Prospects for PIONEER

Martin Hoferichter

Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern

^b UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS On behalf of the PIONEER collaboration 2203.01981

September 21, 2023

12th International Workshop on the CKM Unitarity Triangle (CKM 2023)

Santiago de Compostela

PIONEER @ PSI

A next-generation rare PION dEcay ExpeRiment

- Physics goals
 - (Phase I) Lepton flavor universality at 10⁻⁴ in

$$\mathbf{R}_{\mathbf{e}/\mu} = \frac{\Gamma[\pi^+ \to \mathbf{e}^+ \nu_{\mathbf{e}}(\gamma)]}{\Gamma[\pi^+ \to \mu^+ \nu_{\mu}(\gamma)]}$$

- (Phase II+III) CKM unitarity V_{ud} at 3×10^{-4}
- Searches for exotics (heavy neutrinos, ...)
- Status
 - Approved to run at PSI 2203.01981
 - R&D ongoing, Phase I to start in 2029

Lepton flavor universality: precision goal

• Standard model prediction Cirigliano, Rosell 2007

$$R_{e/\mu}^{\rm SM} = 1.23524(15) \times 10^{-4}$$

 \hookrightarrow precision of 1.2×10^{-4} for hadronic observable!

• Experiment dominated by PIENU 2015

 $R_{e/\mu}^{\exp} = 1.2327(23) \times 10^{-4}$

 \hookrightarrow order of magnitude away from theory!

Expect ≃ factor 3 from PEN PSI and PIENU TRIUMF
 → experience informs PIONEER design

 $R_{e/\mu} \times 10^4$

1.230 1.231 1.232 1.233 1.234 1.235 1.236

Lepton flavor universality: physics context

• $R_{e/\mu}$ extremely sensitive probe of (pseudo-)scalar

currents due to chiral enhancement $\propto \frac{M_{\pi}^2}{m_e(m_u+m_d)}$ $\rightarrow R_{e/\mu}$ at 10⁻⁴ tests scales up to several 1000 TeV

• Best constraints on **modified W couplings**

$$\mathcal{L} = -i \frac{g_{2}}{\sqrt{2}} \bar{\ell}_{i} \gamma^{\mu} \mathcal{P}_{L} \nu_{j} \mathcal{W}_{\mu} \left(\delta_{ij} + \varepsilon_{ij} \right)$$
$$\frac{R_{e/\mu}^{SM}}{R_{e/\mu}^{exp}} = 1 + \varepsilon_{\mu\mu} - \varepsilon_{ee} = 1.0010(9)$$

- Possible connection to other hints for LFUV
 - $\hookrightarrow {\mathcal R}({\mathcal D}^{(*)}), \, a_\ell, \, q \bar q o \ell^+ \ell^-, \, {\sf CKM} \, {\sf unitarity}$
- LFUV and CKM unitarity

$$R(V_{us}) \equiv \frac{V_{us}^{K_{\mu2}}}{V_{us}^{\beta}} \equiv \frac{V_{us}^{K_{\mu2}}}{\sqrt{1 - (V_{ud}^{\beta})^2 - |V_{ub}|^2}} = 1 - \left(\frac{V_{ud}}{V_{us}}\right)^2 \varepsilon_{\mu\mu} + \mathcal{O}(\varepsilon^2)$$

 \hookrightarrow LFUV effect enhanced by $(V_{ud}/V_{us})^2 \sim 20!$

Crivellin, MH, 2020

CKM unitarity: physics context

Kaon decays

- V_{US} from $K_{\ell 3}$ decays talks by Gorchtein, Passeri
- V_{ud}/V_{us} from $\pi_{\ell 2}/K_{\ell 2}$, new measurement of $K_{\mu 3}/K_{\mu 2}$ to resolve/corroborate kaon tension talk by Moulson

• β decays

Superallowed β decays talk by Gorchtein

$$V_{ud}^{0^+ \to 0^+} = 0.97367(11)_{exp}(13)_{\Delta_V^R}(27)_{NS}[32]_{total}$$

 \hookrightarrow nominally best precision, but nuclear uncertainties?

Neutron decay talks by Dekens, Märkisch, Schmidt

 $V_{ud}^{n, \text{PDG}} = 0.97441(3)_f (13)_{\Delta_R} (82)_{\lambda} (28)_{\tau_n} [88]_{\text{total}}$ $V_{ud}^{n, \text{best}} = 0.97413(3)_f (13)_{\Delta_R} (35)_{\lambda} (20)_{\tau_n} [43]_{\text{total}}$

 \hookrightarrow need precise experiments for λ and τ_n

- Pion β decay PIONEER Phase II+III
 - $\hookrightarrow \text{theoretically cleanest channel}$

Crivellin, Cirigliano, MH, Moulson 2023

CKM unitarity: pion β decay

• Master formula Cirigliano, Knecht, Neufeld, Pichl 2003, Czarnecki, Marciano, Sirlin 2020, Feng et al. 2020

$$\Gamma(\pi^+ \to \pi^0 e^+ \nu_e(\gamma)) = \frac{G_F^2 |V_{ud}|^2 M_{\pi^\pm}^5 |f_+^{\pi}(0)|^2}{64\pi^3} (1 + \Delta_{\rm RC}^{\pi\ell}) I_{\pi\ell}$$

- (Theory) inputs
 - Phase space $I_{\pi\ell}=7.3766(43) imes10^{-8}$, uncertainty from $\Delta_{\pi}=M_{\pi^+}-M_{\pi^0}$
 - Form factor $f^{\pi}_{+}(0) = 1 7 \times 10^{-6}$

 \hookrightarrow protected by SU(2) Ademollo–Gatto theorem (Behrends–Sirlin)

- Radiative corrections $\Delta_{BC}^{\pi\ell} = 0.0334(10)$ ChPT, $\Delta_{BC}^{\pi\ell} = 0.0332(3)$ lattice QCD
- Resulting Vud extracted from PIBETA 2004

$$V_{ud}^{\pi} = 0.97386(281)_{\mathsf{BR}}(9)_{\tau_{\pi}}(14)_{\Delta_{\mathsf{RC}}^{\pi\ell}}(28)_{I_{\pi\ell}}[283]_{\mathsf{total}}$$

 \hookrightarrow factor 10 possible before other errors creep in (same as for $R_{e/\mu}$)

- Feasibility of new measurement of τ_{π} under study at TRIUMF (improve Δ_{π} ?)
- PIONEER Phase II competitive measurement of V_{ud}/V_{us} from $\pi_{\ell 3}/K_{\ell 3}$
- PIONEER Phase III theoretically pristine value of V_{ud} at 3×10^{-4}

Searches for exotics

2203.08039

- Search for heavy neutrinos and other dark sector physics
 - \hookrightarrow e.g., peak searches in the positron energy spectrum $\pi^+ o e^+
 u_h$
- PIENU also searched for $\pi^+ o \mu^+
 u_h, \, \mu^+ o e^+ X, \, \pi^+ o \ell^+
 u X, \, \dots$
 - \hookrightarrow expect improvement by an order of magnitude

PIONEER @ PSI

- See PSI proposal 2203.01981, following slides adapted from Bob Velghe, CLFV 2023 https://indico.desy.de/event/37920/contributions/139574/
- Build upon the legacy of PIENU, PEN, and PIBETA
- Key improvements:
 - Segmented active target (ATAR)
 - \hookrightarrow 5D tracking (energy, time, 3×space), silicon-strip, low-gain avalanche detectors (LGADs)
 - 3π, 25 X₀ EM calorimeter (CALO)
 → Baseline option: LXe, δE/E ≤ 1.5%
 (LYSO crystal calorimeter being investigated as alternative)
- Proposal approved by PSI in 2022

PIONEER Phase I: basic principle

- Focus on positrons, $\pi^+ \rightarrow e^+ \nu_e$ and $\pi^+ \rightarrow \mu^+ \nu_\mu \rightarrow e^+ \nu_e \nu_\mu \bar{\nu}_\mu$
- "Count and sort" the positrons emitted by the stopped pions

 \hookrightarrow many systematics cancel in the ratio $R_{e/\mu}$

PIONEER Phase I: basic principle

- Understanding the $\pi^+
 ightarrow e^+
 u_e$ low-energy tail is key
 - \hookrightarrow more radiation lengths and better energy resolution, ATAR information critical

	PIENU 1505.02737	PEN hep-ex/0312017	PIONEER
π^+ stopping rate (Hz)	$5 imes 10^4$	$2 imes 10^4$	$3 imes 10^5$
CALO radiation length (X_0)	19	12	25
CALO resolution $\sigma, \delta E/E$ (%)	0.9	12.8	1.5

	PIENU 2015	PIONEER estimate
Error source	%	%
Statistics	0.19	0.007
Tail correction	0.12	< 0.01
t ₀ correction	0.05	< 0.01
Muon decay-in-flight	0.05	0.005
Parameter fitting	0.05	< 0.01
Selection cuts	0.04	< 0.01
Acceptance correction	0.03	0.003
Total uncertainty	0.24	≤ 0.01

- $\bullet\,$ Table based on $2\times10^8\,$
 - $\pi^+
 ightarrow e^+
 u_e$ events (3imes

5-month runs)

PIENU reference point 1505.02737

	202	4		2025		20	26	20	027		202	3	2	029		20	30		2031			20	32		
	CD0		♦ C	D1			♦ CD2,	PSI Shu	utdow	n/Up	gade					♦ CD4									
	LXe 1	.00 L				Act	ive Tgt '	Test							Run	1 Run	-2		Run-3			Run	-4		
R&I	D		R&E)	Large I	rote	otype	Major	constr	ruction	perio	d	Install				Ph	i <mark>y</mark> s		Ph	ys			Ph	<mark>iy</mark> s

Funding							
Profile	Operating grants and small sup	pplements	Large purchases:				
	Special R&D award for prototy	/pes	LXe procurement				~1 \$11
	Project funds		Photosensors and electronics				
Integral of green			Calibration system				
equals Project		ASIC dev	All electronics	LXe and tanks			
Request	R&D: Active Target,	2nd LXe test		Final install eng	OPE	RATION	SUPPORT OF GROUPS
	LXe Prototype and Electronics	Elect / DAQ					

P5 presentation by D. Hertzog

æ

Conclusions

0.975

10

BSM searches with pion β decay

Generalize master formula to include effective operators not present in SM

$$\begin{split} & \left[(\pi^+ \to \pi^0 e^+ \nu_e(\gamma)) = \frac{G_F^2 |V_{ud}|^2}{192 \pi^3 M_\pi^3} (1 + \Delta_{\rm RC}^{\pi\ell}) \int_{m_e^2}^{(M_\pi - M_\pi 0)^2} ds \, \lambda^{3/2}(s) \left(1 + \frac{m_e^2}{2s} \right) \left(1 - \frac{m_e^2}{s} \right)^2 \\ & \times \left[|V(s)|^2 + |A(s)|^2 + \frac{4(s - m_e^2)^2}{9sm_e^2} |T(s)|^2 + \frac{3m_e^2(M_\pi^2 - M_\pi^2 0)^2}{(2s + m_e^2)\lambda(s)} \left(|S(s)|^2 + |P(s)|^2 \right) \right] \end{split}$$

with V(s), A(s), ... depending on Wilson coefficients c_V , c_A , ...

- Tensor: $T(s) = \frac{3s}{2s+m_{\theta}^2} \frac{m_{\theta}}{M_{\pi}} c_T B_T^{\pi}(s)$
 - \hookrightarrow suppressed by electron mass and tensor form factor
- Scalar: potentially competitive with other β decays Falkowski, Gonzáles-Alonso, Naviliat-Cuncic 2020

ſ