Measurement of the CP violating phase ϕ_s and $\phi_s^{sq\bar{q}}$ at LHCb

Melissa Cruz Torres^{1,2} on behalf of the LHCb collaboration

¹Universidad Nacional Autónoma de Honduras ²Centro Brasileiro de Pesquisa Física

CKM 2023 - September 18-22.

Centro Brasileiro de **Pesquisas Físicas**

Introduction

- goals of the LHCb experiment Probe to physics beyond the Standard Model (SM).
- $\bullet \phi_s$ is related to the interference of B_s^0 mixing and decay amplitudes

$$\phi_s^{SM} \equiv -2\beta_s = -2arg(-\frac{1}{\sqrt{2}})$$

Neglecting penguin diagram contributions, PhysRevD.91.073007

Experimentally, can be accessed via the time-dependent asymmetries

$$\mathscr{A}_{CP}(t) = \frac{\Gamma_{\overline{B}_s^0}(t) - \Gamma_{B_s^0}(t)}{\Gamma_{\overline{B}_s^0}(t) + \Gamma_{B_s^0}(t)} = \frac{S_f \sin(\Delta m_s t) - C_f \cos(\Delta m_s t)}{\cosh(\frac{\Delta \Gamma_s t}{2}) + A^{\Delta \Gamma} \sinh(\frac{\Delta \Gamma_s t}{2})},$$

• The measurement of the mixing-induced CP-violating phase ϕ_s in the $B_s^0 - \bar{B}_s^0$ system is one of the key

 $\frac{-V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}),$

Predicted to be very precise

Parameters

 C_f : Direct CP asymmetry S_f and $A^{\Delta\Gamma}$: Mixing induced CP asymmetries $\Gamma_{B_{s}^{0}(\bar{B_{s}^{0}})}$: Time-dependent decay rate $\Delta \Gamma_s \equiv \Gamma_L - \Gamma_H$: Difference in the decay width between two mass eigenstates, B_L and B_H $\Delta m_s \equiv m_H - m_L$: Mass difference

Introduction

 ${ullet}$ These parameters are related to $\phi_{\scriptscriptstyle S}$ by

$$S_f = \eta_f \sin \phi_s$$
, and $A^{\Delta \Gamma} =$

The parameters of CP-violation are obtained experimentally through a flavor-tagger time-dependent angular analysis

t: Decay time η_f : CP eigenvalue of the final state Γ_s : Average width of B_s^0

$= -\eta_f \cos \phi_s$

Outline

Measurement of ϕ_s in $B_s^0 \to J/\psi K^+ K^-$ decays

• $\mathcal{L} = 6 \text{ fb}^{-1}$, Run 2 data from 2015 to 2018, (arXiv: 2308.01468)

$\sim CP$ violation measurements in the penguin-mediated decay $B_{ m s}^0 ightarrow \phi \phi$

• $\mathcal{L} = 6 \text{ fb}^{-1}$, Run 2 data from 2015 to 2018, arXiv:2304.06198

• A measurement of $\Delta \Gamma_s$ from $B_s^0 \rightarrow J/\psi \eta'$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ decays

• $\mathcal{L} = 9 \text{ fb}^{-1}$, Run 1 2011 + 2012 and Run 2 2015 to 2018 data, LHCb-PAPER-2023-025

• $\mathcal{L} = 6 \text{ fb}^{-1}$, Run 2 data from 2015 to 2018, arXiv: 2308.01468

Measurement of ϕ_{s} in $B_{s}^{0} \rightarrow J/\psi K^{+}K^{-}$ (arXiv: 2308.01468)

 $\phi(1020)$ resonance, which gives the best sensitivity in ϕ_s [arXiv:1906.08356]

• Global fits to experimental data, gives $-2\beta_s = -36.9^{+0.9}_{-0.6}$ mrad (CKMFitter arXiv:1501.05013), $-2\beta_{s} = -37.0 \pm 1.0$ mrad (UTFit <u>arXiv:hep-ph/0606167</u>)

$$\phi_s = -2\beta_s + \Delta\phi_s^{NP}$$

 $B_s^0 \rightarrow J/\psi K^+ K^-$, via $b \rightarrow c \bar{c} s$ transition

6

The LHCb collaboration has previously measured ϕ_s in the golden channel $B_s^0 \to J/\psi(\mu^+\mu^-)K^+K^-$ in the region of

Penguin pollution is small

Measurement of ϕ_{s} in $B_{s}^{0} \rightarrow J/\psi K^{+}K^{-}$ (arXiv: 2308.01468)

with $h = K, \pi$ using 5 fb⁻¹ [PDG2022]

 \bullet In this analysis an update of the CP-violating phase ϕ_s^{ccs} is performed as well of the physics parameter $|\lambda|, \Delta\Gamma_s, \Gamma_s - \Gamma_d$ and the B_s^0 mass difference Δm_s , using the $B_s^0 \to J/\psi K^+ K^-$ channel, in the vicinity of $\phi(1020)$ resonance with the full Run 2 dataset. P-wave S-wave • The polarization amplitudes $A_0, A_{||}, A_{\perp} + A_s$ regarding to the polarization states of the K^+K^- system and CP-odd KK S-wave component are also determined.

• The current World Average value for $\phi_s^{c\bar{c}s} = -0.049 \pm 0.019$ rad, dominated by LHCb result in $B_s^0 \to J/\psi h^+ h^-$,

Measurement of ϕ_{S} in $B_{S}^{0} \rightarrow J/\psi K^{+}K^{-}$ (arXiv: 2308.01468)

Analysis Strategy

Very similar to previous analysis [arXiv:1906.08356]

A selection criteria considering the $K^+K^$ invariant mass region [990, 1050] MeV/c^{2.}

The data sample is divided in 48 independent subsamples: 6 bins in the $\phi(1020)$ regions; two trigger categories, and four years of data taking

A yield of about 349 000 signal decays

Extended maximum likelihood fit to extract $B_{\rm s}^0 \rightarrow J/\psi K^+ K^-$ signal yields.

(arXiv: 2308.01468)

 \bullet To extract ϕ_{c} , CP-even and CP-odd decay-amplitudes need to be disentangled.

basis is performed.

•For each of the 48 sub-sample the fit function accounts for

- Decay-time resolution
- The decay-time
- Flavor tagging
- Angular efficiencies

- A weighted simultaneous fit to decay time distribution and decays angles ($cos\theta_K, cos\theta_\mu, \phi_h$) in the helicity

Time dependent angular rate: $t, \theta_K, \theta_l, \phi$

Measurement of ϕ_S in $B_S^0 \rightarrow J/\psi K^+ K^-$ (arXiv: 2308.01468)

Background-substracted data distribution with fit overlaid for Decay-time and decayangles.

Parameter	Values		
ϕ_s [rad]	$-0.039 \pm 0.022 \pm 0.00$		
$ \lambda $	$1.001 \pm 0.011 \pm 0.00$		
$\Gamma_s - \Gamma_d [\mathrm{ps}^{-1}]$	$-0.0056 \begin{array}{c} + 0.0013 \\ - 0.0015 \end{array} \pm 0.00$		
$\Delta \Gamma_s [\mathrm{ps}^{-1}]$	$0.0845 \pm 0.0044 \pm 0.00$		
$\Delta m_s [\mathrm{ps}^{-1}]$	$17.743 \pm 0.033 \pm 0.00$		
$ A_{\perp} ^2$	$0.2463 \pm 0.0023 \pm 0.00$		
$ A_0 ^2$	$0.5179 \pm 0.0017 \pm 0.00$		
$\delta_{\perp} - \delta_0 \text{ [rad]}$	$2.903 \begin{array}{c} + 0.075 \\ - 0.074 \end{array} \pm 0.04$		
$\delta_{\parallel} - \delta_0 \; [{ m rad}]$	$3.146 \pm 0.061 \pm 0.05$		

arXiv: 2308.01468

Results are in good agreement with LHCb Run 1 and 2015+2016 measurements

Measurement of ϕ_{s} in $B_{s}^{0} \rightarrow J/\psi K^{+}K^{-}$

In summary

Using the full Run 2 dataset collected by the LHCb experiment, it is measured

•
$$\phi_s = -0.039 \pm 0.022 \pm 0.006$$
 rad • $\Gamma_s - \Gamma_d = -0.00$
• $|\lambda| = 1.001 \pm 0.011 \pm 0.005$ • $\Delta \Gamma_s = 0.0845 \pm 0.0845$

The combination results in

$$\phi_s = -0.044 \pm 0.020$$
 rad
 $|\lambda| = 0.990 \pm 0.010$

arXiv: 2308.01468

 $0.56^{+0.0013}_{-0.0015} \pm 0.0014$

 $\pm 0.0044 \pm 0.0024$

Superseding the previous Run 2 LHCb measurement in the same decay

No evidence for *CP* violation

Results consistent with previous measurements in $B_s^0 \to J/\psi(\mu^+\mu^-)K^+K^-$ and $B_s^0 \to J/\psi(e^+e^-)K^+K^-$ decays.

 ϕ_s measurements independently for each polarization state of the K^+K^- system

Shows no evidence for polarization dependence

Measurement of ϕ_s in $B_s^0 \rightarrow J/\psi K^+ K^-$ arXiv: 2308.01468

 $B_s^0 \rightarrow J/\psi(2S)K^+K^-$ and $B_s^0 \rightarrow J/\psi K^+K^-$ gives

Combination of all LHCb ϕ_s measurements of B_s^0 decays via $b \to c\bar{c}s$: $B_s^0 \to J/\psi(\mu^+\mu^-)K^+K^-$, $B_s^0 \to D_s^+D_s^-$, $B_s^0 \to J/\psi\pi^+\pi^-$,

$$\phi_s = -0.031 \pm 0.018$$
 rad

This is the most precise measurement to date and is consistent with SM predictions

• *CP* violation measurements in the penguin-mediated decay $B_s^0 \rightarrow \phi \phi$ • $\mathcal{L} = 6 \text{ fb}^{-1}$, Run 2 data from 2015 to 2018, arXiv:2304.06198

CP violation measurements in the penguin-mediated decay $B_{ m c}^0 ightarrow \phi \phi$

Flavour-changing neutral current (FCNC) decays of B mesons are highly sensitive to new physics contribution entering via loop processes

 $B_s^0 \rightarrow \phi \phi \ (b \rightarrow s \bar{s} s \text{ transition})$

• Measurements of the CP violation phase $\phi_s^{s\bar{s}s}$ and parameter $|\lambda|$ — New physics contributions entering in the penguin decay or mixing would be reflected in $\phi_s^{s\bar{s}s}$ and $|\lambda|$ values

• The $\phi\phi$ system produce three linear polarization states, new physics effects could be polarization dependent.

Benchmark channel at LHCb

•arXiv:2304.06198

CP violation measurements in the penguin-mediated decay $B^0_{ m c} ightarrow \phi \phi$

full Run 2 dataset (6 fb⁻¹), performing an angular analysis

Measurement of the CP-violation parameters independently for all polarization states for the first time

Analysis Strategy (same as ref JHEP 12 (2019) 155)

 $B^0_{c} \rightarrow \phi \phi$ candidates selected in the mass region [5150, 5600] MeV/c²

Enhancing selection of four kaons in the final state $(K^{+}K^{-}K^{+}K^{-})$

Two sources of background: Combinatorial and from $\Lambda_h^0 \rightarrow \phi K^- p$ decays

A maximum likelihood fit performed to $m(K^+K^-K^+K^-)$ invariant mass

In this analysis the update measurements of the CP-violation parameters in $B_s^0 \to \phi \phi$ decays is reported with

15

where $\theta_1 = \theta_1, \theta_2$ denotes the helicity angles of the K mesons in the corresponding ϕ rest frame. χ is the angle between the two $\phi \to K^+ K^-$ decay planes

CP violation measurements in the penguin-mediated decay $B_{\rm s}^0
ightarrow \phi \phi$

Fit projections onto background-subtracted distributions of angular variables and decay-time.

16

Measured observables in the polarization-independent fit

arXiv:2304.06198

Parameter	Result		
$\phi_s^{s\overline{s}s}$ [rad]	$-0.042 \pm 0.075 \pm 0.009$		
$ \lambda $	$1.004 \pm 0.030 \pm 0.009$		
$ A_0 ^2$	$0.384 \pm 0.007 \pm 0.003$		
$ A_{\perp} ^2$	$0.310 \pm 0.006 \pm 0.003$		
$\delta_{\parallel} - \delta_0 \; [{ m rad} \;]$	$2.463 \pm 0.029 \pm 0.009$		
$\delta_{\perp} - \delta_0 [\text{rad}]$	$2.769 \pm 0.105 \pm 0.011$		

In combination with LHCb Run 1 measurements

$$\phi^{s\bar{s}s} = -0.074 \pm 0.069$$
 ra

This is the most precise measurement of CP violation in $B_{s}^{0} \rightarrow \phi \phi$ to date

The following parameters have been constrained to the measurements by LHCb collaboration

 $\Delta m_{\rm s} = 17.766 \pm 0.006 \, {\rm ps^{-1}}$

 $\Gamma_{\rm s} = 0.657 \pm 0.002 \ {\rm ps}^{-1}$

 $\Delta\Gamma_{\rm s}=0.078\pm0.006\,{\rm ps^{-1}}$ with correlation coefficient of -0.35

 $= 1.009 \pm 0.07 \pm 0.030$ ad and $|\lambda|$

arXiv:2304.06198

•arXiv: 2308.01468 CP violation measurements in the penguin-mediated decay $B_{ m c}^0 ightarrow \phi \phi$

- The most precise measurement in $B_s^0 \rightarrow \phi \phi$ * and in any penguin-dominated *B* meson decay
- Agrees with SM expectation

The polarization-dependent measurements Shows no dependence in the polarization states of $B_s^0 \rightarrow \phi \phi$

• A measurement of $\Delta \Gamma_s$ from $B_s^0 \rightarrow J/\psi \eta'$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ decays • $\mathcal{L} = 9 \text{ fb}^{-1}$, Run 1 2011 + 2012 and Run 2 2015 to 2018 data, LHCb-PAPER-2023-025

A measurement of $\Delta \Gamma_{s}$ from $B_{s}^{0} \rightarrow J/\psi \eta'$ and $B_{s}^{0} \rightarrow J/\psi \pi^{+} \pi^{-}$ decays

Motivation

• The measurements of the $B_s^0 - \bar{B}_s^0$ mixing parameters offer a powerful test of the Standard Model namely the *CP* violating phase ϕ_s and the decay-width difference $\Delta \Gamma_s = \Gamma_L - \Gamma_H$

• $\Delta\Gamma_s$ has been determined experimentally using the golden channel $B_s^0 \to J/\psi\phi$ by ATLAS, CMS and LHCb experiments

Results precises but in tension with each other

This motivates independent measurements in other decays modes!

A measurement of $\Delta \Gamma_s$ from $B_s^0 \to J/\psi \eta'$ and $B_s^0 \to J/\psi \pi^+ \pi^-$ decays

• *CP*-even modes measure the light mass eigenstates lifetime ($\tau_L = 1/\Gamma_L$) As ϕ_{s} is experimentally measured to be small • CP-odd modes measure the heavy mass eigenstates lifetime ($\tau_H = 1/\Gamma_H$)

Requirement of the dipion mass to be around 90 MeV around the $f_0(980)$ mass

- $\Delta \Gamma_{s}$ can be determined from the difference in decay-widths between a CP-odd and a CP-even B_{s}^{0} mode.
 - In this analysis, $\Delta\Gamma_{\rm s}$ is determined from decay-width difference between the *CP*-even decay $B_s^0 \rightarrow J/\psi \eta'$ and *CP*-odd $B_s^0 \rightarrow J/\psi f_0(980)$
 - Subsequent decays $J/\psi \to \mu^+\mu^-$, $\eta' \to \rho^0 \gamma$ and $\rho^0 \to \pi^+\pi^-$ for signal and $f_0(980) \to \pi^+\pi^-$

A measurement of $\Delta \Gamma_s$ from $B_s^0 \to J/$

Method If CP violation is negligible, the time dependent rate can be expressed as CP-odd CP-even $\Gamma(B_s^0(t) \to f) \propto e^{-\Gamma_s t} \left[\cosh(\frac{\Delta \Gamma_s t}{2}) - \sinh(\frac{\Delta \Gamma_s t}{2}) \right]$

Where $\Gamma_s = (\Gamma_H + \Gamma_I)/2$. Integrating both equations over a time bin $[t_1, t_2]$ and making the ratio, we obtain

$$R(t) = \frac{N_L}{N_H} \propto \frac{[e^{-\Gamma_s t(1+y)}]_{t1}^{t2}}{[e^{-\Gamma_s t(1-y)}]_{t1}^{t2}} \cdot \frac{1-y}{1+y}$$

$$2y = \Delta \Gamma_s / \Gamma_s$$

$$/\psi\eta'$$
 and $B_s^0 \to J/\psi\pi^+\pi^-$ decays

and
$$\Gamma(B_s^0(t) \to f) \propto e^{-\Gamma_s t} \left[\cosh(\frac{\Delta \Gamma_s t}{2}) + \sinh(\frac{\Delta \Gamma_s t}{2}) \right]$$

A measurement of $\Delta \Gamma_s$ from $B_s^0 \to J/\psi \eta'$ and $B_s^0 \to J/\psi \pi^+ \pi^-$ decays

Then $\Delta\Gamma_s$ can be obtained from χ^2 minimization of the corrected R(t), with $\Delta\Gamma_s$ as a free parameter and a arbitrary normalization factor

Analysis Strategy

Using simulation studies, a time bin scheme of eight bins with similar number of events is defined

Lower Limit 0.5 ps \rightarrow above this value time acceptance is relative flat Upper limit 10 ps \rightarrow above this value, contribution of $B_{c}^{0} \rightarrow J/\psi \eta'$ is negligible

Binning Scheme LHCb-PAPER-2023-025 Preliminary

Bin number	Bin edges [ps]	
1	0.5 - 0.7	
2	0.7 - 0.9	
3	0.9 - 1.2	
4	1.2 - 1.5	
5	1.5 - 2.0	
6	2.0 - 2.5	
7	2.5 - 3.5	
8	3.5 - 10.0	

 $= A_{r}(t)$ is evaluated at the barycentre of the bin

A measurement of $\Delta \Gamma_s$ from $B_s^0 \to J/\psi \eta'$ and $B_s^0 \to J/\psi \pi^+ \pi^-$ decays

Selection criteria is based on the topology and kinematics of the decays.

the determines $\Delta \Gamma_{s}$

2011+2012

2017

A measurement of $\Delta \Gamma_s$ from $B_s^0 \rightarrow J/\psi \eta'$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ decays

2011+2012

A measurement of $\Delta \Gamma_s$ from $B_s^0 \to J/\psi \eta'$ and $B_s^0 \to J/\psi \pi^+ \pi^-$ decays

Results

Ratio of yields in each decay-time bin, corrected by the corresponding relative time acceptance and the χ^2 fit is performed.

LHCb-PAPER-2023-025

26

 $\Delta \Gamma_s$ results and probability of χ^2

Dataset	$\Delta\Gamma_s \;[\mathrm{ps^{-1}}]$	$\mathrm{P}(\chi^2)$
2011 + 12	0.039 ± 0.026	0.83
2015 + 16	0.081 ± 0.022	0.77
2017	0.117 ± 0.024	0.57
2018	0.102 ± 0.021	0.78

Summary

Using full pp-collision dataset between 2011 and 2018, $B_s^0 \rightarrow J/\psi \eta'$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$, $\Delta \Gamma_{\rm s}$ is measured to be

 $\Delta \Gamma_{\rm s} = 0.087 \pm 0.012 \pm 0.009 \text{ ps}^{-1}$

LHCb-PAPER-2023-025

Comparison between the four data sets

 \rightarrow This is the first $\Delta \Gamma_s$ measurement using the $B_s^0 \rightarrow J/\psi \eta'$

Summary

A lot of work ongoing in the LHCb experiment, with a very broad program in the search for CPasymmetries in b- and c-hadrons.

2 dataset.

- These results supersede previous LHCb measurement (2015+2016, [arXiv:1906.08356])
- No evidence of *CP* violation is found.
- Measurement of CP-observables in $B^0_s \to \phi \phi$ decays
 - and any penguin-dominated B meson decay
 - First time polarization-dependent CP-violation parameters measurement.

 \odot CP-violation and decay-width parameters in the decay $B_s^0 \to J/\psi K^+ K^-$ are measured using the full Run

• $\phi_s^{sss} = -0.074 \pm 0.069$ rad and $|\lambda| = 1.009 \pm 0.030$, most precise measurements in this decay

Summary

- $\Delta \Gamma_s = 0.087 \pm 0.012 \pm 0.009 \text{ ps}^{-1}$
- First time $\Delta \Gamma_s$ measurement using the $B_s^0 \rightarrow J/\psi \eta'$ decay model
- Result in agreement with the average value for $\Delta\Gamma_{
 m s}$ from $B^0_{
 m s} o J/\psi \phi$

Decay-width difference measurement, $\Delta\Gamma_s$, using the decay channels $B_s^0 \to J/\psi \eta'$ and $B_s^0 \to J/\psi \pi^+ \pi^-$

Gracias!

Measurement of ϕ_S in $B_S^0 \rightarrow J/\psi K^+ K^-$ arXiv: 2308.01468

 ϕ_s world average:

 $\phi_s = -0.039 \pm 0.016$ rad $\phi_s(J/\psi KK) = -0.050 \pm 0.017$ rad

31