Update on SU(3)-breaking ratios and bag parameters for $B_{(s)}$ mesons

Felix Erben

in collaboration with

Peter Boyle, Luigi Del Debbio, Jonathan Flynn, Andreas Jüttner, Takashi Kaneko, Michael Marshall, Rajnandini Mukherjee, Antonin Portelli, J Tobias Tsang, Oliver Witzel RBC/UKQCD and JLQCD

CKM2023 Santiago de Compostela 21/09/2023

B_q -MESON MIXING

B-mesons B_d , B_s have mass eigenstates

$$\begin{split} |B^{0}_{qL}\rangle &= p_{q}|B^{0}_{q}\rangle + q_{q}|\bar{B}^{0}_{q}\rangle \\ |B^{0}_{qH}\rangle &= p_{q}|B^{0}_{q}\rangle - q_{q}|\bar{B}^{0}_{q}\rangle \end{split}$$

with mass $m_{q\,L}$ and total decay width $\Gamma_{q\,L}$ for the lighter eigenstate. Splittings:

$$\Delta m_{q} = m_{qH} - m_{qL}$$
$$\Delta \Gamma_{q} = \Gamma_{qL} - \Gamma_{qH}$$

Experimentally, time dependent probabilities give access to the splittings, e.g.

$$\mathcal{P}(B_q^0 \to \bar{B}_q^0) = \frac{1}{2} e^{-\Gamma_q t} [\cosh(\frac{1}{2}\Delta\Gamma_q t) - \cos(\Delta m_q t)] |q_q/p_q|^2$$

$B_{\mbox{\scriptsize q}}$ meson mixing

LHCb 2021 measurement [Nature Phys. 18 (2022) 1, 1-5]

$$- B_s^0 \to D_s^- \pi^+ - \overline{B}_s^0 \to B_s^0 \to D_s^- \pi^+$$
 — Untagged

- CKM unitarity triangle [CKMfitter Spring 2021]
- see also UTfit [UTfit Summer 2022]
- B_q mixing constrains $\Delta m_d, \Delta m_s, \sin 2\beta$

+ NP fit agrees with SM at $\sim 1\sigma$ level

[Charles et al., Phys.Rev.D 102 (2020) 5, 056023]

• See talk by Luiz Vale Silva [Mon 18/9, 9:00]

B_q MIXING - EXPERIMENT

Experimental results, HFLAV 2021 [Phys.Rev.D 107 (2023) 5]

$$\Delta m_{s} = 17.765(6) ps^{-1}$$

1

$$\Delta m_d = 0.5065(19) \text{ps}^-$$

1

$B_{\boldsymbol{q}}$ mixing - lattice

- current tension between $\Delta m_d, \, \Delta m_s$ lattice determinations
 - · FNAL/MILC '16 is in tension with experiment
 - · HPQCD '19 is compatible with experiment
 - RBC/UKQCD '18 result still missing renormalization factors
 - · theory uncertainty dominates experimental one

- similar picture in $|V_{t\,d}|, |V_{t\,s}|$
 - lattice results in slight tension, but all compatible with sum-rules (King et al. '19)
 - unitarity-triangle fits favour HPQCD '19 result

[Di Luzio et al., JHEP 12 (2019) 009]

[HPQCD 19, Phys. Rev. D 100, 094508] [King et al. 19, JHEP 05 (2019) 034]

6/22

THEORY

$$\begin{split} \langle \mathbf{B}_{q}^{0} | \mathcal{H}_{W}^{eff} | \bar{\mathbf{B}}_{q}^{0} \rangle &= \langle \mathbf{B}_{q}^{0} | \mathcal{H}_{W}^{eff} | \bar{\mathbf{B}}_{q}^{0} \rangle_{SD} + \langle \mathbf{B}_{q}^{0} | \mathcal{H}_{W}^{eff} | \bar{\mathbf{B}}_{q}^{0} \rangle_{LD} \\ &= \langle \mathbf{B}_{q}^{0} | \mathcal{H}_{W}^{\Delta B=2} | \bar{\mathbf{B}}_{q}^{0} \rangle + \sum_{n} \frac{\langle \mathbf{B}_{q}^{0} | \mathcal{H}_{W}^{\Delta B=1} | n \rangle \langle n | \mathcal{H}_{W}^{\Delta B=1} | \bar{\mathbf{B}}_{q}^{0} \rangle}{M_{B_{q}} - \mathbf{E}_{n}} \end{split}$$

short-distance contribution:

- t-loop enhancement
- · additional CKM hierachy enhancement

$$\langle B^0_q | \mathcal{H}^{eff}_W | \bar{B}^0_q \rangle_{SD} \sim \Big(\sum_{q'=u,c,t} V^*_{q'q} V_{q'b} S_0(\mathfrak{m}^2_{q'}/M^2_W) \Big)^2$$

long-distance contribution:

• CKM-suppressed

 $B_{\,q}\mbox{-mixing}$ dominated by short-distance contribution

- $\Delta B = 2 \text{ process}$
- enhanced by top quark \Rightarrow short-distance dominated
- · OPE shrinks box diagram to local four-quark operator

 $\langle \bar{B}^0_q | \mathcal{H}^{\Delta B=2}_{\text{eff}} | B^0_q \rangle \sim \langle \bar{B}^0_q | \mathcal{O}_i | B^0_q \rangle$

+ 5 parity-even, dimension 6, $\Delta B=2$ operators \mathbb{O}_{i}

- bag parameters ${\mathcal B}$ give access to mass splittings Δm

$$\begin{split} \mathcal{B}_{B_{q}}^{[\mathfrak{i}]} &= \frac{\langle \bar{B}_{q}^{0} | \mathcal{O}_{\mathfrak{i}} | B_{q} \rangle}{\langle \bar{B}_{q}^{0} | \mathcal{O}_{\mathfrak{i}} | B_{q} \rangle_{\mathsf{VSA}}} \\ \Delta \mathfrak{m}_{q} &= |V_{td} V_{tq}^{*}|^{2} \mathcal{K} \mathcal{M}_{B_{q}} f_{B_{q}}^{2} \mathcal{B}_{B_{q}}^{[1]} \end{split}$$

- \mathcal{K} known (perturbative)
- + M_{B_q} , f_{B_q} , $\mathcal{B}_{B_q}^{[i]}$ non-perturbatively from lattice QCD
- + Δm_q as input $\Rightarrow |V_{tq}|$ (or other way round)
- Additional ${\mathcal B}_{B_q}^{[i]}$ give access to $\Delta\Gamma_q$ and constrain various BSM models

LATTICE QCD

Lattice QCD: method to compute correlation functions non-perturbatively and from first principles

- · Discrete, finite Euclidean space-time grid
 - quark fields ψ on sites n
 - gluons U_{μ} as gauge links
 - finite lattice spacing α (UV regulator)
 - finite volume L, T (IR regulator)
- Path integral

$$\langle \mathfrak{O} \rangle = \frac{1}{Z} \int dU d\psi d\bar{\psi} \, \mathfrak{O}[U, \psi, \bar{\psi}] e^{-S[U, \psi, \bar{\psi}]}$$

- even relatively small grids have size $\Lambda = (L/\alpha) \times (T/\alpha) = 24^3 \times 48$
 - exact evaluation prohibitively expensive
 - \Rightarrow stochastic sampling of ensembles

CONTINUUM LIMIT (B-MIXING)

We need to control on each ensemble

- light-quark discretisation effects $\Rightarrow M_\pi L \gtrapprox 4$
- heavy-quark discretisation effects $am_{\rm h}$

Two approaches for heavy quark:

effective theories

- allow expansion in $1/\alpha m_b$
- · truncation at some order
- not easily improvable

method:

- Relativistic action (HQET, RHQ, Fermilab method)
- Nonrelativistic QCD (NRQCD)

fully relativistic

- $am_h \ll 1$ needed
- \Rightarrow fine lattice spacing for am_b^{phys}
 - improvable with finer, larger boxes

method:

- extrapolation $am_h \to am_b$ for multiple $am_h < am_b$
- today impossible to reach am_1^{phys} , am_b^{phys} simultaneously

FULL RECIPE

2pt-functions

$$\langle B_{\mathfrak{q}}(\mathfrak{t})B_{\mathfrak{q}}^{\dagger}(0)\rangle_{L,\mathfrak{a},\mathfrak{m}_{l},\mathfrak{m}_{h}} \Rightarrow M_{B_{\mathfrak{q}}}(L,\mathfrak{a},\mathfrak{m}_{l},\mathfrak{m}_{h}), f_{B_{\mathfrak{q}}}(L,\mathfrak{a},\mathfrak{m}_{l},\mathfrak{m}_{h})$$

3pt-functions

$$\langle B_q(\Delta T) \mathcal{O}_i(t) B_q^{\dagger}(0) \rangle_{L,a,m_l,m_h} \Rightarrow \mathcal{B}_{B_q}^{[i]}(L, a, m_l, m_h)$$

Leading to

$$\Delta \mathfrak{m}_{\mathfrak{q}} = |V_{\mathfrak{t}\mathfrak{d}}V_{\mathfrak{t}\mathfrak{q}}^{*}|^{2}\mathcal{K} \lim_{\mathfrak{a}\to 0} \lim_{L\to\infty} \lim_{\mathfrak{m}_{\mathfrak{l}}\to\mathfrak{m}_{\mathfrak{l}}^{p}} \lim_{\mathfrak{m}_{\mathfrak{h}}\to\mathfrak{m}_{\mathfrak{h}}^{p}} (\mathcal{M}_{B_{\mathfrak{q}}}\mathfrak{f}_{B_{\mathfrak{q}}}^{2}\mathcal{B}_{B_{\mathfrak{q}}}^{[1]})(L,\mathfrak{a},\mathfrak{m}_{\mathfrak{l}},\mathfrak{m}_{\mathfrak{h}})$$

or more precise results for

$$\xi^2 = \frac{f_{B_s}^2 \mathcal{B}_{B_s}^{[1]}}{f_{B_d}^2 \mathcal{B}_{B_d}^{[1]}} = \left| \frac{V_{td}}{V_{ts}} \right|^2 \frac{M_{B_d}}{M_{B_s}} \frac{\Delta m_s}{\Delta m_d}$$

JOINT PROJECT: RBC/UKQCD AND JLQCD

RBC/UKQCD:

- 8 ensembles
- + 3 lattice spacings a=0.073-0.11 fm
- two ensembles at physical point M^{phys}_π

JLQCD:

- 7 ensembles
- 3 lattice spacings a = 0.044 0.081 fm
- one pair of ensembles with $M_\pi L\sim 3$ and $M_\pi L\sim 4$

FITS TO LATTICE CORRELATION FUNCTIONS

- this projects includes B_(s) mixing, leading to:
- 15 ensembles
- 5 operators
- 4-6 heavy-quark masses per ensemble
- · heavy-light and heavy-strange sector
- \Rightarrow over 700 combined fits
 - multiple values for ΔT to control fits better
 - two independent analyses by FE and J.T. Tsang
 - Example of combined correlated fit to heaviest heavy-strange meson on "a2.7m230" ensemble

$MIXING \text{ ratios } \xi$

•	update	of	RBC/UKQCD	work

[Boyle et al., arxiv 1812.08791]

- includes JLQCD ensembles
- completely new, fully
 correlated fitting strategy
- cancellation of
 renormalisation constants
- relatively flat $1/m_{sh}$ dependence with improved reach towards m_b^{phys}
- we are currently investigating various global fits on the data

$$\langle \mathfrak{O} \rangle_i^S(\mu) = \lim_{\mathfrak{a}^2 \to 0} \sum_{j=1}^5 [Z^S_{\mathfrak{O}}(\mathfrak{a},\mu)]_{ij} \langle \mathfrak{O} \rangle_j^{\text{bare}}(\mathfrak{a})$$

for some regularisation independent scheme S at mass scale $\mu.$ Continuum perturbation theory can then match

$$\langle \mathfrak{O} \rangle_{\mathfrak{i}}^{\overline{\mathsf{MS}}}(\mu) = R^{\overline{\mathsf{MS}} \leftarrow S} \langle \mathfrak{O} \rangle_{\mathfrak{i}}^{S}(\mu)$$

We use the "RI-SMOM" scheme. Requires computation of four-quark vertices for $(\bar{b}q) \to (\bar{q}b).$ [Boyle et al., JHEP 10 (2017) 054]

DOMAIN-WALL FERMIONS

- we use "Domain-Wall Fermions"
 - automatic $O(\boldsymbol{a})$ improvement in absence of odd powers in \boldsymbol{a}
 - \Rightarrow reduced discretisation effects
 - · chirally symmetric formulation
 - $\Rightarrow~$ leads to simple mixing pattern of operators \mathbb{O}_i

Block-structure:

- $\mathcal{O}_2, \mathcal{O}_3$ as well as $\mathcal{O}_4, \mathcal{O}_5$ mix
- linearly independent from each other and from $\ensuremath{\mathbb{O}}_1$
- · more complicated mixing pattern for other lattice fermions

[Boyle et al., JHEP 10 (2017) 054]

NON-PERTURBATIVE RENORMALISATION - FULL MATRIX

plot and work by Rajnandini Mukherjee (University of Southampton)

BAG PARAMETER \mathcal{B}_{hl} - VV + AA

- heavy-light bag parameters, renormalised at mass scale μ
- \Rightarrow matching to continuum scheme still to do!
 - discretisation effects for O1 are small
 - global fits also to renormalised bag parameters are investigated

BAG PARAMETER \mathcal{B}_{hs} - All 5 operators

- heavy-strange bag parameters, renormalised at mass scale µ
- O_1, O_2 : mild a^2 dependence
- O₃, O₄: strong a² dependence
- O_5 : medium a^2 dependence and curvature in $1/m_{sh}$
- very similar for heavy-light sector

OUTLOOK: FIT STRATEGY

We are exploring various parametrisations for a global fit to:

$$B = B(0) \big[1 + f_J^{\text{disc}}(a^2) + f_{R/U}^{\text{disc}}(a^2) + f^{\text{chir}}(M_{\pi}^2) + f^s(2M_K^2 - M_{\pi}^2) + f^b(1/M_{\text{hs}}) \big]$$

with

- + $f_J^{disc}(a^2)$: discretisation $a^2 \to 0,$ separate trajectories for RBC/UKQCD and JLQCD ensembles
- $f^{chir}(M^2_\pi)$: chiral extrapolation $M^2_\pi \to (M^{phys}_\pi)^2$
- + $f^s(2M_K^2 M_\pi^2)$: strange-quark extrapolation to physical $(2M_K^2 M_\pi^2)^{p hys}$
- + $f^b(1/M_{hs})$: heavy-quark extrapolation $1/M_{hs} \rightarrow 1/M_{B_s}$
- additional terms? higher powers?
- \Rightarrow current investigation

CONCLUSIONS

- + B_q -mixing $\Delta B=2$ bag parameters with fully relativistic heavy-quark action
- data for full 5-operator basis available
- 15 ensembles, 6 lattice spacings from 2 collaborations, including two ensembles at $M_\pi^{p\,hys}$
- · global fits are being worked on
- · simple renormalisation for chiral Domain-Wall Fermions
- · fully relativistic treatment of heavy-quark
- · very fine lattice spacings
- · large variety of ensembles to control relevant limits
- programme extends to D-mixing and K-mixing

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 757646.

BACKUP

LATTICE SETUP

- RBC-UKQCD's 2+1 flavour domain wall fermions [Blum et al. Phys.Rev.D 93 (2016) 7]
 - pion masses from $M_\pi=139~\text{MeV}$ to $M_\pi=430~\text{MeV}$
 - several heavy-quark masses from below m_c to $0.5m_b$, using a stout-smeared action ($\rho=0.1,\,N=3$) with $M_5=1.0,\,L_s=12$ and Möbius-scale =2 [Boyle et al. arXiv:1812.08791]
 - light and strange quarks: sign function approximated via:
 - Shamir approximation for heavier pion masses
 - Möbius approximation at M_π^{phys} and on the finest ensemble
- JLQCD's 2+1 flavour domain wall fermions [Kaneko et al. EPJ Web Conf. 175 (2018) 13007]
 - + pion masses from $M_{\pi}=$ 226 MeV to $M_{\pi}=$ 310 MeV
 - heavy-quark masses from m_{c} nearly up to $m_{b},$ using the same stout-smeared action.
 - light and strange quarks use the same action as the heavy quarks.

LATTICE SETUP

	L/a	T/a	\mathfrak{a}^{-1} [GeV]	M_{π} [MeV]	$M_{\pi}L$	hits $\times N_{conf}$	collaboration id
a1.7m140	48	96	1.730(4)	139.2	3.9	48 imes 90	R/U C0
a1.8m340	24	64	1.785(5)	339.8	4.6	32 imes 100	R/U C1
a1.8m430	24	64	1.785(5)	430.6	5.8	32 imes 101	R/U C2
a2.4m140	64	128	2.359(7)	139.3	3.8	64 imes 82	R/U M0
a2.4m300	32	64	2.383(9)	303.6	4.1	32 imes 83	R/U M1
a2.4m360	32	64	2.383(9)	360.7	4.8	32 imes 76	R/U M2
a2.4m410	32	64	2.383(9)	411.8	5.5	32 imes 81	R/U M3
a2.5m230-L	48	96	2.453(4)	225.8	4.4	24 imes100	J C-ud2-sa-L
a2.5m230-S	32	64	2.453(4)	229.7	3.0	16 imes100	J C-ud2-sa
a2.5m310-a	32	64	2.453(4)	309.1	4.0	16 imes 100	J C-ud3-sa
a2.5m310-b	32	64	2.453(4)	309.7	4.0	16 imes100	J C-ud3-sb
a2.7m230	48	96	2.708(10)	232.0	4.1	48 × 72	R/U F1M
a3.6m300-a	48	96	3.610(9)	299.9	3.9	24 imes 50	J M-ud3-sa
a3.6m300-b	48	96	3.610(9)	296.2	3.9	24 imes 50	J M-ud3-sb
a4.5m280	64	128	4.496(9)	284.3	4.0	32 imes 50	J F-ud3-sa

List of ensembles used in this work. For consistency of naming conventions in our set of ensembles from two collaborations, we introduce a shorthand notation in the first column which is used throughout this work. The last

OTHER NEUTRAL MESON MIXINGS

For other neutral mesons $M^0 \in \{K, D, B_q\}$

$$\begin{split} \langle M^{0} | \mathfrak{H}_{W}^{eff} | \bar{M}^{0} \rangle &= \langle M^{0} | \mathfrak{H}_{W}^{eff} | \bar{M}^{0} \rangle_{SD} + \langle M^{0} | \mathfrak{H}_{W}^{eff} | \bar{M}^{0} \rangle_{LD} \\ &= \langle M^{0} | \mathfrak{H}_{W}^{\Delta F=2} | \bar{M}^{0} \rangle + \sum_{n} \frac{\langle M^{0} | \mathfrak{H}_{W}^{\Delta F=1} | n \rangle \langle n | \mathfrak{H}_{W}^{\Delta F=1} | \bar{M}^{0} \rangle}{M_{M} - E_{n}} \end{split}$$

short-distance contribution:

- t enhancement for K, B(s)
- additional CKM hierachy enhancement for B(s)
- · sub-dominant for D, but ok to describe CP-violating contributions

long-distance contribution:

- · relevant but smaller than short-distance for K
- dominant for D
- CKM-suppressed for $B_{(s)}$