 3 in Table II, i.e. 0.11%, then the central
value of |Vud|0+ would increase from 0.97367 to 0.97421,
almost recovering the pre-2018 value of 0.97417(21) [24]
and largely restoring the first-row CKM unitarity. A
more robust number, of course, has to come from a com-
bination of experimental data and a comprehensive re-
analysis of all existing models as described above, which
we save for a future work. Recall also that the alignment
of the Ft-values across different nuclei is used to test the
CVC hypothesis, to constrain scalar currents and to test
the reliability of nuclear model calculations of the ISB
correction δC [39]. Therefore, possible nucleus-dependent
alterations of the f -values could lead to modified inter-
pretations of these constraints. Besides, the experimental
determination of RCW also improves the theory handle
of other CW processes that involve the same form factor,
for example the neutrino-nucleus scattering νφ → $+φ′

24
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Photon probes the entire nuclear charge

Only the outer protons can decay: all neutron states in the core occupied


ft values update — work in progress; more and more precise charge radii necessary!

Working closely with exp. (PSI, FRIB, ISOLDE)

Nuclear polarization (EM analog of ) crucial for improved radius extractionδNS
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TABLE X. Corrections δ′
R , δNS, and δC that are applied to

experimental f t values to obtain F t values.

Parent δ′
R δNS δC1 δC2 δC

nucleus (%) (%) (%) (%) (%)

Tz = −1
10C 1.679 −0.345(35) 0.010(10) 0.165(15) 0.175(18)
14O 1.543 −0.245(50) 0.055(20) 0.275(15) 0.330(25)
18Ne 1.506 −0.290(35) 0.155(30) 0.405(25) 0.560(39)
22Mg 1.466 −0.225(20) 0.010(10) 0.370(20) 0.380(22)
26Si 1.439 −0.215(20) 0.030(10) 0.405(25) 0.435(27)
30S 1.423 −0.185(15) 0.155(20) 0.700(20) 0.855(28)
34Ar 1.412 −0.180(15) 0.030(10) 0.665(55) 0.695(56)
38Ca 1.414 −0.175(15) 0.020(10) 0.745(70) 0.765(71)
42Ti 1.427 −0.235(20) 0.105(20) 0.835(75) 0.940(78)
Tz = 0
26mAl 1.478 0.005(20) 0.030(10) 0.280(15) 0.310(18)
34Cl 1.443 −0.085(15) 0.100(10) 0.550(45) 0.650(46)
38mK 1.440 −0.100(15) 0.105(20) 0.565(50) 0.670(54)
42Sc 1.453 0.035(20) 0.020(10) 0.645(55) 0.665(56)
46V 1.445 −0.035(10) 0.075(30) 0.545(55) 0.620(63)
50Mn 1.444 −0.040(10) 0.035(20) 0.610(50) 0.645(54)
54Co 1.443 −0.035(10) 0.050(30) 0.720(60) 0.770(67)
62Ga 1.459 −0.045(20) 0.275(55) 1.20(20) 1.48(21)
66As 1.468 −0.060(20) 0.195(45) 1.35(40) 1.55(40)
70Br 1.486 −0.085(25) 0.445(40) 1.25(25) 1.70(25)
74Rb 1.499 −0.075(30) 0.115(60) 1.50(26) 1.62(27)

cautious. Furthermore, because the uncertainty is associated
with the Z2α3 term, it is expected to be a smooth function
of Z2 and thus to behave systematically since any shift in the
value of δ′

R must affect all F t values in the same direction.
We then proceed as follows: We evaluate the individual

transition F t values without including any uncertainties
associated with δ′

R and obtain an average F t . Then we shift all
the individual δ′

R terms up and down by one-third of the Z2α3

contribution, recalculate the F t values and determine F t for
both. The shifts in the value of the latter—±0.36 s for the data
in Table IX—becomes the systematic uncertainty assigned to
F t to account for the uncertainty in δ′

R. Note that our choice to
take one-third of the Z2α3 term is rather arbitrary, but has the
benefit that it is still conservative and at the same time results
in the uncertainty in δ′

R having an impact on the overall result
that is comparable to its impact in our previous survey [6].

We turn now to the third radiative term δNS, which arises
from an evaluation of the low-energy part of the γW -box
graph for an axial-vector weak interaction. If it is assumed
that the γN and WN vertices are both with the same nucleon,
N , then the evaluated box graph becomes proportional to
the Fermi β-decay operator, yielding a universal correction
already included in %V

R.
If instead the γ and W interactions in the γW -box

graph for an axial-vector current are with different nucleons
in the nucleus, then the evaluation involves two-nucleon
operators, which necessitates a nuclear-structure calculation.
This component of the radiative correction we denote by δNS
and list its values in column 3 of Table X. The values and their
uncertainties have been taken from Table VI in Ref. [192].

For this correction term, a number of model calculations were
carried out for each nucleus [192] and the uncertainties listed
were chosen to encompass the spread in the results from these
calculations. Therefore the uncertainty is nucleus-specific and,
as such, can be treated as statistical and not systematic. We
thus combine it in quadrature with the experimental errors in
determining the F t-value uncertainties.

2. Isospin-symmetry-breaking correction

In this section we describe only the set of isospin-
symmetry-breaking corrections, δC , that we have used in
deriving the corrected F t values given in Table IX. A
discussion of other alternative calculations of δC—and our
reasons for rejecting them—is postponed to Sec. IV. The set we
have selected follows from a semiphenomenological approach
based on the shell model combined with Woods-Saxon radial
functions. This model, which we designate as SM-WS, has
been described in detail by us in Ref. [192], where also
the results for δC are tabulated. We describe the model only
briefly here, while making two minor updates to our previous
results.

The calculation is done in two parts, which is made possible
by our dividing δC into two terms:

δC = δC1 + δC2. (4)

The idea is that δC1 follows from a tractable shell-model
calculation that does not include significant nodal mixing,
while δC2 corrects for the nodal mixing that would be present
if the shell-model space were much larger.

For δC1, a modest shell-model space (usually one major
oscillator shell) is employed, in which Coulomb and other
charge-dependent terms are added to the charge-independent
effective Hamiltonian customarily used for the shell model.
These charge-dependent additional terms are separately ad-
justed for each superallowed β transition to reproduce the
b and c coefficients of the isobaric multiplet mass equation
(IMME) for the triplet of T = 1, 0+ states that includes the
parent and daughter states of the transition.

Since the Coulomb force is long range, its influence in
configuration space extends much further than the single
major oscillator shell included in the calculation of δC1. To
incorporate the effects of multishell mixing, we note first that
its principal impact is to change the structure of the radial wave
function by introducing mixing with radial functions that have
more nodes. Since this mixing primarily affects protons, it
results in proton radial functions that differ from the neutron
ones so, when the overlap is computed, its departure from unity
determines the value of δC2. The radial functions themselves
are derived from a Woods-Saxon potential. Again there is
a case-by-case adjustment in the Woods-Saxon potentials
to ensure that the different measured proton and neutron
separation energies in the β-decay parents and daughters are
correctly reproduced.

The SM-WS calculations of Towner and Hardy [192] must
clearly be classified as semiphenomenological. A number of
transition-specific nuclear properties have been fitted in their
determination of δC. In contrast, most of the alternative models
discussed in Sec. IV are first-principles theory calculations.
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MF = ⟨ f |τ+ | i⟩

Tree-level	Fermi	matrix	element

	—	Isospin	operator

	—	members	of	T=1	isotriplet

τ+

| i⟩, | f ⟩

If	isospin	symmetry	were	exact,	 


Isospin	symmetry	is	broken	in	nuclear	states	

(e.g.	Coulomb,	nucleon	mass	difference,	…)


In	presence	of	isospin	symmetry	breaking	(ISB):


MF → M0 = 2

|MF |2 = |M0 |2 (1 − δC)

ISB	correction	is	crucial	for	 	extractionVud

δC ∼ 0.17% − 1.6%!

MacDonald	1958



Nuclear	Corrections	vs.	scalar	BSM

Once	all	corrections	are	included:

CVC	—>	Ft	constant


	particularly	important	for	alignment!δC

Fit	to	14	transitions:		

Ft	constant	within	0.02%
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FIG. 2. (a) In the top panel are plotted the uncorrected experi-
mental f t values as a function of the charge on the daughter nucleus.
(b) In the bottom panel, the corresponding F t values are given; they
differ from the f t values by the inclusion of the correction terms δ′

R ,
δNS, and δC. The horizontal gray band gives one standard deviation
around the average F t value.

of χ2/ν associated with the current F t result is higher than
the corresponding value in 2008 but this undoubtedly reflects
the fact that one additional transition has been added and the
data for some of the other transitions are more precise today
than they were 6 years ago. In any case, the confidence level
for the new result remains very high: 91%.

C. Uncertainty budgets

We show the contributing factors to the individual F t-value
fractional uncertainties in two figures. The first, Fig. 3,
encompasses the nine cases with stable daughter nuclei. Their
experimental parameters have been measured with increasing
precision for many years, so we refer to these as the “traditional
nine.” The remaining eleven cases, of which five now approach
the traditional nine in precision, appear in Fig. 4. In both
figures, the first three bars in each group of five show the
contributions from experiment, while the last two correspond
to theory. Although we are now treating the contribution from
δ′
R as a systematic uncertainty that is applied to the final

average F t , nevertheless we show a bar as a rough guide
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FIG. 3. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that con-
tributes to the final F t values for the “traditional nine” superallowed
transitions. The bars for δ′

R are only a rough guide to the effect on
each transition of this term’s systematic uncertainty. See text.
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FIG. 4. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final F t values for the 11 other superallowed
transitions. Where the error is cut off with a jagged line at 40 parts in
104, no useful experimental measurement has been made. The bars
for δ′

R are only a rough guide to the effect on each transition of this
term’s systematic uncertainty. See text.
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FIG. 2. (a) In the top panel are plotted the uncorrected experi-
mental f t values as a function of the charge on the daughter nucleus.
(b) In the bottom panel, the corresponding F t values are given; they
differ from the f t values by the inclusion of the correction terms δ′

R ,
δNS, and δC. The horizontal gray band gives one standard deviation
around the average F t value.

of χ2/ν associated with the current F t result is higher than
the corresponding value in 2008 but this undoubtedly reflects
the fact that one additional transition has been added and the
data for some of the other transitions are more precise today
than they were 6 years ago. In any case, the confidence level
for the new result remains very high: 91%.

C. Uncertainty budgets

We show the contributing factors to the individual F t-value
fractional uncertainties in two figures. The first, Fig. 3,
encompasses the nine cases with stable daughter nuclei. Their
experimental parameters have been measured with increasing
precision for many years, so we refer to these as the “traditional
nine.” The remaining eleven cases, of which five now approach
the traditional nine in precision, appear in Fig. 4. In both
figures, the first three bars in each group of five show the
contributions from experiment, while the last two correspond
to theory. Although we are now treating the contribution from
δ′
R as a systematic uncertainty that is applied to the final

average F t , nevertheless we show a bar as a rough guide
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FIG. 3. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that con-
tributes to the final F t values for the “traditional nine” superallowed
transitions. The bars for δ′

R are only a rough guide to the effect on
each transition of this term’s systematic uncertainty. See text.
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FIG. 4. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final F t values for the 11 other superallowed
transitions. Where the error is cut off with a jagged line at 40 parts in
104, no useful experimental measurement has been made. The bars
for δ′

R are only a rough guide to the effect on each transition of this
term’s systematic uncertainty. See text.
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standard deviations. Is there any way the |Vud | value in Eq. (10)
could possibly be shifted to this value? It can be seen in
Eq. (8) that |Vud |2 is inversely proportional to both F t and
(1 + !V

R). For F t to account for such a shift, it would have to
decrease by six standard deviations. That is unlikely enough
but, because all 14 measured transitions agree with one another
and with CVC, all 14 would have to undergo the same shift, a
virtual impossibility. The only other possibility is a shift in the
nucleus-independent radiative correction, !V

R, which would
have to be reduced from 2.36(4)% to 2.24%. This is a change
equal to three times the stated uncertainty which, while not
impossible, is rather unlikely.

(4) f+(0), fK/fπ correct, K#3, K#2 correct, unitarity
not satisfied. With |Vus | determined from K#3 decays and
|Vus |/|Vud | from K#2 decays, each with the Nf = 2 + 1 + 1
lattice coupling constants, a value of |Vud | can be obtained from
their ratio. The result, |Vud | = 0.9670(44), has a somewhat
larger error bar than other determinations from kaon physics
because no constraint to satisfy unitarity has been imposed.
Nevertheless, the result is two of its standard deviations away
from the nuclear β-decay value for |Vud | and the unitarity
sum is likewise not satisfied, with |Vu|2 = 0.985(9) and a
deficit, !CKM = −0.015(9), of 1.8 standard deviations. For
the β-decay value of |Vud | to be shifted into agreement with
this kaon-derived value would require the nucleus-independent
radiative correction !V

R to be increased from 2.36(4)% to
3.88%, 40 times its stated uncertainty. Surely this can be ruled
out.

One must conclude that there is no definitive answer for
|Vus | as of now since the two approaches to its measurement
from kaon decay are not completely consistent with one
another. On balance, though, the result for |Vus |/|Vud | obtained
from K#2 and pion decays seems the most reliable because it
shows the greatest consistency as the lattice calculations have
improved, which reinforces the idea that systematic errors are
reduced when a ratio is used. If we then accept the Nf =
2 + 1 + 1 result on line 4 of Table XIII and combine it with
our result for |Vud | from Eq. (10), we get |Vus | = 0.2248(6)
and a unitary sum of |Vu|2 = 0.999 56(49).

D. Scalar currents

1. Fundamental scalar current

The standard model prescribes the weak interaction to be
an equal mix of vector (V ) and axial-vector (A) interactions
that maximizes parity violation. Searches for physics beyond
the standard model therefore seek evidence that parity is
not maximally violated (owing to the presence of right-hand
currents) or that the interaction is not pure V − A (owing to the
presence of scalar or tensor currents). The data in this survey
allow us to contribute to the search for a scalar interaction
because, if present, it would have a measurable effect on
superallowed 0+ → 0+ β transitions.

A scalar interaction would generate an additional term [5]
to the shape-correction function, which forms part of the
integrand of the statistical rate function, f , an integral over
the β-decay phase space. The additional term takes the form
(1 + bF γ1/W ), where W is the total electron energy in electron

Z of daughter
2010 30 400

3070

3080

3090

3060

FIG. 7. Corrected F t values from Table IX plotted as a function
of the charge on the daughter nucleus, Z. The curved lines represent
the approximate loci the F t values would follow if a scalar current
existed with bF = ±0.004.

rest-mass units, and γ1 =
√

[1 − (αZ)2]. The strength of the
scalar interaction is contained in the unknown constant, bF ,
which is called the Fierz interference term [218]. Thus, the
impact of a scalar interaction on the F t values would be to
introduce a dependence on 〈1/W 〉, the average inverse decay
energy of each β+ transition. No longer would the F t values
be constant over the whole range of nuclei but they would
instead exhibit a smooth dependence on 〈1/W 〉. Since 〈1/W 〉
is largest for the lightest nuclei, and decreases monotonically
with increasing Z and A, the largest deviation of F t from
constancy would occur for the cases of 10C and 14O.

We have reevaluated the statistical rate function, f , for
each transition using a shape-correction function that includes
the presence of the scalar interaction via a Fierz interference
term, bF , which we treat as an adjustable parameter. We then
obtained a value of bF that minimized the χ2 in a least-squares
fit to the expression F t = constant. The result we obtained is

bF = −0.0028 ± 0.0026, (17)

a marginally larger result than the value from our last survey [6]
but with the same uncertainty. Note that the uncertainty quoted
here is one standard deviation (68% CL), as obtained from the
fit. In Fig. 7 we illustrate the sensitivity of this analysis by
plotting the measured F t values together with the loci of F t
values that would be expected if bF = ±0.004. There is no
statistically compelling evidence for bF to be nonzero.1

The result in Eq. (17) can also be expressed in terms of
the coupling constants that Jackson, Treiman, and Wyld [218]
introduced to write a general form for the weak-interaction
Hamiltonian. Since we are dealing only with Fermi superal-
lowed transitions, we can restrict ourselves to scalar and vector
couplings, for which the Hamiltonian becomes

HS+V = (ψpψn)
(
CSφeφνe

+ C ′
Sφeγ5φνe

)

+ (ψpγµψn)
[
CV φeγµ(1 + γ5)φνe

]
, (18)

in the notation and metric of Ref. [218]. We have taken the
vector current to be maximally parity violating, as indicated

1It is interesting to note that if we were to derive an averageF t value
from the data while allowing bF to vary freely, the corresponding
value for |Vud | would become 0.9745(4), a result quite consistent
with the one we quote in Eq. (10), but with an uncertainty nearly
twice as large.
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to the significance of the δ′
R uncertainty for each transition.

In each case, we take the height of that bar to correspond to
one-third the size of the Z2α3 term in the expression for δ′

R

(see Sec. III A 1).
From Fig. 3, it can be seen that for seven of the nine

transitions plotted there—all but those from 10C and 14O—the
contributions from their three experimental uncertainties are
substantially smaller than the corresponding contributions
from the theoretical uncertainty due to the combined nuclear-
structure-dependent corrections, (δC − δNS). The same can be
said for the transitions from 62Ga and 74Rb, which appear
among the TZ = 0 cases illustrated in Fig. 4, although for these
two cases the theoretical uncertainties are 3–10 times larger
than they are for the lighter nuclei because of nuclear-model
ambiguities.

There is good reason for these nine cases to have particu-
larly small experimental uncertainties. They are all transitions
from TZ = 0 parent nuclei, which populate even-even daugh-
ters in which there are no, or very few, 1+ states at low enough
energy to be available for competing Gamow-Teller decays.
Thus, the branching ratios for the superallowed transitions
are all >99% and have very small associated uncertainties,
the largest being for the decays of 54Co and 74Rb, which
both have a 3 × 10−4 fractional uncertainty. In both cases,
this is because they are predicted to have Gamow-Teller
branches that are too weak to have been observed but numerous
enough that their total strength is not negligible. To account
for such competition, one must first make a sensitive search
for weak branches and then resort to an estimate of the
strength of the branches that could have been missed at the
level of experimental sensitivity achieved. Such estimates are
currently based on shell-model calculations, as first suggested
in Ref. [93], and obviously they introduce some additional
uncertainty.

The presence of numerous weak Gamow-Teller branches
becomes an increasingly significant issue for the heavier-mass
nuclei, which have increasingly large QEC values. For cases
with A ! 62, they present a major experimental challenge
if they are to be fully characterized. To date this has been
accomplished for the decays of 62Ga [36,66] and 74Rb [55] but
at considerable effort. It remains to be seen if the same level of
precision will ultimately be achievable for 66As and 70Br, the
two other cases in the bottom panel of Fig. 4, or for the even
heavier TZ = 0 parents that extend beyond 74Rb up to 98In.

The decays of 10C, 14O, and all the transitions depicted
in the top panel of Fig. 4 originate from TZ = −1 parent
nuclei and populate odd-odd daughters in which there are low-
lying 1+ states strongly fed by Gamow-Teller decay. These
branches are of comparable intensity to the superallowed
one so they—or the superallowed branch itself—must be
measured directly with high relative precision, a very difficult
proposition. The outcome is branching-ratio uncertainties that
exceed all the other contributions to theF t-value uncertainties,
experimental or theoretical, for these cases. (Measurements of
weak competing branches in the TZ = 0 cases discussed in
the previous paragraph require high sensitivity but not high
relative precision because the total Gamow-Teller branching
is more than a factor of 100 weaker than the superallowed
branch for all of them.) Advances in experimental techniques

for measuring branching ratios have improved the situation in
recent years [94,141] and will improve it even more within the
next few years. Nevertheless, it is unlikely that these cases will
ever equal the overall level of precision already achieved for
the TZ = 0 parent decays. Their value lies instead in testing the
calculated corrections for isospin-symmetry breaking [141], as
described in Sec. IV C.

IV. ISOSPIN-SYMMETRY BREAKING

Our own isospin-symmetry-breaking calculations, which
take a semiphenomenological approach based on the shell-
model together with Woods-Saxon radial functions (denoted
SM-WS), have been discussed in Sec. III A 2. The results
obtained there for δC are listed in the last column of Table X
and are repeated for comparison purposes in the second column
of Table XI. Those are not the only calculations of δC . There
are a number of others that have appeared in the literature, of
which we outline some more recent entries here.

A. Other δC calculations

SM-HF. Ormand and Brown [199] were the first to suggest
that the calculation of the radial overlap—i.e., the δC2 com-
ponent of δC—might be better served if a mean-field Hartree-
Fock potential were used rather than the phenomenological
Woods-Saxon potential. The most recent calculation of this
type is by Hardy and Towner [6] and their results are listed

TABLE XI. Recent δC calculations (in percent units) based
on models labeled SM-WS (shell-model, Woods-Saxon), SM-HF
(shell-model, Hartree-Fock), RPA (random phase approximation),
IVMR (isovector monopole resonance), and DFT (density functional
theory). Also given is the χ 2/ν, χ 2 per degree of freedom, from the
confidence test discussed in the text.

RPA

SM-WS SM-HF PKO1 DD-ME2 PC-F1 IVMRa DFT

Tz = −1
10C 0.175 0.225 0.082 0.150 0.109 0.147 0.650
14O 0.330 0.310 0.114 0.197 0.150 0.303
22Mg 0.380 0.260 0.301
34Ar 0.695 0.540 0.268 0.376 0.379
38Ca 0.765 0.620 0.313 0.441 0.347
Tz = 0
26mAl 0.310 0.440 0.139 0.198 0.159 0.370
34Cl 0.650 0.695 0.234 0.307 0.316
38mK 0.670 0.745 0.278 0.371 0.294 0.434
42Sc 0.665 0.640 0.333 0.448 0.345 0.770
46V 0.620 0.600 0.580
50Mn 0.645 0.610 0.550
54Co 0.770 0.685 0.319 0.393 0.339 0.638
62Ga 1.475 1.205 0.882
74Rb 1.615 1.405 1.088 1.258 0.668 1.770
χ 2/ν 1.4 6.4 4.9 3.7 6.1 4.3b

aRodin [205] also computes δC = 0.992% for both 66As and 70Br.
bThe result for 62Ga has not been included in the least-squares fit from
which this value for χ 2/ν has been obtained.
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FIG. 1. Isospin-symmetry breaking correction δC obtained from
different models: shell model with WS radial wave functions (SM-
WS) [2,4,5], shell model with HF wave functions (SM-HF) [6,7],
J (T )-projected HF theory with two different Skyrme functionals (SV-
DFT and SHZ2-DFT) [9], relativistic RPA (RHF-RPA and RH-RPA)
[10], isovector monopole resonance theory (IVMR) [11], and the
Damgaard model [12].

added to a relativistic Hartree or Hartree-Fock (HF) calculation
was used by Liang et al. [10]. In addition, Auerbach [11] uses a
model where the main isospin-symmetry-breaking effects are
attributed to the isovector monopole resonance. The last two
results are again systematically lower than the shell-model or
J (T )-projected HF values. For completeness, we show also an
earlier estimation of the correction using perturbation theory
on the basis of individual harmonic-oscillator wave functions
by Damgaard [12]. It is clear that all these calculations have a
significant spread in the obtained values of δC , thus raising the
question of credibility of the results.

The values for δC tabulated by Towner and Hardy in Ref. [1]
excellently support both the CVC hypothesis over the full range
of Z values and the top-row unitarity of the CKM matrix.
However, this agreement is not sufficient to reject the other
calculations, since these aspects of the standard model have
to be confirmed experimentally. The validity of CVC does not
constrain the absolute F t value. The disagreement between
model predictions and the importance of the issue motivated
us to reexamine this correction in a consistent approach based
on the nuclear shell model.

Within the shell model, the eigenproblem is solved by con-
struction and diagonalization of the Hamiltonian matrix using
a Slater determinant spherical harmonic-oscillator basis. The
eigenstates are thus given in terms of linear combinations of
many-body basis states. In order to describe isospin-symmetry
breaking effects, the many-body Hamiltonian should contain
Coulomb and charge-dependent terms of nuclear origin. If
the eigenproblem is solved in a sufficiently large A-body
basis of many harmonic-oscillator shells, the eigenvectors
can be used to compute a realistic Fermi matrix elements,
as, for example, has been done for 10C in the no-core shell
model with 3N forces included [13]. However, for heavier
nuclei, calculations are feasible only in restricted model spaces,
containing one or two harmonic-oscillator shells beyond a
closed-shell core. Effective isospin-nonconserving interaction
introduces the isospin-symmetry breaking in the mixing of

various harmonic-oscillator configurations within the model
space. In addition, calculation of transition matrix elements
involves radial integrals which should be computed using real-
istic spherically symmetric proton and neutron wave functions,
obtained from a finite-range potential with a Coulomb term.
The protons in a parent nucleus are less bound than the neutrons
in a daughter nucleus because of the Coulomb repulsion. Since
the model space is restricted to a single oscillator shell, in
practice the only way to deal with the problem is to replace the
harmonic-oscillator radial wave functions by single-particle
wave functions obtained from a realistic spherically symmetric
mean-field potential. This accounts for the isospin-symmetry
breaking effects beyond the valence space. Thus, there are
two sources of the deviation of the Fermi matrix element
from its model-independent value: one is from the effective
charge-dependent Hamiltonian and the other is from the radial
mismatch of proton and neutron single-particle wave functions.
It will be shown below that, within the first-order perturbation
theory, the correction δC can be expressed as a sum of two
terms corresponding to the two sources of isospin-symmetry
breaking mentioned above.

The present study focuses on the radial mismatch between
proton and neutron single-particle wave functions, which
represents the main contribution to the nuclear structure
correction to the Fermi matrix element. Currently, two types
of a mean-field potential are considered in this respect. The
first one is the phenomenological WS potential including a
central, a spin-orbit, and an electrostatic repulsion term. A
series of calculations using this potential has been carried
out by Towner and Hardy [2,4]. These authors adjusted case-
by-case the depth of the volume term or added an additional
surface-peak term to reproduce experimental proton and neu-
tron separation energies. In addition, they adjusted the length
parameter of the central term to fix the charge radii of the
parent nuclei. The second type of a mean-field potential is
that obtained from self-consistent HF calculations using a
zero-range Skyrme force, as was first proposed by Ormand
and Brown in 1985 [14] and refined in the subsequent papers
[6,7].

The results obtained from both types of mean-field potential
are equivalently in good agreement with the CVC hypothesis;
however, the δC values from Skyrme-HF calculations are con-
sistently smaller than those obtained from the WS calculations.
This discrepancy was thought to be due to the insufficiency of
the Slater approximation for treating the Coulomb exchange
term. Towner and Hardy highlighted that the asymptotic
limit of the Coulomb potential in the Slater approximation is
overestimated by one unit of Z. To retain this property, they
proposed a modified HF protocol [5], namely they performed
a single calculation for the nucleus with (A − 1) nucleons
and (Z − 1) protons and then used the proton and the neutron
eigenfunctions from the same calculation to compute the radial
overlap integrals. Their result leads to a significant increase of
the corresponding correction to the Fermi matrix element and
provides a better agreement with the values obtained with WS
radial wave functions. However, we warn that such a method
is rooted in Koopman’s theorem, which is not fully respected
by the HF calculations, in particular with a density-dependent
effective interaction.
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In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = 〈 f |τ̂+|i〉, with 
τ̂+ the isospin-raising operator, and the states |i〉, | f 〉 normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z〉 where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = 〈g; 1, T z, f |τ̂+|g; 1, T z,i〉 =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

&M(1) =
A∑

i=1

r2
i
&̂T (i) (3)

where &̂T (i) is the isospin operator of the nucleon i, and &ri its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

〈 f (p f )| Jλ†
W (0)|i(pi)〉 = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2〈 f |M(1)

+1|i〉
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

〈φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ〉, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

〈φ|M(1)
0 |φ〉 = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
〈g; 1, 1|M(1)

+1|g; 1, 0〉 = −〈g; 1, 1|M(1)
0 |g; 1, 1〉. Hence, the following 

combined experimental observable

'M(1)
A ≡ 〈 f |M(1)

+1|i〉 + 〈 f |M(1)
0 | f 〉 (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 
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In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation
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jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = 〈 f |τ̂+|i〉, with 
τ̂+ the isospin-raising operator, and the states |i〉, | f 〉 normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z〉 where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = 〈g; 1, T z, f |τ̂+|g; 1, T z,i〉 =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

&M(1) =
A∑

i=1

r2
i
&̂T (i) (3)

where &̂T (i) is the isospin operator of the nucleon i, and &ri its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

〈 f (p f )| Jλ†
W (0)|i(pi)〉 = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2〈 f |M(1)

+1|i〉
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

〈φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ〉, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

〈φ|M(1)
0 |φ〉 = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
〈g; 1, 1|M(1)

+1|g; 1, 0〉 = −〈g; 1, 1|M(1)
0 |g; 1, 1〉. Hence, the following 

combined experimental observable

'M(1)
A ≡ 〈 f |M(1)

+1|i〉 + 〈 f |M(1)
0 | f 〉 (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 

2

Transition radius
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and electron scattering

Since	N	≠	Z	for	 	factors	 	remove	the	symmetry	energy	to	isolate	ISB

(Usually	PVES	—>	neutron	skins	—>	symmetry	energy	—>	nuclear	EOS	—>	nuclear	astrophysics)
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γ
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Af Af

γZ
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4 2πα
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Z
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Table 1
Estimation of !M(1)

A and |!M(1)
A /(AR2/4)| from different models. See paragraphs after Eq. (23) for explanations. A few remarks: A = 46, 50 are missing in 

the RPA calculation, while the DFT calculation gives an unusually large δC for A = 38.

Transitions δC (%) !M(1)
A (fm2)

∣∣∣∣
!M(1)

A
AR2/4

∣∣∣∣ (%)

WS DFT HF RPA Micro WS DFT HF RPA Micro WS DFT HF RPA Micro

26mAl →26 Mg 0.310 0.329 0.30 0.139 0.08 -2.2 -2.3 -2.1 -1.0 -0.6 3.2 3.3 3.0 1.4 0.8
34Cl →34 S 0.613 0.75 0.57 0.234 0.13 -5.0 -6.1 -4.6 -1.9 -1.0 4.6 5.6 4.3 1.8 1.0
38mK →38 Ar 0.628 1.7 0.59 0.278 0.15 -5.4 -14.6 -5.1 -2.4 -1.3 4.2 11.2 3.9 1.8 1.0
42Sc →42 Ca 0.690 0.77 0.42 0.333 0.18 -6.2 -6.9 -3.8 -3.0 -1.6 4.0 4.5 2.5 2.0 1.1
46V →46 Ti 0.620 0.563 0.38 / 0.21 -5.8 -5.3 -3.6 / -2.0 3.3 3.0 2.0 / 1.1
50Mn →50 Cr 0.660 0.476 0.35 / 0.24 -6.4 -4.6 -3.4 / -2.4 3.1 2.3 1.7 / 1.2
54Co →54 Fe 0.770 0.586 0.44 0.319 0.28 -7.8 -5.9 -4.4 -3.2 -2.8 3.3 2.5 1.9 1.4 1.2

Table 2
Estimation of !M(1)

B and |!M(1)
B /(AR2/2)| from different models.

Transitions !M(1)
B (fm2)

∣∣∣∣
!M(1)

B
AR2/2

∣∣∣∣ (%)

WS DFT HF RPA Micro WS DFT HF RPA Micro

26mAl →26 Mg -0.12 -0.12 -0.11 -0.05 -0.03 0.08 0.09 0.08 0.04 0.02
34Cl →34 S -0.17 -0.21 -0.16 -0.06 -0.04 0.08 0.10 0.07 0.03 0.02
38mK →38 Ar -0.15 -0.42 -0.15 -0.07 -0.04 0.06 0.16 0.06 0.03 0.01
42Sc →42 Ca -0.15 -0.17 -0.09 -0.07 -0.04 0.05 0.06 0.03 0.02 0.01
46V →46 Ti -0.12 -0.11 -0.08 / -0.04 0.03 0.03 0.02 / 0.01
50Mn →50 Cr -0.12 -0.09 -0.06 / -0.04 0.03 0.02 0.02 / 0.01
54Co →54 Fe -0.13 -0.10 -0.07 -0.05 -0.05 0.03 0.02 0.02 0.01 0.01

experimental precision to observe a deviation from zero. Further-
more, the ratio between !M(1)

A,B depends only on κ , so a simul-
taneous measurement of the two may pin down κ , which further 
solidifies their relation to δC.

6. Targeted experimental precision

Following the strategy outlined above, we devise the experi-
mental precision required for the quantities !M(1)

A,B , which would 
allow to address the reliability of the estimates of δC and its un-
certainty in a less model-dependent way. First, to fix the propor-
tionality constant, we take:

Z ≈ A/2, RC ≈
√

5/3 × 1.1 fm × A1/3, (22)

with the standard expectation for the nuclear RMS radius, R ≈
1.1 fm × A1/3, related to the radius of a nucleus as a uni-
form sphere by R2 = (3/5)R2

C . We take further parameters from 
Ref. [24],

V 1 ≈ 100 MeV, ω ≈ 41 MeV × A−1/3, ξ ≈ 3. (23)

More recent discussions of these parameters supporting the above 
choices can be found in Refs. [50,51]. Next, we may, e.g., take the 
estimates of δC available in the literature and substitute them into 
the first line of Eq. (21). This returns an estimate of the size of 
!M(1)

A , which informs, how precise the measurement of this quan-
tity should be to discriminate the model dependence of δC.

Restricting ourselves to superallowed decays with T z,i = 0 and 
T z, f = +1 and requiring the daughter nucleus to be (observation-
ally) stable, we study the transitions with 26 ≤ A ≤ 54. We take 
δC as calculated in the nuclear shell model with the Woods-Saxon 
(WS) potential [10], the density functional theory (DFT) [20], the 
Hartree-Fock (HF) calculation [22], the random phase approxima-
tion (RPA) with PKO1 parameterization [23], as well as the “micro-
scopic” model of Ref. [24,52] which gives δC ≈ 2 ×18.0 ×10−7 A5/3. 

The estimated size of !M(1)
A indicates the targeted absolute preci-

sion in the measurements of 〈 f |M(1)
+1|i〉 and 〈 f |M(1)

0 | f 〉. The lat-
ter implies subtracting two large terms, N R2

n, f /2 and Z R2
p, f /2, 

each of the typical size AR2/4. Therefore, we may use the ratio 
!M(1)

A /(AR2/4) as an estimate of the precision of the RMS radii of 
the nuclear neutron and proton distributions required to probe the 
ISB effects.

The results of our numerical analysis are summarized in Ta-
ble 1. We find that most models predict a generic size of !M(1)

A ∼
1 fm2, with a precision level (1 −3)% needed for the R2

p, f and R2
n, f

measurements in order to probe the isospin mixing effect, i.e. start 
seeing a deviation of !M(1)

A from zero. If it turns out that a non-

zero !M(1)
A is not observed at this precision, it could indicate that 

the actual values of δC are smaller than most existing model pre-
dictions, as suggested in [17,18]. The model predictions for !M(1)

A
span over an order of magnitude for 38mK→ 38Ar, and half that 
range for 34Cl→ 34S and 42Sc→ 42Ca decays, reflecting a similar 
model dependence in δC in these channels. Hence, an experimen-
tal study of !M(1)

A for these systems even at a moderate precision 
will shed light on the model dependence of δC. An analogous anal-
ysis for !M(1)

B is summarized in Table 2; following Eq. (10), we 
use !M(1)

B /(AR2/2) as a measure of the precision goal. We ob-
serve that, due to the κ2-suppression, a much higher precision 
(0.01-0.1)% is required to probe δC experimentally through !M(1)

B .

7. Discussion of the experimental feasibility

To constrain !M(1)
A we need R2

Ch and R2
NW for the stable nu-

cleus, as well as R2
CW. Considering A = 38 where the spread in 

model predictions is as large as an order of magnitude (9), even a 
10% precision of these radii allows to discriminate between mod-
els. The typical R2

Ch precision is per mille or better. R2
NW remains 

to be measured in fixed-target electron-nucleus scattering experi-
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Table 1
Estimation of !M(1)

A and |!M(1)
A /(AR2/4)| from different models. See paragraphs after Eq. (23) for explanations. A few remarks: A = 46, 50 are missing in 

the RPA calculation, while the DFT calculation gives an unusually large δC for A = 38.

Transitions δC (%) !M(1)
A (fm2)

∣∣∣∣
!M(1)

A
AR2/4

∣∣∣∣ (%)

WS DFT HF RPA Micro WS DFT HF RPA Micro WS DFT HF RPA Micro

26mAl →26 Mg 0.310 0.329 0.30 0.139 0.08 -2.2 -2.3 -2.1 -1.0 -0.6 3.2 3.3 3.0 1.4 0.8
34Cl →34 S 0.613 0.75 0.57 0.234 0.13 -5.0 -6.1 -4.6 -1.9 -1.0 4.6 5.6 4.3 1.8 1.0
38mK →38 Ar 0.628 1.7 0.59 0.278 0.15 -5.4 -14.6 -5.1 -2.4 -1.3 4.2 11.2 3.9 1.8 1.0
42Sc →42 Ca 0.690 0.77 0.42 0.333 0.18 -6.2 -6.9 -3.8 -3.0 -1.6 4.0 4.5 2.5 2.0 1.1
46V →46 Ti 0.620 0.563 0.38 / 0.21 -5.8 -5.3 -3.6 / -2.0 3.3 3.0 2.0 / 1.1
50Mn →50 Cr 0.660 0.476 0.35 / 0.24 -6.4 -4.6 -3.4 / -2.4 3.1 2.3 1.7 / 1.2
54Co →54 Fe 0.770 0.586 0.44 0.319 0.28 -7.8 -5.9 -4.4 -3.2 -2.8 3.3 2.5 1.9 1.4 1.2
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Estimation of !M(1)

B and |!M(1)
B /(AR2/2)| from different models.

Transitions !M(1)
B (fm2)
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!M(1)

B
AR2/2

∣∣∣∣ (%)

WS DFT HF RPA Micro WS DFT HF RPA Micro

26mAl →26 Mg -0.12 -0.12 -0.11 -0.05 -0.03 0.08 0.09 0.08 0.04 0.02
34Cl →34 S -0.17 -0.21 -0.16 -0.06 -0.04 0.08 0.10 0.07 0.03 0.02
38mK →38 Ar -0.15 -0.42 -0.15 -0.07 -0.04 0.06 0.16 0.06 0.03 0.01
42Sc →42 Ca -0.15 -0.17 -0.09 -0.07 -0.04 0.05 0.06 0.03 0.02 0.01
46V →46 Ti -0.12 -0.11 -0.08 / -0.04 0.03 0.03 0.02 / 0.01
50Mn →50 Cr -0.12 -0.09 -0.06 / -0.04 0.03 0.02 0.02 / 0.01
54Co →54 Fe -0.13 -0.10 -0.07 -0.05 -0.05 0.03 0.02 0.02 0.01 0.01

experimental precision to observe a deviation from zero. Further-
more, the ratio between !M(1)

A,B depends only on κ , so a simul-
taneous measurement of the two may pin down κ , which further 
solidifies their relation to δC.

6. Targeted experimental precision

Following the strategy outlined above, we devise the experi-
mental precision required for the quantities !M(1)

A,B , which would 
allow to address the reliability of the estimates of δC and its un-
certainty in a less model-dependent way. First, to fix the propor-
tionality constant, we take:

Z ≈ A/2, RC ≈
√

5/3 × 1.1 fm × A1/3, (22)

with the standard expectation for the nuclear RMS radius, R ≈
1.1 fm × A1/3, related to the radius of a nucleus as a uni-
form sphere by R2 = (3/5)R2

C . We take further parameters from 
Ref. [24],

V 1 ≈ 100 MeV, ω ≈ 41 MeV × A−1/3, ξ ≈ 3. (23)

More recent discussions of these parameters supporting the above 
choices can be found in Refs. [50,51]. Next, we may, e.g., take the 
estimates of δC available in the literature and substitute them into 
the first line of Eq. (21). This returns an estimate of the size of 
!M(1)

A , which informs, how precise the measurement of this quan-
tity should be to discriminate the model dependence of δC.

Restricting ourselves to superallowed decays with T z,i = 0 and 
T z, f = +1 and requiring the daughter nucleus to be (observation-
ally) stable, we study the transitions with 26 ≤ A ≤ 54. We take 
δC as calculated in the nuclear shell model with the Woods-Saxon 
(WS) potential [10], the density functional theory (DFT) [20], the 
Hartree-Fock (HF) calculation [22], the random phase approxima-
tion (RPA) with PKO1 parameterization [23], as well as the “micro-
scopic” model of Ref. [24,52] which gives δC ≈ 2 ×18.0 ×10−7 A5/3. 

The estimated size of !M(1)
A indicates the targeted absolute preci-

sion in the measurements of 〈 f |M(1)
+1|i〉 and 〈 f |M(1)

0 | f 〉. The lat-
ter implies subtracting two large terms, N R2

n, f /2 and Z R2
p, f /2, 

each of the typical size AR2/4. Therefore, we may use the ratio 
!M(1)

A /(AR2/4) as an estimate of the precision of the RMS radii of 
the nuclear neutron and proton distributions required to probe the 
ISB effects.

The results of our numerical analysis are summarized in Ta-
ble 1. We find that most models predict a generic size of !M(1)

A ∼
1 fm2, with a precision level (1 −3)% needed for the R2

p, f and R2
n, f

measurements in order to probe the isospin mixing effect, i.e. start 
seeing a deviation of !M(1)

A from zero. If it turns out that a non-

zero !M(1)
A is not observed at this precision, it could indicate that 

the actual values of δC are smaller than most existing model pre-
dictions, as suggested in [17,18]. The model predictions for !M(1)

A
span over an order of magnitude for 38mK→ 38Ar, and half that 
range for 34Cl→ 34S and 42Sc→ 42Ca decays, reflecting a similar 
model dependence in δC in these channels. Hence, an experimen-
tal study of !M(1)

A for these systems even at a moderate precision 
will shed light on the model dependence of δC. An analogous anal-
ysis for !M(1)

B is summarized in Table 2; following Eq. (10), we 
use !M(1)

B /(AR2/2) as a measure of the precision goal. We ob-
serve that, due to the κ2-suppression, a much higher precision 
(0.01-0.1)% is required to probe δC experimentally through !M(1)

B .

7. Discussion of the experimental feasibility

To constrain !M(1)
A we need R2

Ch and R2
NW for the stable nu-

cleus, as well as R2
CW. Considering A = 38 where the spread in 

model predictions is as large as an order of magnitude (9), even a 
10% precision of these radii allows to discriminate between mod-
els. The typical R2

Ch precision is per mille or better. R2
NW remains 

to be measured in fixed-target electron-nucleus scattering experi-
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Can	discriminate	models	if	independent	information	on	nuclear	radii	is	available

	from	measured	radii	—>	test	models	for	 


Working	closely	with	PVES	exp.	in	Mainz:	neutron	skins	of	stable	daughters	can	be	measured!

ΔMA δC

For	numerical	analysis:	lowest	isovector	monopole	resonance	dominates

One	ISB	matrix	element,	one	energy	splitting


Model	for	 prediction	for	δC → ΔM(1)
A,B

Electroweak radii constrain ISB in superallowed -decayβ

Seng, MG 2208.03037; 2304.03800



Summary on  from superallowed nuclear decaysVud

• Superallowed nuclear decays are a powerful tool to extract 


• New method to compute nuclear-structure correction developed


• Dispersion relations allow to study the scale separation explicitly, 
combine inputs from exp, ab-initio etc


• Modern nuclear theory being applied to selected transitions


• TRIUMF group (Gennari, Drissy, Navratil): NCSM for  in 


• Work on  and  by other groups under way!


• Nuclear charge radii help constraining ISB corrections 


• Motivates a dedicated experimental program on more and more 
precise nuclear radii at PSI, FRIB, ISOLDE, …


• A global program towards a complete update of all nuclear effects 
( ,  and f) has commenced!

Vud

δNS
10C →10B

δNS δC

δNS δC

31



Improved RC to  decaysKℓ3



33

Vus from Kℓ3

Vus from kaon decays – M. Moulson – ELECTRO 2022 – Mainz Institute for Theoretical Physics, 28 October 2022

Determination of Vus from Kℓ3 data

3

Inputs from theory:
f+

K0π−(0) Hadronic matrix element 
(form factor) at zero 
momentum transfer (t = 0)

ΔK
SU(2) Form-factor correction for 

SU(2) breaking

ΔKℓ
EM Form-factor correction for 

long-distance EM effects

with K ! {K+, K0};  ℓ! {e, µ}, and:
CK2 1/2 for K+, 1 for K0

SEW Universal SD EW correction (1.0232)

Inputs from experiment:
Γ(Kℓ3(γ)) Rates with well-determined 

treatment of radiative decays:
• Branching ratios
• Kaon lifetimes

IKℓ({λ}Kℓ) Integral of form factor over 
phase space: λs parameterize 
evolution in t

• Ke3: Only λ+ (or λ+′, λ+″)
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• Ke3: Only λ+ (or λ+′, λ+″)
• Kµ3: Need λ+ and λ0

Vus from kaon decays – M. Moulson – ELECTRO 2022 – Mainz Institute for Theoretical Physics, 28 October 2022

Determination of Vus from Kℓ3 data
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Inputs from theory:
f+

K0π−(0) Hadronic matrix element 
(form factor) at zero 
momentum transfer (t = 0)

ΔK
SU(2) Form-factor correction for 

SU(2) breaking

ΔKℓ
EM Form-factor correction for 

long-distance EM effects

with K ! {K+, K0};  ℓ! {e, µ}, and:
CK2 1/2 for K+, 1 for K0

SEW Universal SD EW correction (1.0232)

Inputs from experiment:
Γ(Kℓ3(γ)) Rates with well-determined 

treatment of radiative decays:
• Branching ratios
• Kaon lifetimes

IKℓ({λ}Kℓ) Integral of form factor over 
phase space: λs parameterize 
evolution in t

• Ke3: Only λ+ (or λ+′, λ+″)
• Kµ3: Need λ+ and λ0

|VKℓ3
us | = 0.2231(6) |VKμ2

us | = 0.2252(5)

 discrepancy between leptonic and semileptonic modes2.5σ

Large missing contribution to RC for  was long considered viable optionKℓ3



RC to Kℓ3
Until 2021: best way to compute long-distance EM RC was with ChPT

A series of works reformulated the problem as a hybrid of Sirlin’s representation 
and ChPT, plus input from lattice QCD calculations of -box for  and γW πe3 Kℓ3

Cirigliano, Gianotti, Neufeld 0807.4507I(0)K!(λi) δK!
EM(D3)(%) δK!

EM(D4−3)(%) δK!
EM(%)

K0
e3 0.103070 0.50 0.49 0.99 ± 0.30

K±

e3 0.105972 -0.35 0.45 0.10 ± 0.30
K0

µ3 0.068467 1.38 0.02 1.40 ± 0.30
K±

µ3 0.070324 0.007 0.009 0.016 ± 0.30

Table 1: Summary of phase space integrals and EM corrections to the K!3 decay rates.
The EM corrections are calculated to fixed order in ChPT (O(e2p0)). The phase space
integrals are calculated using slope and curvature parameters from the fit of Ref. [1]. The
uncertainty estimate is discussed in the text.

δK!
EM(D3)(%) δK!

EM(D4−3)(%) δK!
EM(%)

K0
e3 0.41 0.59 1.0

K±

e3 -0.564 0.528 -0.04
K0

µ3 1.57 0.04 1.61
K±

µ3 -0.006 0.011 0.005

Table 2: Summary of EM corrections to the K!3 decay rates calculated according to the
“soft-photon factorization” approach of Ref. [5], which includes incomplete higher order
terms in the chiral expansion. Comparison with the results of Table 1 validates our estimate
of the theoretical uncertainties.

appears to be in the coefficient δ3, where we find δ3 : −0.08% → −0.16% when going from
fixed chiral order to the soft factorization scheme. This can be traced back to the cancel-
lation between the negative contribution from D3 (-0.31%) and the positive contribution
from D4−3 (0.23%). Multiplying these individual pieces by 0.2 gives ∼ 0.06 and ∼ 0.05,
respectively, which is just the order of magnitude of the shift we are seeing (-0.08 → -0.16).

Based on the above discussion, we bound the higher order uncertainties as follows:
|δe

2p2

1 | < 0.13%, |δe
2p2

2 | < 0.11%, |δe
2p2

3 | < 0.08%, |δe
2p2

4 | < 0.025%. Adding these linearly
we estimate the uncertainties quoted in Table 1 for the total corrections. Finally, using the
same bounds on δe

2p2

i we estimate the theoretical uncertainties on the linear combinations
which are relevant for lepton universality and strong isospin-breaking tests:

δK
0e

EM − δK
0µ

EM = −(0.41± 0.20)% , (33)

δK
±e

EM − δK
±µ

EM = (0.08± 0.20)% , (34)

δK
±e

EM − δK
0e

EM = −(0.89± 0.30)% , (35)

δK
±µ

EM − δK
0µ

EM = −(1.38± 0.30)% . (36)
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δK!
EM ChPT

K0e 11.6(2)inel(1)lat(1)NF(2)e2p4 9.9(1.9)e2p4(1.1)LEC

K+e 2.1(2)inel(1)lat(4)NF(1)e2p4 1.0(1.9)e2p4(1.6)LEC

K0µ 15.4(2)inel(1)lat(1)NF(2)LEC(2)e2p4 14.0(1.9)e2p4(1.1)LEC

K+µ 0.5(2)inel(1)lat(4)NF(2)LEC(2)e2p4 0.2(1.9)e2p4(1.6)LEC

Table IV: Final result for δK!
EM, in units of 10−3. The ChPT result from Ref.[22] is given in the last

column for comparison.

• For (δf−)rem, the independent combinations of LECs are X1, C1 ≡ Xr
2 − Xr

3 , C2 ≡

2Kr
3 −Kr

4 and C3 ≡ Kr
5 +Kr

6 . Among them, X1 = −2.2(4)× 10−3 was fixed to good

precision with the recent lattice calculations [21], and its resulting uncertainty to δK!3

is negligible. Similar calculations are not yet done for C1−3, so we infer their values

at µ = Mρ from resonance models [34–36], and assign a 100% uncertainty to each of

them:

C1 = −1.4(1.4)LEC×10−3 , C2 = 4.0(4.0)LEC×10−3 , C3 = 14.4(14.4)LEC×10−3 . (29)

Meanwhile, the next three uncertainties are estimated as follows:

• The NF uncertainty in (δf+)
b,A
γW is estimated by multiplying !

V A<
γW in each channel by

M2
K/Λ

2
χ;

• TheO(e2p4) chiral uncertainty is obtained by first adding all the columns with asterisks

in Table I–III, and then multiply the sum by M2
K/Λ

2
χ;

• Finally, a conservative uncertainty of 2× 10−4 is assign to each channel to account for

the poorly-constrained contribution from (δf+)inel (see discussions in Sec.III B).

Unlike the first two, these three errors are deduced using näıve power counting and order-

of-magnitude estimations, and it is difficult to identify independent sources of uncertainties

within each type. In fact, we consider it as arbitrary to take these uncertainties to be un-

correlated as to assume any correlation. Therefore, we simply take them to be uncorrelated,

following the same strategy adopted by some of us in Ref. [25].
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[10−3]

34

Seng, Galviz, Meißner 1910.13208
Seng, Galviz, MG, Meißner 2103.04843
Seng, Galviz, MG, Meißner 2203.05217

Feng, MG, Jin, Ma, Seng 2003.09798
Ma, Feng, MG, Jin, Seng 2102.12048

Uncertainties reduced by an o.o.m.

Long-distance EM RC not responsible for the -  discrepancy!Kℓ2 Kℓ3


