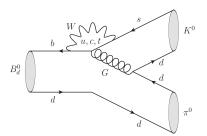
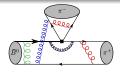

Theory determination of γ and ϕ_s from $B_{(s)} \to hh$ decays

K. Keri Vos

Maastricht University & Nikhef in collaboration with Ruben Jaarsma and Robert Fleischer, JHEP02 (2023) 081 [2211.08346]


The challenge of nonleptonic *B* decays

- Nonleptonic decays are important probes of CP violation
 - Direct CP violation due to different strong and weak phases
 - Mixing-induced CP violation in neutral decays probe mixing phase $\phi_{d,s}$
 - Sensitivity to NP in loops (penguins)
- CP violation in the SM is too small and peculiar!
 - CKM CP violating effects only from flavour changing currents
 - Flavour diagonal CP violation tiny in SM (EDMs)
 - Large CP asymmetries with processes with tiny BRs and vice versa


The challenge of nonleptonic *B* decays

- Nonleptonic decays are important probes of CP violation
 - Direct CP violation due to different strong and weak phases
 - Mixing-induced CP violation in neutral decays probe mixing phase $\phi_{d,s}$
 - Sensitivity to NP in loops (penguins)
- CP violation in the SM is too small and peculiar!
 - CKM CP violating effects only from flavour changing currents
 - Flavour diagonal CP violation tiny in SM (EDMs)
 - Large CP asymmetries with processes with tiny BRs and vice versa

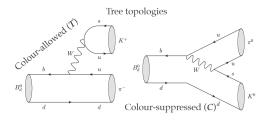
Challenge: Calculation of Hadronic matrix elements

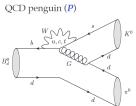
How to handle nonleptonic B decays?

QCD Factorization Beneke, Buchalla, Neubert, Sachrajda: Talk by T. Huber@CKM

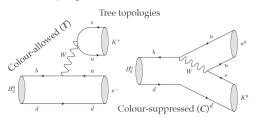
• Disentangle perturbative (calculable) and non-perturbative dynamics using HQE

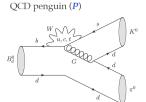
Flavour symmetries (Isospin or SU(3))


- Puzzles in $B \to \pi K$ e.g. Fleischer, Jaarsma, KKV, Malami [2017,2018] and $B \to D K$ Talk by E. Malami@CKM
- ullet Global SU(3) fit to B o PP decays Huber, Tetlalmatzi-Xolocotzi [2111.06418]

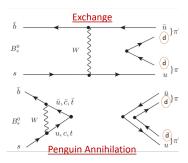

Light-cone sumrules

Work in progress Jung, Melic, Khodjamirian


Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 2 / 20


- Main contributions to $B \rightarrow hh$
- Tree and penguin contributions

- Main contributions to $B \rightarrow hh$
- Tree and penguin contributions



		Topologies			
Mode	Notation	T	P	E	PA
$B_d^0 \to \pi^- \pi^+$	d, θ	X	X	X	X
$B_s^0 \to K^-K^+$	d', θ'	X	X	X	X
$B_s^0 \to K^-\pi^+$	$ ilde{d}, ilde{ heta}$	X	X		
$B_d^0 \to \pi^- K^+$	$ ilde{d'}, ilde{ heta'}$	X	X		
$B_s^0 \to \pi^-\pi^+$	$\hat{d},\hat{ heta}$			X	X
$B_d^0 \to K^- K^+$	$\hat{d}', \hat{ heta}'$			x	X

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 3 / 20

- Suppressed (?) contributions to $B \to hh$
- Exchange and Penguin Annihilation usually neglected

LHCb [2012.05319], Fleischer, Jaarsma, KKV, JHEP 02 (2023) 081 [2211.08346]

- New! First observation of CP violation in penguin dominated $B_s o K^-K^+$ [LHCb]
 - Allows determination of γ and ϕ_s
 - Interesting to compare loops with tree!
- ullet Updated measurements of CP asymmetries for other B o hh modes [LHCb]

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 5 / 20

LHCb [2012.05319], Fleischer, Jaarsma, KKV, JHEP 02 (2023) 081 [2211.08346]

- New! First observation of CP violation in penguin dominated $B_s \to K^-K^+$ [LHCb]
 - Allows determination of γ and ϕ_s
 - Interesting to compare loops with tree!
- ullet Updated measurements of CP asymmetries for other B o hh modes [LHCb]

New Puzzle?

$$\begin{split} \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}(B_{d}^{0} \to K^{-}K^{+}) - \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}(B_{d}^{0} \to \pi^{-}K^{+}) &= 0.089 \pm 0.031 \\ \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}(B_{d}^{0} \to \pi^{-}\pi^{+}) - \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}(B_{s}^{0} \to K^{-}\pi^{+}) &= -0.095 \pm 0.040 \end{split}$$

- Modes only differ by their spectator quark!
- Can exchange and penguin annihilation contributions cause this?

Today: New determinations of γ, ϕ_s and of exchange and penguin annihilation effects!

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 5 / 20

		Topologies				
Mode	Notation	T	P	E	PA	
$\overline{B_d^0 \to \pi^- \pi^+}$	d, θ	X	X	X	X	
$B_s^0 \to K^-K^+$	d', θ'	X	X	X	X	
$B_s^0 \to K^-\pi^+$	d, heta	X	X			
$B_d^0 \to \pi^- K^+$	$ ilde{d'}, ilde{ heta'} $	X	X			
$B_s^0 \to \pi^- \pi^+$	$\hat{d},\hat{ heta}$			X	X	
$B_d^0 \to K^- K^+$	$\hat{d}',\hat{ heta}'$			X	X	

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 6 / 20

Extracting γ from QCD penguin decays

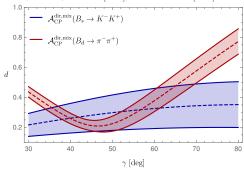
Fleischer [1999, 2007]; Fleischer, Knegjens [2011]

$$\begin{split} A(B_s \to K^+ K^-) &= \sqrt{\epsilon} e^{i\gamma} \mathcal{C}' \left[1 + \tfrac{1}{\epsilon} d' e^{i\theta'} e^{-i\gamma} \right] \\ A(B_d \to \pi^+ \pi^-) &= e^{i\gamma} \mathcal{C} \left[1 - d e^{i\theta} e^{-i\gamma} \right] \\ \mathcal{C}' \propto T' + P^{(ut)'} + E' + PA^{(ut)'} \text{ and } d' e^{i\theta'} \propto \frac{P^{(ct)'} + PA^{(ct)'}}{T' + P^{(ut)'} + E' + PA^{(ut)'}} \end{split}$$

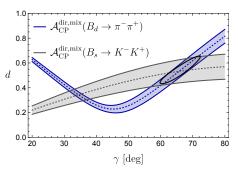
- **d** and θ penguin parameters $[\epsilon \sim 0.04]$
- Extract hadronic parameters from direct and mixing-induced CP asymmetries

Fleischer [1999, 2007]; Fleischer, Knegjens [2011]

$$\begin{split} A(B_s \to K^+ K^-) &= \sqrt{\epsilon} e^{i\gamma} \mathcal{C}' \left[1 + \tfrac{1}{\epsilon} d' e^{i\theta'} e^{-i\gamma} \right] \\ A(B_d \to \pi^+ \pi^-) &= e^{i\gamma} \mathcal{C} \left[1 - d e^{i\theta} e^{-i\gamma} \right] \\ \mathcal{C}' \propto T' + P^{(ut)'} + E' + PA^{(ut)'} \text{ and } d' e^{i\theta'} \propto \frac{P^{(ct)'} + PA^{(ct)'}}{T' + P^{(ut)'} + E' + PA^{(ut)'}} \end{split}$$

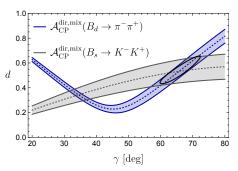

- **d** and θ penguin parameters $[\epsilon \sim 0.04]$
- Extract hadronic parameters from direct and mixing-induced CP asymmetries

U-spin symmetry


$$de^{i\theta} = d'e^{i\theta'}$$

- Or assume d = d' and extract γ
- Limited by *U*-spin breaking corrections

Fleischer [1999,2007]; Fleischer, Knegjens [2011]; Fleischer, Malami, Jaarsma, KKV [2016] Cuichini, Franco, Mishima, Silvestrini [2012], Data from LHCb [2022]Fleischer, Jaarsma, KKV [2211.08346]


Fleischer [1999,2007]; Fleischer, Knegjens [2011]; Fleischer, Malami, Jaarsma, KKV [2016] Cuichini, Franco, Mishima, Silvestrini [2012], Data from LHCb [2022]Fleischer, Jaarsma, KKV [2211.08346]

- New! First observation of CP violation in penguin dominated $B_s o K^+K^-$ LHCb 2022
- ullet New! First determination of γ with only CP asymmetries
- $oldsymbol{\gamma}=(65^{+7}_{-5})^\circ$ Fleischer, Jaarsma, KKV [2111.08346]
- Agrees with tree determinations: $\gamma = (64.9 \pm 4.5)^\circ$ LHCb [2021] without B_s modes

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 9 / 20

Fleischer [1999,2007]; Fleischer, Knegjens [2011]; Fleischer, Malami, Jaarsma, KKV [2016] Cuichini, Franco, Mishima, Silvestrini [2012], Data from LHCb [2022]Fleischer, Jaarsma, KKV [2211.08346]

- New! First observation of CP violation in penguin dominated $B_s o K^+K^-$ LHCb 2022
- ullet New! First determination of γ with only CP asymmetries
- ullet $\gamma=(65^{+7}_{-5})^\circ$ Fleischer, Jaarsma, KKV [2111.08346]
- Agrees with tree determinations: $\gamma = (64.9 \pm 4.5)^\circ$ LHCb [2021] without ${\it B_s}$ modes
- Limited by *U*-spin breaking corrections

		Topologies			
Mode	Notation	T	P	$\mid E \mid$	PA
$B_d^0 \to \pi^- \pi^+$	d, θ	X	X	X	x
$B_s^0 \to K^-K^+$	d', θ'	X	X	X	X
$B_s^0 \to K^-\pi^+$	$ ilde{d}, ilde{ heta}$	X	x		
$B_d^0 \to \pi^- K^+$	$ ilde{d'}, ilde{ heta'}$	X	x		
$B_s^0 \to \pi^-\pi^+$	$\hat{d},\hat{ heta}$			X	x
$B_d^0 \to K^- K^+$	$\hat{d'}, \hat{ heta'}$			x	x

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 10 / 20

LHCb [2012.05319], Fleischer, Jaarsma, KKV, JHEP 02 (2023) 081 [2211.08346]

$$\begin{split} \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}(B_s^0 \to K^- K^+) - \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}(B_d^0 \to \pi^- K^+) &= 0.089 \pm 0.031 \\ \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}(B_d^0 \to \pi^- \pi^+) - \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}(B_s^0 \to K^- \pi^+) &= -0.095 \pm 0.040 \end{split}$$

- Can exchange and penguin annihilation contributions cause this?
- Challenging to compute \rightarrow data-driven approach

Beautiful Puzzles 20.09.2023 11 / 20 • Difference between $B_d^0 \to \pi^- \pi^+, B_s^0 \to K^- K^+$ and $B_d^0 \to \pi^- K^+, B_s^0 \to K^- \pi^+$

$$\tilde{d}'e^{i\tilde{\theta}'}=\zeta'd'e^{i\theta'}$$

- Step 0: Use γ as input, use only direct CP asymmetry (no ϕ input)
- Step 1: Determine d from $B_s \to K^-K^+$ system

How to determine *E* and **PA** amplitudes?

• Difference between $B_d^0 \to \pi^- \pi^+, B_s^0 \to K^- K^+$ and $B_d^0 \to \pi^- K^+, B_s^0 \to K^- \pi^+$

$$\tilde{d}'e^{i\tilde{\theta}'}=\zeta'd'e^{i\theta'}$$

• Mismatch parametrized by

$$\zeta' \equiv |\zeta'| e^{i\omega'} \equiv \frac{1+x'}{1+r'_{PA}}$$

$$x^{(\prime)} \equiv |x^{(\prime)}| e^{i\sigma^{(\prime)}} \equiv \frac{E^{(\prime)} + PA^{(ut)(\prime)}}{T^{(\prime)} + P^{(ut)(\prime)}}, \quad r_{PA}^{(\prime)} \equiv |r_{PA}^{(\prime)}| e^{i\theta_{PA}^{(\prime)}} \equiv \frac{PA^{(ct)(\prime)}}{P^{(ct)(\prime)}}.$$

- Step 0: Use γ as input, use only direct CP asymmetry (no ϕ input)
- Step 1: Determine d from $B_s \to K^-K^+$ system
- Step 2: Determine \tilde{d} from $B_s \to K^-\pi^+$ system

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 12 / 20

• Difference between $B^0_d \to \pi^-\pi^+, B^0_s \to K^-K^+$ and $B^0_d \to \pi^-K^+, B^0_s \to K^-\pi^+$

$$\tilde{d}'e^{i\tilde{\theta}'}=\zeta'd'e^{i\theta'}$$

$$\zeta' \equiv |\zeta'| e^{i\omega'} \equiv \frac{1 + x'}{1 + r'_{PA}}$$

$$x^{(\prime)} \equiv |x^{(\prime)}| e^{i\sigma^{(\prime)}} \equiv \frac{E^{(\prime)} + PA^{(ut)(\prime)}}{T^{(\prime)} + P^{(ut)(\prime)}}, \quad r_{PA}^{(\prime)} \equiv |r_{PA}^{(\prime)}| e^{i\theta_{PA}^{(\prime)}} \equiv \frac{PA^{(ct)(\prime)}}{P^{(ct)(\prime)}}.$$

- Step 0: Use γ as input, use only direct CP asymmetry (no ϕ input)
- Step 1: Determine d from $B_s \to K^-K^+$ system
- Step 2: Determine \tilde{d} from $B_s o K^-\pi^+$ system
- Step 3: We find $|\zeta|\equiv ilde{d}/d=1.3\pm 0.2$, $\ \omega\equiv ilde{ heta}- heta=(16\pm 5)^\circ$

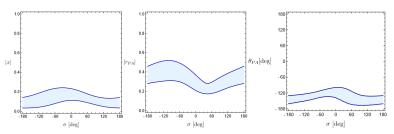
Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 12 / 20

How to determine *E* and **PA** amplitudes?

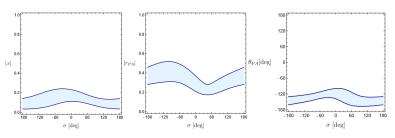
• Difference between $B_d^0 \to \pi^- \pi^+, B_s^0 \to K^- K^+$ and $B_d^0 \to \pi^- K^+, B_s^0 \to K^- \pi^+$

$$\tilde{d}'e^{i\tilde{\theta}'}=\zeta'd'e^{i\theta'}$$

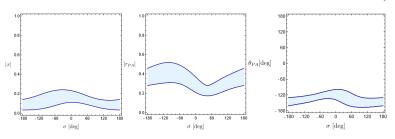
$$\zeta' \equiv |\zeta'| e^{i\omega'} \equiv \frac{1 + x'}{1 + r'_{PA}}$$


$$x^{(\prime)} \equiv |x^{(\prime)}| e^{i\sigma^{(\prime)}} \equiv \frac{E^{(\prime)} + PA^{(ut)(\prime)}}{T^{(\prime)} + P^{(ut)(\prime)}}, \quad r_{PA}^{(\prime)} \equiv |r_{PA}^{(\prime)}| e^{i\theta_{PA}^{(\prime)}} \equiv \frac{PA^{(ct)(\prime)}}{P^{(ct)(\prime)}}.$$

- Step 0: Use γ as input, use only direct CP asymmetry (no ϕ input)
- Step 1: Determine d from $B_s \to K^-K^+$ system
- Step 2: Determine \widetilde{d} from $B_s o K^-\pi^+$ system
- Step 3: We find $|\zeta| \equiv \tilde{d}/d = 1.3 \pm 0.2$, $\omega \equiv \tilde{\theta} \theta = (16 \pm 5)^\circ$
- Cannot fully determine parameters yet!


Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 12 / 20

		Topologies			
Mode	Notation	T	P	$\mid E \mid$	PA
$B_d^0 \to \pi^-\pi^+$	d, θ	X	X	X	x
$B_s^0 \to K^-K^+$	d', θ'	X	X	X	X
$B_s^0 \to K^-\pi^+$	$ec{d}, ilde{ heta}$	X	x		
$B_d^0 \to \pi^- K^+$	$ ilde{d'}, ilde{ heta'}$	X	X		
$B_s^0 \to \pi^-\pi^+$	$\hat{d},\hat{ heta}$			X	x
$B_d^0 \to K^-K^+$	$\mid \hat{d}', \hat{ heta}' \mid$			x	x


• Only branching ratios available

• x and r_{PA} constrained at 20% and 30% level

- x and r_{PA} constrained at 20% and 30% level
- The difference in the direct CP asymmetries can be accommodated by exchange and penguin annihilation effects at the level of (20–30)%.
- No anomalously enhanced rescattering effects

- x and rpA constrained at 20% and 30% level
- The difference in the direct CP asymmetries can be accommodated by exchange and penguin annihilation effects at the level of (20-30)%.
- CP asymmetries in the $B_s^0 \to \pi^- \pi^+, B_d^0 \to K^- K^+$ system would provide even more info!

Beautiful Puzzles 20.09.2023 14 / 20 • CP violation in $B_s \to K^+K^-$ also gives access to ϕ_s

$$\phi_s^{\mathrm{eff}} = \frac{\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}(\mathcal{B}_s^0 \to \mathcal{K}^- \mathcal{K}^+)}{\sqrt{1 - (\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}(\mathcal{B}_s^0 \to \mathcal{K}^- \mathcal{K}^+))^2}}$$

- $\phi_s^{\text{eff}} \equiv \phi_s + \Delta \phi_{KK}$
- LHCb measurement: $\phi_s^{\rm eff} = -(8.1 \pm 1.9)^\circ$ LHCb 2022

Beautiful Puzzles 20.09.2023 15 / 20

Fleischer, Jaarsma, KKV, JHEP 02 (2023) 081 [2211.08346]

• CP violation in $B_s \to K^+K^-$ also gives access to ϕ_s

$$\phi_s^{\mathrm{eff}} = \frac{\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}(\mathcal{B}_s^0 \to \mathcal{K}^- \mathcal{K}^+)}{\sqrt{1 - (\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}(\mathcal{B}_s^0 \to \mathcal{K}^- \mathcal{K}^+))^2}}$$

- $\phi_s^{\text{eff}} \equiv \phi_s + \Delta \phi_{KK}$
- ullet LHCb measurement: $\phi_s^{
 m eff} = -(8.1 \pm 1.9)^\circ$ LHCb 2022
- $\Delta\phi_{\mathit{KK}}$ hadronic phase shift

$$\Delta\phi_{\mathit{KK}} = 2\epsilon\sin\gamma\left[\frac{d'\cos\theta' + \epsilon\cos\gamma}{d'^2 + 2\epsilon d'\cos\theta'\cos\gamma + \epsilon^2\cos2\gamma}\right]$$

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 15 / 20

Fleischer, Jaarsma, KKV, JHEP 02 (2023) 081 [2211.08346]

• CP violation in $B_s \to K^+K^-$ also gives access to ϕ_s

$$\phi_s^{\mathrm{eff}} = \frac{\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}(\mathcal{B}_s^0 \to \mathcal{K}^- \mathcal{K}^+)}{\sqrt{1 - (\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}(\mathcal{B}_s^0 \to \mathcal{K}^- \mathcal{K}^+))^2}}$$

- $\phi_s^{\text{eff}} \equiv \phi_s + \Delta \phi_{KK}$
- LHCb measurement: $\phi_s^{
 m eff} = -(8.1 \pm 1.9)^\circ$ LHCb 2022
- $\Delta\phi_{\it KK}$ hadronic phase shift

$$\Delta\phi_{\mathit{KK}} = 2\epsilon\sin\gamma\left[\frac{d'\cos\theta' + \epsilon\cos\gamma}{d'^2 + 2\epsilon d'\cos\theta'\cos\gamma + \epsilon^2\cos2\gamma}\right]$$

How to determine the penguin parameters?

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 15 / 20

Determination of ϕ_s (I)

Strategy I:

Fleischer, Jaarsma, KKV, JHEP 02 (2023) 081 [2211.08346] (and [1612.07342])

• Use semileptonic decays

$$R_\pi \equiv \frac{\Gamma(B_d^0 \to \pi^- \pi^+)}{|d\Gamma(B_d^0 \to \pi^- \ell^+ \nu_\ell)/dq^2|_{q^2 = m_\pi^2}} \qquad R_K \equiv \frac{\Gamma(B_s^0 \to K^- K^+)_{\rm theo}}{|d\Gamma(B_s^0 \to K^- \ell \nu_\ell/dq^2|_{q^2 = m_K^2}}$$

- Gives access to hadronic parameters $r_{\mathcal{K}} = \left(1 + \left(rac{d'}{\epsilon}
 ight)^2 + 2d'/\epsilon\cos heta'\cos\gamma
 ight)$
- Use ratios to get favorable structure!

$$r_K = rac{R_K}{R_\pi} \left(rac{|V_{ud}| f_\pi}{|V_{us}| f_K}
ight)^2 rac{X_\pi}{X_K} \left(\xi_{\mathsf{NF}}^{\mathsf{a}}
ight)^2 r_\pi$$

• $X_{\pi,K}$ ratio of form factor \rightarrow input

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 16 / 20

Determination of ϕ_s (I)

Strategy I:

Fleischer, Jaarsma, KKV, JHEP 02 (2023) 081 [2211.08346] (and [1612.07342])

• Use semileptonic decays

$$R_{\pi} \equiv \frac{\Gamma(B_{d}^{0} \to \pi^{-}\pi^{+})}{|d\Gamma(B_{d}^{0} \to \pi^{-}\ell^{+}\nu_{\ell})/dq^{2}|_{q^{2}=m_{\pi}^{2}}} \qquad R_{K} \equiv \frac{\Gamma(B_{s}^{0} \to K^{-}K^{+})_{\mathrm{theo}}}{|d\Gamma(B_{s}^{0} \to K^{-}\ell\nu_{\ell}/dq^{2}|_{q^{2}=m_{K}^{2}}}$$

- Gives access to hadronic parameters $r_{\mathcal{K}} = \left(1 + \left(rac{d'}{\epsilon}
 ight)^2 + 2d'/\epsilon\cos heta'\cos\gamma
 ight)$
- Use ratios to get favorable structure!

$$r_K = rac{R_K}{R_\pi} \left(rac{|V_{ud}| f_\pi}{|V_{us}| f_K}
ight)^2 rac{X_\pi}{X_K} \left(\xi_{\mathsf{NF}}^{\mathsf{a}}
ight)^2 r_\pi$$

• Non-factorisable *U*-spin-breaking contributions:

$$\xi_{\mathrm{NF}}^{\mathtt{a}} \equiv \left| rac{1 + r_{P}}{1 + r_{P}'} \right| \left| rac{1 + x}{1 + x'} \right| \left| rac{\mathbf{a}_{\mathrm{NF}}^{\mathsf{T}}}{\mathbf{a}_{\mathrm{NF}}^{\mathsf{T}\prime}} \right|,$$

• a_{NF}^{T} tree-level contribution from QCDF

Determination of ϕ_s (I)

Strategy I:

Fleischer, Jaarsma, KKV, JHEP 02 (2023) 081 [2211.08346] (and [1612.07342])

• Use semileptonic decays

$$R_{\pi} \equiv \frac{\Gamma(B_{d}^{0} \to \pi^{-}\pi^{+})}{|d\Gamma(B_{d}^{0} \to \pi^{-}\ell^{+}\nu_{\ell})/dq^{2}|_{q^{2}=m_{\pi}^{2}}} \qquad R_{K} \equiv \frac{\Gamma(B_{s}^{0} \to K^{-}K^{+})_{\rm theo}}{|d\Gamma(B_{s}^{0} \to K^{-}\ell\nu_{\ell}/dq^{2}|_{q^{2}=m_{K}^{2}}}$$

- Gives access to hadronic parameters $r_K = \left(1 + \left(\frac{d'}{\epsilon}\right)^2 + 2d'/\epsilon\cos\theta'\cos\gamma\right)$
- Use ratios to get favorable structure!

$$r_K = rac{R_K}{R_\pi} \left(rac{|V_{ud}| f_\pi}{|V_{us}| f_K}
ight)^2 rac{X_\pi}{X_K} \left(\xi_{\mathsf{NF}}^{\mathsf{a}}
ight)^2 r_\pi$$

• Non-factorisable *U*-spin-breaking contributions:

$$\xi_{\mathrm{NF}}^{\mathtt{a}} \equiv \left| \frac{1 + r_{P}}{1 + r_{P}'} \right| \left| \frac{1 + x}{1 + x'} \right| \left| \frac{a_{\mathrm{NF}}^{\mathsf{T}}}{a_{\mathrm{NF}}^{\mathsf{T}\prime}} \right|,$$

- a_{NF}^{T} tree-level contribution from QCDF
- $\xi_{\rm NF}^a=1.00\pm0.07 \to 0.8^\circ$ theoretical uncertainty on $\Delta\phi_{\it KK}$

Strategy I:

Use semileptonic decays

$$R_{\pi} \equiv \frac{\Gamma(B_d^0 \to \pi^- \pi^+)}{|d\Gamma(B_d^0 \to \pi^- \ell^+ \nu_{\ell})/dq^2|_{q^2 = m_{\pi}^2}} \qquad R_{K} \equiv \frac{\Gamma(B_s^0 \to K^- K^+)_{\rm theo}}{|d\Gamma(B_s^0 \to K^- \ell \nu_{\ell}/dq^2|_{q^2 = m_{K}^2}}$$

- Experimental input not available!
- Theoretical control over penguin effects excellent!
- $\xi_{\rm NF}^a=1.00\pm0.07 \rightarrow 0.8^\circ$ theoretical uncertainty on $\Delta\phi_{KK}$

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 17 / 20

Fleischer, Jaarsma, KKV, JHEP 02 (2023) 081 [2211.08346]

Strategy II:

• Use ratio of branching ratios of $B_d o \pi\pi$ and $B_s o KK$ decays

$$K \equiv \frac{1}{\epsilon} \left[\frac{m_{B_s}}{m_{B_d}} \frac{\Phi(m_\pi/m_{B_d}, m_\pi/m_{B_d})}{\Phi(m_K/m_{B_s}, m_K/m_{B_s})} \frac{\tau_{B_d}}{\tau_{B_s}} \right] \frac{\mathcal{B}(B_s^0 \to K^-K^+)_{\rm theo}}{\mathcal{B}(B_d^0 \to \pi^-\pi^+)} = 105.3 \pm 9.6$$

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 18 / 20

Fleischer, Jaarsma, KKV, JHEP 02 (2023) 081 [2211.08346]

Strategy II:

- ullet Use ratio of branching ratios of $B_d o \pi\pi$ and $B_s o KK$ decays $K=105.3\pm9.6$
- Gives access to hadronic parameters

$$r_{K} = \left| \frac{\mathcal{C}}{\mathcal{C}'} \right|^{2} K r_{\pi} = \left(1 + \left(\frac{d'}{\epsilon} \right)^{2} + 2d' / \epsilon \cos \theta' \cos \gamma \right)$$

$$\left|\frac{\mathcal{C}}{\mathcal{C}'}\right| = \frac{f_\pi}{f_K} \left[\frac{m_{B_d}^2 - m_\pi^2}{m_{B_s}^2 - m_K^2}\right] \left[\frac{F_0^{B_d\pi}(m_\pi^2)}{F_0^{B_sK}(m_K^2)}\right] \xi_{\mathrm{NF}}^{\mathtt{a}}$$

• Non-factorisable *U*-spin-breaking contributions:

$$\xi_{\rm NF}^{a} \equiv \left| \frac{1 + r_{\rm P}}{1 + r_{\rm P}'} \right| \left| \frac{1 + x}{1 + x'} \right| \left| \frac{a_{\rm NF}^{T}}{a_{\rm NF}^{T'}} \right| = 1.00 \pm 0.07,$$

• a_{NF}^{T} tree-level contribution from QCDF

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 18 / 20

Determination of ϕ_s (II)

Fleischer, Jaarsma, KKV, JHEP 02 (2023) 081 [2211.08346]

Strategy II:

- ullet Use ratio of branching ratios of $B_d o \pi\pi$ and $B_s o KK$ decays $K=105.3\pm9.6$
- Non-factorisable *U*-spin-breaking contributions:

$$\xi_{\rm NF}^{a} \equiv \left| \frac{1 + r_{\rm P}}{1 + r_{\rm P}'} \right| \left| \frac{1 + x}{1 + x'} \right| \left| \frac{a_{\rm NF}^{T}}{a_{\rm NF}^{T'}} \right| = 1.00 \pm 0.07,$$

- Use form factor information: 10% uncertainty
- $\Delta \phi_{KK} = -(4.5 \pm 5.3)^{\circ}$
- With $\phi_s^{\rm eff} = -(8.1 \pm 1.9)^\circ \to \phi_s = -(3.6 \pm 5.7)^\circ$

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 18 / 20

Fleischer, Jaarsma, KKV, JHEP 02 (2023) 081 [2211.08346]

Strategy II:

- Use ratio of branching ratios of $B_d \to \pi\pi$ and $B_s \to KK$ decays $K=105.3\pm 9.6$
- Non-factorisable *U*-spin-breaking contributions:

$$\xi_{\rm NF}^{a} \equiv \left| \frac{1 + r_{P}}{1 + r_{P}'} \right| \left| \frac{1 + x}{1 + x'} \right| \left| \frac{a_{\rm NF}^{T}}{a_{\rm NF}^{T'}} \right| = 1.00 \pm 0.07,$$

- $\Delta \phi_{KK} = -(4.5 \pm 5.3)^{\circ}$
- With $\phi_s^{\text{eff}} = -(8.1 \pm 1.9)^{\circ} \rightarrow \phi_s = -(3.6 \pm 5.7)^{\circ}$

Remarkable agreement with $B_s^0 \to J/\psi \phi$ determination: $\phi_s = -(4.2 \pm 1.4)^\circ$

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 18 / 20

Challenges in (nonleptonic) B decays

19 / 20

We are in the High-precision Era in Flavour Physics!

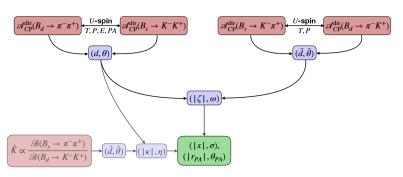
- Nonleptonic decays are challenging but important!
- $B_s o KK$ gives consistent γ and ϕ_s determinations
- Exchange and Penguin Annihilation not anomalously large
- CP asymmetries in $B_d \to KK$ and $B_s \to \pi\pi$ would provide more input
- Link with semileptonic decays to be explored

Summary & Outlook

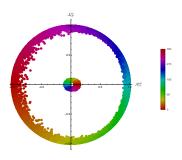
We are in the High-precision Era in Flavour Physics!

- Nonleptonic decays are challenging but important!
- $B_s o KK$ gives consistent γ and ϕ_s determinations
- Exchange and Penguin Annihilation not anomalously large
- CP asymmetries in $B_d \to KK$ and $B_s \to \pi\pi$ would provide more input
- Link with semileptonic decays to be explored
- Stay tuned for new data and updated theory predictions

We are in the High-precision Era in Flavour Physics!


- Nonleptonic decays are challenging but important!
- $B_s \to KK$ gives consistent γ and ϕ_s determinations
- Exchange and Penguin Annihilation not anomalously large
- CP asymmetries in $B_d \to KK$ and $B_s \to \pi\pi$ would provide more input
- Link with semileptonic decays to be explored
- Stay tuned for new data and updated theory predictions

Close collaboration between theory and experiment necessary!


Beautiful Puzzles 20.09.2023 20 / 20

Backup

21 / 20

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 22 / 20

- Correlation between CP asymmetries in $B_s \to \pi\pi$ (small circle) and $B_d \to KK$ (wide) for different strong phases
- Important also to improve QCDF

Keri Vos (Maastricht) Beautiful Puzzles 20.09.2023 23 / 20