Neutron beta decay with pulsed cold neutron beams: PERKEO III and PERC

Bastian Märkisch Technische Universität München TUM School of Natural Sciences

CKM 2023

Neutron beta decay with pulsed cold neutron beams: PERKEO III and PERC

Topics:

V_{ud} and neutron decay More on the precision of PERKEO III: pulsed beam! How does PERC improve? Prospects beyond PERC: ESS

ПП

V_{ud} from Neutron Decay

With a factor of two improvement, the most precise determination will come from neutron decay! Requires only two experimental inputs and radiative corrections. No nuclear corrections.

talk by M. Gorshteyn

Neutron Lifetime τ_n

UCNT (LANL), Gravitrap (ILL), PENeLOPE (TUM), TSpect (Mainz), J-PARC, BNL-2 (NIST), ...

 $V_{ud}^{n,best} = 0.97402(13)_{\text{theory}}(20)_{\tau}(35)_{\lambda} = 0.97402(42)$

Cirigliano *et al.*, Phys. Rev. D 108, 053003 (2023) Bastian Märkisch | CKM2023 | 21.9.2023 talk by W. Dekens

Nucleon Axial-Coupling: $\lambda = g_A/g_V$ PERKEO III (ILL), UCNA (LANL), *a*Spect (ILL), aCorn (NIST) Nab (SNS), PERC (MLZ), ...

PERKEO III (ILL)

$$\frac{\Delta\lambda}{\lambda} = 4.4 \times 10^{-4}$$

Märkisch *et al.*, Phys. Rev. Lett. 122, 222503 (2019)

Goal of PERC (MLZ) $\frac{\Delta\lambda}{\lambda} \le 1 \ \times \ 10^{-4}$

aSpect: talk by U. Schmidt

Comparison to Superallowed Decays

Neutron: vector part of neutron Ft $Ft_{nV} \equiv f t_{nV} (1 + \delta'_R) = \frac{1}{2} \ln 2 f \tau_n (1 + 3\lambda^2) (1 + \delta'_R)$

Dubbers & BM, Ann. Rev. Nucl. Part. Sci. 71, 139-163 (2021) Ft values from Hardy & Towner, Phys. Rev. C 102:045501 (2020)

See N. Severijns et al., Phys. Rev. C 107, 015502 (2023) for a review of nuclear mirror decays

Status of $\lambda = g_A/g_V$ from Neutron Decay Correlations

New beta asymmetry *A* results **consistent** – but disagree with older measurements and new *a*Spect electron-neutrino correlation *a* result.

 $A_{avg} = -0.11958(21), \qquad S = 1.2$

Newer measurements of *A* have order of magnitude **smaller corrections**.

UCNA, PERKEO III, aCorn, *a*Spect: **blinded analysis** to avoid potential bias.

(Newer results of UCNA & PERKEO II include older results)

Aim of PERC is five-fold improvement.

Experimental observables are *not* identical to correlation parameters: radiative corrections change

Neutron Decay Spectrometer PERKEO III at ILL, Grenoble

Designed to use a *pulsed beam* to control or eliminate leading systematic errors.

Originally built by Uni. Heidelberg, now operated by TUM, TU Vienna, HD & ILL.

PERKEO III: Pulsed Neutron Beam and Background Control

Pulsed beam allows nearly perfect background subtraction

Free neutron pulse does not interact with matter during measurement.

Same background condition in signal and background time window.

Related Uncertainties $\Delta A/A$ Time dependence 0.8×10^{-4} Chopper disc uniformity 0.7×10^{-4} (PERKEO II: 10×10^{-4})

... also eliminates or controls more systematic effects: edge *and* magnetic mirror effects

PERKEO III: Magnetic Mirror Effect

Flux through cross section of gyration is *adiabatic invariant* $B_0 r_0^2 = B_1 r_1^2$ Critical angle for reflection

Non-uniformity of magnetic field modifies solid angle coverage of detectors: significant rate change on **single** detector:

PERKEO III: Mirror Effect Controlled with Pulsed Beam

Non-uniformity of magnetic field modifies solid angle coverage of detectors.

Correction calculated based on *measurements* of the magnetic field and neutron pulse. Result reproduces time-of-flight behavior of asymmetry. **No fit!**

Most of the effect cancels by averaging detectors.

downstream

PERKEO III: Detector Model

Major improvements to the description of the detector response enable consistent energy-dependent analysis. Calibration only based on electron conversion sources.

Electrons: discrete energy or spectrum

Scintillation: N_{ph} = f(E_e) *poisson statistics*

Photon transport: $N'_{ph} = f(E_e, x, y)$ binomial statistics **Non-linearity** of scintillation light production (measured)

Non-uniformity of detector response (measured)

Photon to photoelectron conversion: $N_{pe} = f(N_{ph})$ binomial statistics

Electron multiplication (PMT): $N_e = f(N_{pe})$ poisson statitisics at N=19 stages Higher moments of the distribution

Signal processing + charge integration: **Non-linearity** of electronics $A_{QDC} = f(N_e)$ (partly measured) *gaussian noise*

PERKEO III: Detector Response

PERKEO III: Detector Calibration Fit

Major improvements to the description of the detector response and electron-conversion sources enable consistent *energy-dependent analysis*.

Nearly identical angular distribution on detector.

(2x per day calibration + hourly drift measurements + weekly uniformity scans) Bastian Märkisch | CKM2023 | 21.9.2023 Apply detector model to theoretical data. Free fit parameters: *non-linearity, gain, photo-electrons (widths), norms* X²/NDF = 1.0 – 1.3 (for all 96 data sets)

Related Un	certainties $\Delta A/A$	4
Sources:	1×10 ⁻⁴	
Statistics:	0.1×10 ⁻⁴	
Non-linearit	y: 4×10 ⁻⁴	
Stability:	3.7×10 ⁻⁴	
(PERKEO I	I: 25×10 ⁻⁴)	
	H. Saul, C. Roick,	H. Mes ⁻ 12

PERKEO III: Asymmetry Extraction

Asymmetry $A \sim -12\%$ already visible in electron spectra from "spin up" and "spin down" neutrons.

Largest data set from polarized neutron decay by one order of magnitude: 6×10^8 events in analysis

Single parameter fit to experimental asymmetry:

$$A_{exp}\left(E_{e}\right) = \frac{N^{\uparrow}\left(E_{e}\right) - N^{\downarrow}\left(E_{e}\right)}{N^{\uparrow}\left(E_{e}\right) + N^{\downarrow}\left(E_{e}\right)} = \frac{1}{2}P_{n}\frac{v}{c}A$$

Most corrections to the "raw" fit result on the $10^{-3} - 10^{-4}$ level only. **Analysis blinded** by separate analysis of largest corrections.

$$\begin{split} \lambda &= -1.27641(45)_{\rm stat}(33)_{\rm sys} \\ &= -1.27641(56) \\ A &= -0.11985(17)_{\rm stat}(12)_{\rm sys} \\ &= -0.11985(21). \end{split}$$

$$\frac{\Delta\lambda}{\lambda} = 4.4 \times 10^{-4}$$

Märkisch et al., PRL 122, 222503 (2019)

PERKEO III: Summary of Corrections and Uncertainties

Corrections to the "raw" fit result on the $10^{-3} - 10^{-4}$ level only.

Analysis blinded by separate analysis by independent teams to avoid potential bias:

- electron and background measurements, •
- neutron polarization: opaque ³He spin filters, .
- magnetic mirror effect correction •

Result:

$$\lambda = -1.27641(45)_{\text{stat}}(33)_{\text{sys}} \qquad A = -2 \frac{\lambda^2 + \lambda}{1 + 3\lambda^2}$$
$$= -0.11985(17)_{\text{stat}}(12)_{\text{sys}}$$
$$= -0.11985(21). \qquad \frac{\Delta\lambda}{\lambda} = 4.4 \times 10$$

10 -4

Phys. Rev. Lett. 122, 222503 (2019)

PERKEO III: Beta Spectrum Measurement at ILL `19/`20

Dedicated run with the *aim* to measure Fierz term $\Delta b \sim 5 \times 10^{-3}$. 5 ×10⁸ events.

The next generation: PERC (Proton Electron Radiation Channel) at MLZ / FRM, Garching

Goal: Order of magnitude improvement. New observables.

Priority Programme SPP1491 of the German Research Foundation (DFG)

ТЛ

PERC Concept and Systematics

PERC's asymmetric layout with magnetic filter improves systematics

Strong field ensures high phase space density, small detectors, excellent S/B and only a single detector!.

PERC: Magnetic Barrier Field

Errors due to non-uniform magnetic field are strongly suppressed Still need to know magnetic field on the 10⁻⁴ level

D. Dubbers et al., Nucl. Instr. Meth. A 596 (2008) 238 and arXiv:0709.4440

Electron Time-of-Flight for Detector Calibration

New concept to overcome calibration uncertainties at low energies Identify backscatter events via time difference in upstream/downstream detector.

Active source: Start signal Adiabatic reduction of magnetic field in flight path reduces opening angle of gyration

Target detector: relate time-of-flight to electron energy

TOF (ns)

C. Roick, D. Dubbers, B. Märkisch, H. Saul, U. Schmidt, Phys. Rev. C 97 (2018)

PERC: Systematic Corrections and Uncertainties on Correlations

All systematic uncertainties O(10⁻⁴) or smaller: goal $\frac{\Delta\lambda}{\lambda} \le 1 \times 10^{-4}$

Nucl. Instr. Meth. A 596 (2008) 238 and arXiv:0709.4440

Source of error	Correction	Error	Comment
Non-uniform n-flux Φ	2.5 × 10 ⁻⁴	5 × 10 ⁻⁵	For $\Delta \Phi / \Phi = 10\%$ over 1cm width
Other edge effects on e/p-window	4 × 10 ⁻⁴	1 × 10 ⁻⁴	For max. gyration radius = worst case
Magn. mirror effect for cont's n-beam	2 × 10 ⁻²	4 × 10 ⁻⁴	
Magn. mirror effect for pulsed n-beam	5 × 10 ⁻⁵	< 10 ⁻⁵	For $\Delta B/B=10\%$ over 7m length
Non-adiabatic e/p-transport	5 × 10 ⁻⁵	5 × 10⁻⁵	
Background from n-guide	2 × 10 ⁻³	1 × 10 ⁻⁴	is separately measurable
Background from n-beam stop	2 × 10 ⁻⁴	1 × 10 ⁻⁵	is separately measurable
Backscattering off e/p-beam dump	5 × 10 ⁻⁵	1 × 10 ⁻⁵	
Backscattering off e/p-window	2 × 10 ⁻⁵	1 × 10 ⁻⁵	
Backscattering off organic scintillator	2 × 10 ⁻³	4 × 10 ⁻⁴	worst case
with active e/p-beam dump	-	1 × 10 ⁻⁴	worst case
Neutron polarisation	3 × 10 ⁻³	1 × 10 ⁻⁴	C. Klauser, T. Soldner et al. A. Petoukhov et al. (ILL)

Note: not every error source contributes to all measurements Bastian Märkisch | CKM2023 | 21.9.2023

PERC is a **Facility**

Clean source of electrons and protons from neutron decay: Correlation parameters: A, b, C, a

Bastian Märkisch | CKM2023 | 21.9.2023

ПΠ

Beam Site Mephisto, MLZ/FRM II, Garching

Neutron guide:

length 40 m, R = 3000 m, *m* = 2.5

Expected intensity equal to PF1b at ILL, $2 \times 10^{10} \text{ s}^{-1} \text{ cm}^{-2}$ Only very few neighbours:

low ambient background

All guide components ready to be installed.

Status of PERC Magnet Installation

Status 9/2023: PERC magnet installed, yoke frame nearly completed.

Ongoing electrical installation. Next: cooling

PERC Temporary He Infrastructure

Dedicated He liquefier and recovery system: closed circuit complete and ready to be installed

Up to 70l/h

PERC: Installation of beam line

Removal of previous installations completed Successfull mechanical test installation.

All beam-line components available:40m (conventional) neutron guides,40m vacuum tubes, 200t of radiological shielding, ...

reactor core with "new" insert

Installation test (no shielding yet)

ПП

Non-depolarizing Internal Neutron Guide for PERC

PERC's goal of 10⁻⁴ measurement accuracy requires neutron spin control on same level Polarization measurement at 10⁻⁴ level using polarized ³He gas cells: C. Klauser, T. Soldner *et al.* (ILL)

Neutron guide inside PERC magnet at 1.5T (decay volume): only polarization change of 10⁻⁴ per bounce allowed:

Solution: CuTi m=2 supermirror

Multi-layer system with 190 layers

Challenge is to control interdiffusion of Cu while maintaining neutron optical contrast.

Performance **verified** in dedicated campaign at ILL in 8/2023.

K. Bernert, J.M. Gomez, C. Klauser, B. M., U. Schmidt, T. Soldner

A. Hollering *et al.*, Nucl. Instrum. Meth. A 1032, 166634 (2022)

Internal Guide support (HD) (glass only)

28

Proposed Cold Beamline for Particle Physics at ESS

Particle Physics Beamline at the European Spallation Source

ESS design goal is same time average neutron flux as ILL. Peak brightness in pulse: 30 × ILL

Using pulsed beam for particle physics already at reactor sources!

Statistics gain factor for a PERC-like system: x 15 !

ANNI – A pulsed cold neutron beam facility for particle physics at the ESS

T. Soldner, et al., EPJ Web Conf. 219, 10003 (2019)

Particle Physics at the European Spallation Source

H. Abele, et al., Physics Reports 1023, 1-84 (2023)

General purpose particle physics beam line:

Neutron beta decay, EDM, hadronic weak interaction, Baryon number violation, ...

Summary and Outlook

PERKEO IIILeading beta asymmetry and Fierz term
results. Analysis of proton asymmetry and
beta spectrum campaigns ongoing,
Establishes *pulsed cold beam* technique.
 $\frac{\Delta\lambda}{\lambda} = 4.4 \times 10^{-4}$

PERCAims at improved measurements of
Parameters A, (B), C, a, b. Commissioning!
 $\frac{\Delta\lambda}{\lambda} \le 1 \times 10^{-4}$

ANNI at ESS Proposed beam line at the ESS.

Statistics gain factor for a PERC-like system: ×15 !

T. Soldner, et al., EPJ Web Conf. 219, 10003 (2019)

