

Measurement of the CP-violating phase ϕ_s with CMS: present and future

Alberto Bragagnolo^a, on behalf of the CMS Collaboration ^a University & INFN, Padova

CKM 2023, Santiago de Compostela (ES) 18-22 September 2023

Outline

- 1. Introduction
- 2. Measuring ϕ_s with the CMS detector
- 3. Analysis and results
- 4. Future prospects
- 5. Conclusions

What? Why? Who? Where? How? What now?

Motivations

- Decays of B_s mesons allow to study the time-dependent CP violation generated by the interference between direct decays and flavour mixing
 - CPV in the interference is possible even if no CPV in decay and mixing
 - \circ Golden channel: B_s → J/ψ φ(1020) → μ⁺μ⁻ K⁺K⁻
- The weak phase ϕ_s is the main CPV observable
 - Precisely predicted by the SM to be $\phi_s \approx -2\beta_s \approx -37 \pm 1 \text{ mrad}$, where β_s is one of the angles of the B_s unitary triangle (determined very accurately by CKM global fits) [CKMfitter, UTfit]
- New physics can change the value of ϕ_s up to ~100% via new particles contributing to the flavour oscillations [RMP88(2016)045002]

State of the art (w. latest preliminary results from LHCb)

- Measurement statistically limited -> long-term commitment by multiple experimental collaborations
- Very active theoretical community (NP limits, penguin pollutions, predictions, ...)
- Precision on ϕ_s close to 3 s.d. sensitivity for CPV in decay/mixing interference
 - $\sigma^{WA}(\phi_s) \approx 15 \text{ mrad } (40\% \text{ relative uncertainty})$

Alberto Bragagnolo (UNIPD)

Measurement ingredients

• Time-dependent flavour asymmetry

- Essential ingredients
 - Time-dependent **angular analysis** to separate the different CP eigenstate
 - Excellent time resolution and flavour tagging to see the B_s flavour oscillations (T ~ 350 fs)
 - Time and angular efficiencies

sensitivity
$$\propto \sqrt{rac{\epsilon_{
m tag} \mathcal{D}_{
m tag}^2 N_{
m sig}}{2}} \sqrt{rac{N_{
m sig}}{N_{
m sig} + N_{
m bkg}}} \, e^{-rac{\sigma_t^2 \Delta m_s^2}{2}}$$

Why a CMS measurement?

CMS is a general-purpose detector well suited for studying $B_s \rightarrow J/\psi \phi(1020) \rightarrow \mu^+\mu^- K^+K^-$

- Silicon tracking system
 - Excellent decay time resolution ($\sigma_t \sim 60$ fs)
 - Large pseudorapidity range up to $|\eta| = 2.5$
- Superconducting solenoid
 - High momentum resolution for charged tracks
- Muon system
 - High efficiency in triggering/reconstructing $J/\psi \rightarrow \mu^+\mu^-$
 - $\sigma(p_T)/p_T \sim O(1\%)$
- Enormous amount of data collected at $\sqrt{s} = 13 \text{ TeV}$
 - O(1M) of $B_s \rightarrow J/\psi \phi(1020) \rightarrow \mu^+\mu^- K^+K^$ candidates

Very-forward

Hadron

Calorimeter

Electromagnetic

RV

Calorimeter

Calorimeter

Muon

Detectors

Superconducting Solenoid

Silicon Tracker

Pixel Detector

Preshower

Latest CMS results overview

- Reference: Phys. Lett. B 816 (2021) 136188
- **Dataset**: 2017-2018 ($L_{int} = 96 \text{ fb}^{-1}$)
- **Trigger**: $J/\psi \rightarrow \mu^+\mu^-$ candidate plus an additional muon
- **Decay length cut**: >70 µm (to reduce prompt bkg.)
- **m(K⁺K⁻) interval**: m(ϕ (1020)) ± 10 MeV
- Number of signal candidates: 48500 ± 250
- Flavour tagging: opposite-side muon
 - $\circ ~~ \epsilon_{tag} \approx 50\%, ~ D_{tag} \approx 0.2, ~ P_{tag} \approx 10\%$

Fit: unbinned multidimensional extended maximum-likelihood

- Input observables: m_{Bs} , ct, σ_{ct} , θ_{T} , ψ_{T} , φ_{T} , ξ_{tag} , ω_{tag}
- **Fitted parameters**
 - CPV observables: ϕ_{s} , $|\lambda|$ Ο
- B system properties: ΔΓ, Γ, Δm
 Decay polarization: |A₀|², |A_⊥|², |A_S|², δ_∥, δ_⊥, δ_{S⊥}
 Bkg sources: combinatorial, B⁰ → J/ψ K^{*0} → μ⁺μ⁻ K⁺π⁻

OS-muon tagging

- 1. OS-muon selection (very loose)
 - $\circ \qquad p_{_{T}} > 2 \; GeV, \; |\eta| < 2.5, \; IP_{_{z}}(\mu, \; PV) < 1 \; cm, \; \Delta R_{_{n, t\!\!0}}(B_{_{S}}) > 0.4$
- **2.** Tagging decision (assuming $b \rightarrow \mu^- X$)
 - \circ μ⁻ → OS b → signal \overline{b} (B_s)
 - $μ^+ → OS \overline{b} → signal b (\overline{B})$
- 3. Mistag probability evaluation
 - \circ Calibrated DNN trained on B_s MC and fine-tuned on self-tagging B⁺ → J/ψ K⁺ data
 - Trained to discriminate *right* tags from *wrong* ones
 - The output score s_{DNN} can be interpreted as a probability with the DNN trained to reproduce

Prob(right tag) = s_{DNN} = 1-ω_{evt}

Dilution sources: fakes, pileup, cascade decays, mixing of the OS-b

Systematic uncertainties

	φ _s [mrad]	$\Delta\Gamma_{\rm s}$ [ps ⁻¹]	$\Delta m_{\rm s}$ [$\hbar {\rm ps}^{-1}$]	λ	$\frac{\Gamma_{s}}{[ps^{-1}]}$	$ A_0 ^2$	$ A_{\perp} ^2$	$ A_{\rm S} ^2$	δ [rad]	δ_{\perp} [rad]	δ _{S⊥} [rad]
Statistical uncertainty	50	0.014	0.10	0.026	0.0042	0.0047	0.0063	0.0077	0.12	0.16	0.083
Model bias	7.9	0.0019	-	0.0035	0.0005	0.0002	0.0012	0.001	0.020	0.016	0.006
Angular efficiency	3.8	0.0006	0.007	0.0046	0.0003	0.0008	0.0013	0.001	0.007	0.019	0.011
Proper decay length efficiency	0.3	0.0062	0.001	0.0002	0.0022	0.0014	0.0023	0.001	0.001	0.002	0.002
Proper decay length resolution	3.5	0.0009	0.021	0.0015	0.0006	0.0007	0.0009	0.007	0.006	0.025	0.022
Data/simulation difference	0.6	0.0008	0.004	0.0003	0.0003	0.0044	0.0029	0.007	0.007	0.007	0.028
Flavor tagging	0.5	<10 ⁻⁴	0.006	0.0002	<10 ⁻⁴	0.0003	<10 ⁻⁴	<10 ⁻³	0.001	0.007	0.001
Sig./bkg. ω_{evt} difference	3.0	_	_	-	0.0005	_	0.0008	—	_	-	0.006
Peaking background	0.3	0.0008	0.011	<10 ⁻⁴	0.0002	0.0005	0.0002	0.003	0.005	0.007	0.011
S-P wave interference		0.0010	0.019		0.0005	0.0005	_	0.013	_	0.019	0.019
$P(\sigma_{ct})$ uncertainty $U_{M_{t}}$ STAT	$< 10^{-1}$	0.0019	0.028	0.0004	0.0008	0.0006	0.0008	0.001	0.001	0.002	0.005
Total systematic uncertainty	10.0	0.0070	0.032	0.0083	0.0026	0.0049	0.0045	0.016	0.028	0.045	0.048

Leading systematic uncertainties

- ϕ_s → model bias
- $\Delta\Gamma_s$ and $\Gamma_s \rightarrow$ lifetime efficiency
 - → lifetime uncertainty
- $|\lambda|$ \rightarrow angular efficiency

Alberto Bragagnolo (UNIPD)

Δm_s

Results

Parameter	Fit value	Stat. uncer.	Syst. uncer.
$\phi_{\rm s}$ [mrad]	-11	±50	±10
$\Delta\Gamma_{\rm s} [\rm p s^{-1}]$	0.114	± 0.014	± 0.007
$\Delta m_{\rm s} [\hbar {\rm ps}^{-1}]$	17.51	+0.10 -0.09	± 0.03
λ	0.972	± 0.026	± 0.008
$\Gamma_{\rm s} [\rm p s^{-1}]$	0.6531	± 0.0042	± 0.0026
$ A_0 ^2$	0.5350	± 0.0047	± 0.0049
$ A_{\perp} ^2$	0.2337	± 0.0063	± 0.0045
$ A_{\rm S} ^2$	0.022	+0.008 -0.007	± 0.016
δ_{\parallel} [rad]	3.18	± 0.12	± 0.03
δ_{\perp} [rad]	2.77	± 0.16	± 0.05
$\delta_{S\perp}$ [rad]	0.221	$+0.083 \\ -0.070$	± 0.048

Good agreement with SM predictions .

•
$$\phi_s^{SM} = -37 \pm 1 \text{ mrad}$$
 [CKMfitter, UTfit]
• $\Delta\Gamma^{SM} = 0.091 \pm 0.013 \text{ ps}^{-1}$ [Lenz & Tetlalmatzi-Xolocot

- $\Delta \Gamma_s^{SM} = 0.091 \pm 0.013 \text{ ps}^{-1}$ [Lenz & Tetlalmatzi-Xolocotzi]
- $|\lambda|^{SM} = 1$ (no direct CPV) Ο
- $\Delta m_s^{SM} = 18.77 \pm 0.86 \text{ hps}^{-1} \text{ [Lenz & Tetlalmatzi-Xolocotzi]}$ 0
- First measurement by CMS of Δm_{a} and $|\lambda|$ •

Measurement of the CPV phase ϕ_{a}

11/15

Combination with Run1

- The results of this analysis are combined with the ones obtained by CMS at √s = 8 TeV^a
 - $\circ \quad \phi_s = -21 \pm 44 \text{ (stat)} \pm 10 \text{ (syst) mrad}$
 - $\Delta \Gamma_s = 0.1032 \pm 0.0095 \text{ (stat)} \pm 0.0048 \text{ (syst)} \text{ ps}^{-1}$
- Results in agreement with the SM predictions
- The new trigger strategy, which trades the number of events for tagging power, pays off for φ_s while does not improve ΔΓ_s, which sensitivity is driven mainly by statistics

From: [PLB816(2021)136188]

^a [<u>PLB757(2016)9</u>]

Future prospects: precision measurement

CMS is currently working on a precision measurement of ϕ_s with the Run2 dataset by using all available triggers (see SL7)

- Statistics: expected to increase the number of signal candidates by a factor of 8~10
- **Flavour tagging**: muon, electron, jet and same-side (first implementation without hadronic PID)
 - \circ Large enhancement of the effective statistics $\rm N_{Bs}~x~P_{taa}$
- Methodology: various refinements to deal with the peculiarities of the new dataset
 - Efficiency modelization, background estimation, lifetime resolution, simulation corrections, ...
 - Not just a simple statistical scaling!

- Large improvements are expected for all physics parameters
 - Reminder: sensitivity(ϕ_s , Δm_s) $\propto \sqrt{(P_{tag}N_{Bs})}$ and sensitivity($\Delta \Gamma_s$, Γ_s) $\propto \sqrt{(N_{Bs})}$
- This measurement will be the benchmark of several new analysis techniques, laying the foundations for future CMS works in the field CP violation

Conclusions

- The CPV phase ϕ_s and the decay width difference $\Delta \Gamma_s$ have been measured using 48 500 $B_s \rightarrow J/\psi \phi(1020)$ signal candidates collected at $\sqrt{s} = 13$ TeV, corresponding to $L_{int} = 96.4$ fb⁻¹
- Events are selected using a trigger that requires an additional muon, which is exploited to infer the flavour of the B_s meson at production time, achieving $P_{tag} \approx 10\%$ with small associated systematic uncertainties
- Results from this measurement are combined with those obtained at $\sqrt{s} = 8$ TeV, yielding

 $\phi_s = -21 \pm 44$ (stat) ± 10 (syst) mrad

 $\Delta \Gamma_s = 0.1032 \pm 0.0095 \text{ (stat)} \pm 0.0048 \text{ (syst) ps}^{-1}$

- Results are found to be consistent with the Standard Model predictions, allowing to further constrain possible contributions from new physics in the B_s meson decay and mixing
- With the increase in statistics and the development of new techniques, the future for ϕ_s at LHC looks promising and challenging
- CMS is actively working to release an update of the Run2 measurement, adding new data sets and tagging strategies
 - Stay tuned in the next conference seasons!

Thanks for the attention

Unitary triangles

 The unitary condition of the CKM matrix leads to the following set of constrains

 $\sum_{i} |V_{ik}|^2 = \sum_{k} |V_{ik}|^2 = 1 \implies \text{weak universality}$

 $\begin{array}{c|c} \sum\limits_{i} V_{ij} V_{ik}^{*} = 0 \\ \sum V_{ik} V_{jk}^{*} = 0 \end{array} \implies \mbox{six triangles in the complex plane} \\ ("unitary triangles") \end{array}$

· Of particular interest for this work is the so-called "B⁰ unitary triangle":

$$V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$$

with angles:
$$\alpha_{\rm S} = \arg\left(-\frac{\mathsf{V}_{\rm ts}\mathsf{V}_{\rm tb}^*}{\mathsf{V}_{\rm us}\mathsf{V}_{\rm ub}^*}\right), \quad \beta_{\rm S} = \arg\left(-\frac{\mathsf{V}_{\rm ts}\mathsf{V}_{\rm tb}^*}{\mathsf{V}_{\rm cs}\mathsf{V}_{\rm cb}^*}\right), \quad \gamma_{\rm S} = \arg\left(-\frac{\mathsf{V}_{\rm us}\mathsf{V}_{\rm ub}^*}{\mathsf{V}_{\rm cs}\mathsf{V}_{\rm cb}^*}\right).$$

Alberto Bragagnolo (UNIPD)

B_s meson mixing

- B⁰_s mesons are subject to flavour mixing, that is oscillations between their C-conjugate states before decay
- The light and heavy mass eigenstates are described by a **superposition** of flavour states, as

$$\left|B_{s}^{L,H}\right\rangle = p\left|B_{s}^{0}\right\rangle \pm q\left|\overline{B}_{s}^{0}\right\rangle \quad \text{with } |q|^{2} + |p|^{2} = 1$$

- The $B^0_{\mbox{\scriptsize S}}$ system is characterized by the parameters

$$\begin{split} m_s &\equiv \frac{m_H + m_L}{2}, \quad \Gamma_s \equiv \frac{\Gamma_H + \Gamma_L}{2} \\ \Delta m_s &\equiv m_H - m_L, \quad \Delta \Gamma_s \equiv \Gamma_L - \Gamma_H \end{split}$$

• For the B_s^0 system $|q/p| \simeq 1$ is observed¹, so that the ratio q/p can be expressed in terms of a complex phase:

$$\frac{q}{p} \equiv e^{-i\phi_{M}} \simeq \frac{V_{ts}V_{tb}^{*}}{V_{ts}^{*}V_{tb}}$$

¹World-average value: $|q/p| = 1.0003 \pm 0.0014$ [HFLAV]

Alberto Bragagnolo (UNIPD)

Measurement of the CPV phase ϕ_{s}

• The flavour eigenstates oscillate with a period of

$$T = \frac{2\pi}{\Delta m_s} \sim 350 \text{ fs}$$

CPV in mesons

- Observable CP violation is generated by interference between amplitudes
- Three different types of CP violation are possible
 - 1. "Direct" CPV in decays
 - Observed in kaons, B and D mesons¹
 - 2. "Indirect" CPV in mixing
 - Observed in K⁰ oscillations²
 - 3. CPV in the interference of decays and mixing
 - Observed in K⁰ and B⁰ mesons³

$$\mathcal{P}(\mathsf{P} \to \mathbf{f}) \neq \mathcal{P}(\overline{\mathsf{P}} \to \overline{\mathbf{f}})$$

$$\mathcal{P}(P^0 \to \overline{P}{}^0) \neq \mathcal{P}(\overline{P}{}^0 \to P^0)$$

$$\mathcal{P}(P^{0} \rightarrow f) \neq \mathcal{P}(P^{0} \rightarrow \overline{P}^{0} \rightarrow f)$$

 Defining A_f as the P → f amplitude, CPV information is encoded in the rephasing-invariant complex parameter λ:

$$\label{eq:lambda} \boxed{\pmb{\lambda} \equiv \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}}} \begin{cases} \left| \overline{A}_{\overline{f}} / A_{f} \right| \neq 1 & \rightarrow \text{ direct CPV} \\ \left| q / p \right| \neq 1 & \rightarrow \text{ indirect CPV} \\ \left| \lambda \right| = 1, \ \text{Im}(\pmb{\lambda}) \neq 0 & \rightarrow \text{ interference CPV} \end{cases}$$

Alberto Bragagnolo (UNIPD)

CPV in $B_s \rightarrow J/\psi \phi(1020) \rightarrow \mu^+\mu^- K^+K^-$

• No direct CPV:
$$\left| \frac{\overline{A}_{\overline{f}}}{A_{f}} \right| = \left| \frac{V_{cb}V_{cs}^{*}}{V_{cb}^{*}V_{cs}} \right| = 1$$

- No CPV in mixing: $\left|\frac{q}{p}\right| = \left|\frac{V_{tb}^*V_{ts}}{V_{tb}V_{ts}^*}\right| \simeq 1$
- CPV in the interference (neglecting penguin contributions)¹:

$$\lambda = \underbrace{\eta_{f} \left(\frac{\mathsf{V}_{cb} \mathsf{V}_{cs}^{*}}{\mathsf{V}_{cb}^{*} \mathsf{V}_{cs}} \right)}_{=\overline{\mathsf{A}}_{f}/\mathsf{A}_{f}} \underbrace{\left(\frac{\mathsf{V}_{tb}^{*} \mathsf{V}_{ts}}{\mathsf{V}_{tb}} \right)}_{=q/p} \stackrel{|\lambda|=1}{=} \eta_{f} \, \mathrm{e}^{-\mathrm{i}\phi_{s}}$$

$$\boxed{\phi_{s} = -2 \arg\left(-\frac{\mathsf{V}_{ts} \mathsf{V}_{tb}^{*}}{\mathsf{V}_{cs} \mathsf{V}_{cb}^{*}} \right) = -2\beta_{s}}$$

where $\eta_{\rm f}$ is the CP eigenvalue of the final state and $\beta_{\rm S}$ is one of the angles of the ${\rm B}^0_{\rm S}$ unitary triangle

+ $\beta_{\rm S}$ can be determined very precisely with global CKM fits

¹Penguin transitions are predicted to change the value of ϕ_S by about \sim 1 mrad, almost two order of magnitudes smaller than the current experimental sensitivity (\sim 30–50 mrad)

Alberto Bragagnolo (UNIPD)

The B_s \rightarrow J/ ψ ϕ (1020) \rightarrow $\mu^+\mu^-$ K⁺K⁻ decay

- $B_s \rightarrow J/\psi \phi(1020) \rightarrow \mu^+\mu^- K^+K^-$ is the golden channel for measuring ϕ_s
 - 1. The final state can be reconstructed with high S/B ratio
 - 2. $J/\psi \rightarrow \mu^+\mu^-$ is easy to trigger
 - 3. Only one CP-violating phase ("golden mode") if neglecting penguin contributions
 - 4. SM predicts no direct CPV
- The final state is a mixture of CP-even and CP-odd eigenstates
 - Spin-0 pseudo-scalar meson (B_s) decaying into two spin-1 vector mesons (J/ ψ ϕ (1020))
 - The CP eigenvalue of the final state depends on the value of the orbital momentum, as $\eta_f = (-1)^I$
- The B_s → J/ψ φ(1020) → μ⁺μ⁻ K⁺K⁻decay amplitude can be decomposed into three polarization states
 - $A_0 : I = 0 \rightarrow CP$ -even
 - A_{I} : $I = 1 \rightarrow CP$ -odd
 - A_{\parallel} : I = 2 \rightarrow CP-even
- Additional contribution ("S-wave") from non-resonant
 - $B_s \rightarrow J/\psi K^+K^-$ and $B_s \rightarrow J/\psi f^0$ (980) is assumed

•
$$A_s: I = 0 \rightarrow CP \text{-odd}$$

Decay rate model

	$\frac{\mathrm{d}^4}{\mathrm{c}}$	$\frac{\Gamma\left(B^{0}_{S}\right)}{\mathrm{I}\Theta\mathrm{d}t}=f$	$f(\Theta, t \mid \alpha) \propto \sum_{i=1}^{10}$	$\mathcal{O}_{i}(\alpha,t) \cdot g_{i}(\Theta)$		
0	$_{i}=N_{i}e^{-\Gamma_{S}t}\left[a_{i}\cosh\left(\frac{1}{2}\Delta\Gamma_{s}t\right)+\right.$	$b_i \sinh\left(\frac{1}{2}\Delta\right)$	$\left(\Gamma_{s} t \right) + c_{i} \xi_{tag} (1 - C_{i} \xi_{tag})$	$-2\omega_{tag})\cos{(\Delta m_s t)}$	$+ d_i \xi_{tag} (1 - 2\omega_t)$	$(\Delta m_s t) \sin (\Delta m_s t)$
i	$g_i(heta_T,\psi_T,arphi_T)$	Ni	ai	b _i	Ci	di
1	$2\cos^2\psi_{\rm T}(1-\sin^2\theta_{\rm T}\cos^2\varphi_{\rm T})$	$ A_0 ^2$	1	D	С	— <u>S</u>
2	$\sin^2\psi_{T}(1-\sin^2\theta_{T}\sin^2\varphi_{T})$	$ A_{\parallel} ^2$	1	D	С	— <mark>S</mark>
3	$\sin^2\psi_{T}\sin^2\theta_{T}$	$ A_{\perp} ^2$	1	—D	С	S
4	$-\sin^2\psi_{T}\sin2 heta_{T}\sinarphi_{T}$	$ A_{\parallel} A_{\perp} $	$C \sin(\delta_{\perp} - \delta_{\parallel})$	$\frac{S}{\cos(\delta_{\perp} - \delta_{\parallel})}$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$D\cos(\delta_{\perp}-\delta_{\parallel})$
5	$1/\sqrt{2}\sin 2\psi_{\rm T}\sin^2\theta_{\rm T}\sin 2\varphi_{\rm T}$	A ₀ A	$\cos(\delta_{\parallel} - \delta_{0})$	$D\cos(\delta_{\parallel}-\delta_{0})$	$C\cos(\delta_{\parallel}-\delta_{0})$	$-\frac{S\cos(\delta_{\parallel}-\delta_{0})}{S\cos(\delta_{\parallel}-\delta_{0})}$
6	$1/\sqrt{2}\sin 2\psi_{\rm T}\sin 2\theta_{\rm T}\cos \varphi_{\rm T}$	$ A_0 A_\perp $	$C\sin(\delta_{\perp}-\delta_0)$	$S\cos(\delta_{\perp}-\delta_0)$	$\sin(\delta_{\perp} - \delta_0)$	$D\cos(\delta_{\perp}-\delta_0)$
7	$^{2/3}(1-\sin^{2}\theta_{T}\cos^{2}\varphi_{T})$	$ A_{\rm S} ^2$	1	-D	С	S
8	$1/3\sqrt{6}\sin\psi_{\rm T}\sin^2\theta_{\rm T}\sin2\varphi_{\rm T}$	A _S A	$C\cos(\delta_{\parallel}-\delta_{S})$	$\frac{S}{sin}(\delta_{\parallel} - \delta_{S})$	$\cos(\delta_{\parallel} - \delta_{S})$	$D\sin(\delta_{\parallel}-\delta_{S})$
9	$1/3\sqrt{6}\sin\psi_{\rm T}\sin2\theta_{\rm T}\cos\varphi_{\rm T}$	$ A_S A_\perp $	$\sin(\delta_{\perp} - \delta_{S})$	$-D\sin(\delta_{\perp}-\delta_{S})$	$C\sin(\delta_{\perp}-\delta_{S})$	$\frac{S \sin(\delta_{\perp} - \delta_{S})}{\delta_{\perp} - \delta_{S}}$
10	$\frac{4}{3}\sqrt{3}\cos\psi_{\mathrm{T}}(1-\sin^{2}\theta_{\mathrm{T}}\cos^{2}\varphi_{\mathrm{T}})$	$ A_S A_0 $	$C\cos(\delta_0-\delta_S)$	$\frac{S}{sin}(\delta_0 - \delta_S)$	$\cos(\delta_0 - \delta_S)$	$D\sin(\delta_0-\delta_S)$
$C = \frac{1 - \boldsymbol{\lambda} ^2}{1 + \boldsymbol{\lambda} ^2}$	\Rightarrow Sensitive to direct CPV	$S = -\frac{2 \lambda s}{1+}$ $D = -\frac{2 \lambda c}{1+}$	$rac{\sin \phi_{s}}{ \lambda ^2} \Rightarrow Sensitiv$ $rac{\cos \phi_{s}}{ \lambda ^2} \Rightarrow Sensitiv$	we to small $\phi_{ m s}$	$\begin{aligned} \xi_{\text{tag}} &= \pm 1 \Rightarrow \\ \omega_{\text{tag}} &\in [0, 1] = \\ \lambda &= q/p \left \overline{A}_{1} \right \end{aligned}$	flavour tagging decision \Rightarrow mistag probability $f/A_f \Rightarrow$ direct/mixing CPV if \neq 1

Alberto Bragagnolo (UNIPD)

Angular efficiency

- Detector acceptance and event selection lead to non-uniform angular efficiency
- 3D angular efficiency functions are evaluated in bins of $\cos \theta_T$, $\cos \psi_T$ and φ_T , separately for 2017 and 2018, using simulated samples
- The efficiency functions are obtained with a projection of the 3D angular efficiency histograms on an orthogonal basis:
 - 1. Construct efficiency histograms
 - + Numerator: 3D angular RECO histograms from $\Delta\Gamma_s=0$ MC samples
 - Denominator: 3D angular GEN histograms from GEN only sample
 - + Binning: 70 bins for $\cos \theta_{\rm T}$ and $\cos \psi_{\rm T}$, and 30 for $\varphi_{\rm T}$
 - 2. Project on Legendre orthogonal basis

$$b_{l,k,m}(\Theta) = P_l^m(\cos\theta_T) \cdot P_k^m(\cos\psi_T) \cdot \begin{cases} \sin(m\varphi_T) & \text{if } m < 0\\ \cos(m\varphi_T) & \text{if } m > 0\\ 1/2 & \text{if } m = 0 \end{cases}$$

- up to order 6
- 3. Construct angular efficiency as

$$\epsilon(\Theta) = \sum_{l,k,m} c_{l,k,m} \cdot b_{l,k,m}(\Theta)$$

• c_{l,k,m} are the projection coefficients

Alberto Bragagnolo (UNIPD)

DNNs as probability estimators

- A DNN can be (naturally) engineered to predict the probability of a given input example to belong to one of the classes for which the network has been trained
 - e.g.: what is the probability that the flavour inference for a given event is correct?
- To this end, the **softmax activation function** can be used in the last layer to normalize the output of the network to a probability distribution consisting of K probabilities in the interval [0, 1] that add up to 1:¹

$$\sigma(\vec{z})_{i} = \frac{e^{z_{i}}}{\sum_{j=1}^{K} e^{z_{j}}} \quad (i = 1, \dots, K)$$

- A DNN is called "calibrated" if the output probability of the predicted class reflects its true posterior probability (the softmax function does not ensure calibrated networks)
- To improve probability calibration, the cross-entropy loss function can be used in the training process

$$\mathcal{L}_{CE} = -\sum_{i=1}^{K} t_i \log(s_i) \quad \text{where} \quad \begin{array}{l} s_i = \text{network scores} \\ t_i = \text{one-hot encoded truth labels}^2 \end{array}$$

• \mathcal{L}_{CE} can be interpreted as the negative log-likelihood for the conditional probability $P(\vec{t} \mid \vec{s})$

¹Based on the Luce's choice axiom. Ref: R. D. Luce, "Individual choice behavior: a theoretical analysis", Wiley, New York (1959)

²Every entry of t is equal to 0 but the one corresponding to the true class, which is equal to 1

Deep Neural Network for flavour tagging

Training features

- Muon variables
 - p_T , η , IP_{xy} , $\sigma_{IP_{xy}}$, IP_z , σ_{IP_z} , $\Delta R(B_s^0)$, ...
- Surrounding activity variables ("muon cone")
 - Constructed from tracks around the muon direction
 - Iso_{μ}, Q_{cone}, p_{T,cone}, E_{μ}/E_{cone}, ...

Architecture: fully connected

- 3 layers of 200 neurons
- + Rectified Linear Unit activation: f(X) = max(0, X)
- 40% dropout probability
 - Probability of temporarily removing a neuron in each training iteration, used to reduce overtraining
- **Output:** softmax
- Loss: binary cross-entropy
- Optimizer: Adam
 - Adaptive optimization algorithm specifically designed for training DNNs

Fit model

$$\mathsf{P} = \frac{\mathsf{N}_{\mathsf{sgn}}}{\mathsf{N}_{\mathsf{tot}}} \mathsf{P}_{\mathsf{sgn}} + \frac{\mathsf{N}_{\mathsf{bkg}}}{\mathsf{N}_{\mathsf{tot}}} \mathsf{P}_{\mathsf{bkg}}$$

 $\mathsf{P}_{\mathsf{sgn}} = \epsilon(\mathsf{ct}) \, \epsilon(\Theta) \, \left[\mathsf{f}(\Theta, \mathsf{ct} \,|\, \alpha) \otimes \mathsf{G}(\mathsf{ct}, \sigma_{\mathsf{ct}}) \right] \, \mathsf{P}_{\mathsf{sgn}}(\mathsf{m}_{\mathsf{B}^0_{\mathsf{S}}}) \, \mathsf{P}_{\mathsf{sgn}}(\sigma_{\mathsf{ct}}) \, \mathsf{P}_{\mathsf{sgn}}(\xi_{\mathsf{tag}}) \,$

- $\epsilon(ct) \epsilon(\Theta)$: efficiency functions
- + $f(\Theta, ct \mid \alpha)$: differential decay rate pdf
- G(ct, σ_{ct}): Gaussian resolution function

• $\Theta = (\cos \theta_{\mathrm{T}}, \cos \psi_{\mathrm{T}}, \varphi_{\mathrm{T}})$

- Psgn(m_{B⁰_s}): mass pdf
- $P_{sgn}(\sigma_{ct})$: proper decay length uncertainty pdf
- Psgn(\$tag): tag decision pdf

• $\alpha = (\phi_{s}, \Gamma_{s}, \Delta\Gamma_{s}, \Delta m_{s}, |\lambda|, A_{0}, A_{\perp}, A_{S}, \delta_{\parallel}, \delta_{\perp}, \delta_{S\perp})$

 $\left| \mathsf{P}_{\mathsf{bkg}} = \mathsf{P}_{\mathsf{bkg}}(\cos \theta_{\mathsf{T}}, \varphi_{\mathsf{T}}) \, \mathsf{P}_{\mathsf{bkg}}(\cos \psi_{\mathsf{T}}) \, \mathsf{P}_{\mathsf{bkg}}(\mathsf{Ct}) \, \mathsf{P}_{\mathsf{bkg}}(\mathsf{m}_{\mathsf{B}^0_{\mathsf{S}}}) \, \mathsf{P}_{\mathsf{bkg}}(\sigma_{\mathsf{ct}}) \, \mathsf{P}_{\mathsf{bkg}}(\xi_{\mathsf{tag}}) \right|$

- $P_{bkg}(\cos \theta_T, \varphi_T)$, $P_{bkg}(\cos \psi_T)$, $P_{bkg}(ct)$: background angular and proper decay length pdfs
- P_{bkg} contains a dedicated term to model the **peaking background** from $B^0 \rightarrow J/\psi K^*(892)^0 \rightarrow \mu^+\mu^- K^+\pi^-$ where the pion is misidentified as a kaon
 - The peaking background from $\Lambda^0_b o J/\psi\, K^-p o \mu^+\mu^-\, K^-p$ is estimated to be negligible

Fit results

Alberto Bragagnolo (UNIPD)

Correlations in the 13 TeV results

Table 1: Statistical correlation matrix between the physics parameters as obtained from the ML fit to the 13 TeV data.

	$\phi_{\rm s}$	$\Delta \Gamma_{\rm s}$	$\Delta m_{\rm s}$	$ \lambda $	$\Gamma_{\rm s}$	$ A_0 ^2$	$ A_{\perp} ^2$	$ A_{\rm S} ^2$	δ_{\parallel}	δ_{\perp}	$\delta_{S\perp}$
$\phi_{\rm s}$	+1.00	-0.02	-0.19	+0.22	0.00	-0.01	+0.01	- <mark>0.01</mark>	-0.02	-0.09	+0.03
$\Delta \Gamma_{\rm s}$		+1.00	-0.02	0.00	-0.48	+0.63	-0.71	0.00	+0.01	-0.01	-0.04
$\Delta m_{\rm s}$			+1.00	-0.14	+0.03	-0.01	+0.02	+0.03	+0.01	+0.68	-0.05
$ \lambda $				+1.00	-0.02	0.00	-0.01	-0.03	-0.06	-0.18	+0.05
$\Gamma_{\rm s}$					+1.00	-0.31	+0.42	+0.15	-0.02	+0.02	-0.05
$ A_0 ^2$						+1.00	-0.61	+0.15	-0.01	-0.01	-0.09
$ A_{\perp} ^2$							+1.00	-0.11	-0.06	0.00	+0.06
$ A_{\rm S} ^2$								+1.00	-0.07	+0.02	-0.44
δ_{\parallel}									+1.00	+0.27	-0.02
δ_{\perp}										+1.00	-0.10
$\delta_{\mathrm{S}\perp}$											+1.00

Full combination results

CMS 8 TeV results				CMS 13 TeV results				CMS 8+13 TeV combined results				
Parameter	Value	Stat.	Syst.	Parameter	Value	Stat.	Syst.	Parameter	Fit value	Stat.	Syst.	
ϕ_{s} [mrad]	-75	± 97	± 31	ϕ_{s} [mrad]	-11	± 50	± 10	$\phi_{\rm S}$ [mrad]	-21	± 44	± 10	
$\Delta \Gamma_{\rm s} [\rm ps^{-1}]$	0.095	± 0.013	± 0.007	$\Delta \Gamma_{\rm s} [\rm p s^{-1}]$	0.114	± 0.014	± 0.007	$\Delta \Gamma_{\rm s} [\rm ps^{-1}]$	0.1032	± 0.0095	± 0.0048	
$\Gamma_{\rm s}$ [ps ⁻¹]	0.6704	± 0.0043	± 0.0055	$\Delta m_s [\hbar p s^{-1}]$	17.51	± 0.10	± 0.03	$\Gamma_{\rm s} [\rm ps^{-1}]$	0.6590	± 0.0032	± 0.0023	
$ A_0 ^2$	0.510	± 0.005	± 0.011	$ \lambda $	0.972	± 0.026	± 0.008	$ A_0 ^2$	0.5289	± 0.0038	± 0.0041	
$ A_{\perp} ^2$	0.243	± 0.008	± 0.012	$\Gamma_{\rm s} [\rm ps^{-1}]$	0.6531	\pm 0.0042	± 0.0026	$ A_{1} ^{2}$	0.2393	± 0.0050	± 0.0037	
$ A_{\rm S} ^2$	0.012	± 0.009	± 0.022	$ A_0 ^2$	0.5350	\pm 0.0047	± 0.0049	$ A_{\rm S} ^2$	0.016	± 0.006	± 0.013	
δ_{\parallel} [rad]	3.48	± 0.09	± 0.68	$ A_{\perp} ^2$	0.2337	± 0.0063	± 0.0045	δ_{\parallel} [rad]	3.19	± 0.12	± 0.04	
δ_{\perp} [rad]	2.98	± 0.36	± 0.66	$ A_{\rm S} ^2$	0.022	± 0.008	± 0.016	δ_{\perp} [rad]	2.78	± 0.15	± 0.06	
$\delta_{S\perp}$ [rad]	0.37	± 0.12	± 0.18	δ_{\parallel} [rad]	3.18	± 0.12	± 0.03	$\delta_{S\perp}$ [rad]	0.238	± 0.078	± 0.046	
				δ_{\perp} [rad]	2.77	± 0.16	± 0.05	-				
				$\delta_{S\perp}$ [rad]	0.221	± 0.083	± 0.048					

Correlation in the combination

Table 3: Correlations between the physics parameters as obtained from the combination between the CMS 8 TeV and 13 TeV results. Correlations are both statistical and systematic.

	$\phi_{\rm s}$	$\Delta \Gamma_{\rm s}$	$\Gamma_{\rm s}$	$ A_0 ^2$	$ A_{\perp} ^2$	$ A_{\rm S} ^2$	δ_{\parallel}	δ_{\perp}	δ_{SL}
$\phi_{\rm s}$	+1.00	+0.02	-0.03	+0.01	-0.01	+0.01	-0.01	-0.08	+0.03
$\Delta \Gamma_{\rm s}$		+1.00	-0.45	+0.43	-0.57	+0.01	+0.01	0.00	-0.01
$\Gamma_{\rm s}$			+1.00	-0.17	+0.30	+0.06	-0.03	0.00	-0.08
$ A_0 ^2$				+1.00	-0.56	+0.25	-0.03	+0.01	- <mark>0.1</mark> 8
$ A_{\perp} ^2$					+1.00	-0.08	-0.03	+0.01	+0.14
$ A_{\rm S} ^2$						+1.00	-0.02	+0.02	-0.20
δ_{\parallel}							+1.00	+0.26	0.00
δ_{\perp}								+1.00	-0.05
$\delta_{\mathrm{S}\perp}$									+1.00