

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Update and outlook of rare K decays at NA62

Michal Koval michal.koval@cern.ch

Charles University in Prague

on behalf of the NA62 Collaboration

CKM 2023 Workshop, 18 – 22 September 2023

NA62 Experiment at CERN

- Detector installation completed in 2016
- Physics runs in 2016 2018 (Run 1)
- Data taking resumed in 2021, approved up to CERN LS3 (Run 2)
- Main goal: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ measurement \to See plenary talk by Karim Massri
- ▶ NA62 program: K^+ physics and more
 - \rightarrow **This talk:** focus on other rare K^+ decays

NA62: located at CERN in the North Area

- \rightarrow fixed-target experiment
- \rightarrow using 400 GeV/c SPS proton beam

NA62 Beam

- SPS beam: 400 GeV/c proton on beryllium target
- Secondary hadron 75 GeV/c beam
- 70% pions, 24% protons, 6% kaons
- Nominal beam particle rate (at GTK3): 750 MHz
- Average beam particle rate during 2018 data-taking: 450 500 MHz

NA62 Detector

- KTAG: differential Cherenkov counter
- GTK: Si pixel beam tracker
- CHANTI: stations of plastic scintillator bars
- LAV: lead glass ring calorimeters
- STRAW: straw magnetic spectrometer
- RICH: Ring Imaging Cherenkov counter

- CHOD: planes of scintillator tiles and slabs
- ► IRC: inner ring shashlik calorimeter
- LKr: liquid krypton electromagnetic calorimeter
- MUV1,2: hadron calorimeter
- MUV3: plane of scintillator tiles for muon ID
- SAC: small angle shashlik calorimeter

NA62 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Result from Run 1

• SM prediction: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (8.4 \pm 1.0) \times 10^{-11}$ [JHEP 11 (2015) 033]

NA62 Run 1 = 2016 - 2018 data:
 20 signal candidates, expected background: 7.0 events [JHEP 06 (2021) 093]

$$\mathcal{B}(K^+ o \pi^+
u ar{
u})_{\mathsf{NA62}} = (10.6^{+4.0}_{-3.4})_{\mathsf{stat}} \pm 0.9_{\mathsf{syst}}) imes 10^{-11}$$

NA62 Physics

Broad physics program at NA62:

• Main goal: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ measurement

Precision measurements of rare kaon decays, Following analyses of 2017–2018 data presented in this talk:

 $\begin{array}{ll} \rightarrow & {\cal K}^+ \rightarrow \pi^+ \mu^+ \mu^- \mbox{ decay} & [JHEP \ 11 \ (2022) \ 011] \\ \rightarrow & {\cal K}^+ \rightarrow \pi^0 e^+ \nu \gamma \mbox{ decay} & [JHEP \ 09 \ (2023) \ 040] \\ \rightarrow & {\cal K}^+ \rightarrow \pi^+ \gamma \gamma \mbox{ decay} & (preliminary results) \end{array}$

- Searches for lepton number and lepton flavour violating decays
 - $ightarrow \,$ e.g. ${\cal K}^+
 ightarrow \pi^-(\pi^0) {m e}^+ {m e}^+$
- Searches for very rare decays

$$ightarrow$$
 e.g. ${\it K}^+
ightarrow \pi^+ {\it e}^+ {\it e}^+ {\it e}^- {\it e}^-$

- Searches for feebly interacting particles
 - a) Kaon mode: search for FIP production and/or decay e.g. heavy neutral lepton search in $K^+ \rightarrow \ell^+ \nu_H$
 - b) Beam dump mode: e.g. dark photon search ${\it A}'
 ightarrow \mu^+ \mu^-$

[PLB 830 (2022) 137172]

[JHEP 09 (2023) 035]

y [PLB 807 (2020) 135599] [PLB 816 (2021) 136259]

[arXiv:2307.04579, accepted by PLB]

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$: Overview

 ${\cal K}^{\pm}
ightarrow \pi^{\pm} \ell^+ \ell^-$ decays ($\ell={\it e},\mu$)

Flavour-changing neutral-current processes

- Kinematic variable $z = m^2 (\ell^+ \ell^-) / m_K^2$
- ▶ Dominant contribution via virtual photon exchange $K^{\pm} \rightarrow \pi^{\pm} \gamma^* \rightarrow \pi^{\pm} \ell^+ \ell^-$
- ▶ Form factor of the $K^{\pm} \rightarrow \pi^{\pm} \gamma^{*}$ transition: W(z)
- Chiral Perturbation Theory parameterization of W(z) at $\mathcal{O}(p^6)$:

$$W(z) = G_F m_K^2(\mathbf{a}_+ + \mathbf{b}_+ z) + W^{\pi\pi}(z)$$

 a_+, b_+ : real parameters $W^{\pi\pi}(z)$: complex function, two-pion loop

Main goals of the NA62 $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ measurement:

- Measure model-independent branching fraction $\mathcal{B}_{\pi\mu\mu}$
- Measure function $|W(z)|^2$
- Determine FF parameters a₊ and b₊

${\cal K}^+ ightarrow \pi^+ \mu^+ \mu^-$: Sample and Analysis

$K^+ ightarrow \pi^+ \mu^+ \mu^-$ sample:

- Data: 27679 events observed
- ► Normalization using $K^+ \rightarrow \pi^+ \pi^+ \pi^-$: $N(K^+$ decays) $\approx 3.5 \times 10^{12}$
- ► Expected background: ≈ 8 events

Analysis:

- ► Data divided in 50 equipopulated bins in *z*: $\left(\frac{\mathrm{d}\Gamma(z)}{\mathrm{d}z}\right)_{i} = \frac{N_{\pi\mu\mu,i}}{A_{\pi\mu\mu,i}} \cdot \frac{1}{\Delta z_{i}} \cdot \frac{1}{N_{K}} \cdot \frac{\hbar}{\tau_{K}}$
- Integrating $d\Gamma(z)/dz \rightarrow model-independent \mathcal{B}$
- ► $|W(z)|^2$ function values extracted from $d\Gamma(z)/dz$
- Fit of $|W(z)|^2$ data points \rightarrow ChPT form factor parameter measurement

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$: Measurement Results

Form factor parameters:

- ► Two possible solutions:
 - a_+ , b_+ : both *negative* or *positive* values
- Preferred negative solution $\chi^2/ndf = 45.1/48$ (*p*-value = 0.59):

$a_+ = -0.575 \pm 0.013$
$b_+ = -0.722 \pm 0.043$
correlation $\rho(a_+, b_+) = -0.972$

Branching fraction: $\mathcal{B}_{\pi\mu\mu} = (9.15 \pm 0.08) \times 10^{-8}$

${\cal K}^+ ightarrow \pi^+ \mu^+ \mu^-$: Comparison with Previous Measurements

- At least factor of 3 improvement wrt previous $K_{\pi\mu\mu}$ measurements
- Measurements are compatible
 - ightarrow Agreement in a_+, b_+ from $K_{\pi\mu\mu}$ and $K_{\pi ee}$ ightarrow lepton flavour universality \checkmark

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$: Overview

Inner Bremsstrahlung (IB) decay amplitude: \rightarrow divergent for $E_{\gamma} \rightarrow 0$ and $\theta_{e,\gamma} \rightarrow 0$ Theoretical predictions and experimental measurements for **3 sets** of cuts: minimal E_{γ} and $\theta_{e,\gamma}$ (in K^+ rest frame)

$$m{\textit{R}}_{j} = rac{\mathcal{B}(\textit{Ke3}\gamma^{j})}{\mathcal{B}(\textit{Ke3})} = rac{\mathcal{B}(\textit{K}^{+}
ightarrow \pi^{0}m{e}^{+}
u\gamma \mid m{E}_{\gamma}^{j}, \ heta_{m{e},\gamma}^{j})}{\mathcal{B}(\textit{K}^{+}
ightarrow \pi^{0}m{e}^{+}
u(\gamma))}$$

	E_{γ} cut	$\theta_{e,\gamma}$ cut	$O(p^6)$ ChPT	ISTRA+	OKA
			[EPJ C 50, 557]		
$R_1 (\times 10^2)$	$E_{\gamma} >$ 10 MeV	$ heta_{m{e},\gamma} > 10^\circ$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$
$R_2 (\times 10^2)$	$E_{\gamma} >$ 30 MeV	$ heta_{m{e},\gamma}>$ 20 $^{\circ}$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$
$R_3 (\times 10^2)$	$E_{\gamma} > 10 \; MeV$	$0.6 < \cos heta_{e,\gamma} < 0.9$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$

T-odd observable
$$\xi$$
 (K^+ rest frame): $\xi = \frac{\overrightarrow{p_{\gamma}} \cdot (\overrightarrow{p_e} \times \overrightarrow{p_{\pi}})}{m_K^3}$; Asymmetry: $A_{\xi} = \frac{N_+ - N_-}{N_+ + N_-}$

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$: Samples and Analysis

- ► Normalization: $K^+ \rightarrow \pi^0 e^+ \nu$ N(events) $\approx 6.6 \times 10^7$, 10^{-4} background
- $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ signal samples, 3 regions S_i :
 - \rightarrow N(events) \approx 1 \times 10⁵
 - \rightarrow Background: < 1%
 - \rightarrow Main source of bkg.: accidental activity
- Evaluation of R_j:

$$m{R}_{j} = rac{\mathcal{B}(K_{e3\gamma^{j}})}{\mathcal{B}(K_{e3})} = rac{m{N}_{Ke3\gamma^{j}}^{\mathrm{obs}} - m{N}_{Ke3\gamma^{j}}^{\mathrm{bkg}}}{m{N}_{Ke3}^{\mathrm{obs}} - m{N}_{Ke3}^{\mathrm{bkg}}} \cdot rac{m{A}_{Ke3}}{m{A}_{Ke3\gamma^{j}}} \cdot rac{m{\epsilon}_{Ke3}^{\mathrm{trig}}}{m{k}_{Ke3\gamma^{j}}}.$$

Evaluation of asymmetry:

$$\textit{\textbf{A}}^{\text{NA62}}_{\xi} = \textit{\textbf{A}}^{\text{Data}}_{\xi} - \textit{\textbf{A}}^{\text{MC}}_{\xi}$$

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$: Results

Ratio measurement:

	$O(p^6)$ ChPT	ISTRA+	OKA	NA62
$R_1 (\times 10^2)$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$	$1.715 \pm 0.005 \pm 0.010$
<i>R</i> ₂ (×10 ²)	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$	$0.609 \pm 0.003 \pm 0.006$
$R_3 (\times 10^2)$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$	$0.533 \pm 0.003 \pm 0.004$

- Precision improved by a factor > 2
- About 5% smaller value than ChPT prediction

Asymmetry measurement:

	ISTRA+	OKA	NA62
$A_{\xi}(S_1) \ (imes 10^3)$		$-0.1\pm3.9\pm1.7$	$-\textbf{1.2}\pm\textbf{2.8}\pm\textbf{1.9}$
$A_{\xi}(S_2)~(imes 10^3)$		$-4.4\pm7.9\pm1.9$	$-\textbf{3.4}\pm\textbf{4.3}\pm\textbf{3.0}$
$A_{\xi}(S_3)~(imes 10^3)$	15 ± 21	$7.0\pm8.1\pm1.5$	$-9.1\pm5.1\pm3.5$

- Compatible with no asymmetry
- Uncertainties still larger than theory expectations

$K^+ \rightarrow \pi^+ \gamma \gamma$: Overview

- Long-distance dominated radiative decay
- Crucial test of Chiral Perturbation Theory
- ► Kinematic variables (*q_i*: photon momenta, *p*: kaon momentum)

$$z = rac{(q_1 + q_2)^2}{m_K^2} = rac{m_{\gamma\gamma}^2}{m_K^2}, \qquad y = rac{p \cdot (q_1 - q_2)}{m_K^2}$$

Differential decay width [PLB 386 (1996) 403]:

$$\frac{\partial^2 \Gamma}{\partial y \, \partial z} = \frac{m_K}{2^9 \pi^3} \left[z^2 \left(|A(\hat{c}, y, z) + B(z)|^2 + |C(z)|^2 \right) + \left(y^2 - \frac{1}{4} \lambda(1, r_\pi^2, z) \right)^2 |B(z)|^2 \right]$$

- ightarrow The spectrum and rate depend on one parameter \hat{c}
- $\rightarrow B(z)$ appears at ChPT $\mathcal{O}(p^6)$
- $\rightarrow~$ Goal: measure \hat{c}_6 and the corresponding branching fraction

${\cal K}^+ ightarrow \pi^+ \gamma \gamma$: Sample and Analysis

- ▶ Normalization: $K^+ \rightarrow \pi^+ \pi^0$
- $K^+ \rightarrow \pi^+ \gamma \gamma$ signal sample, z > 0.25:
 - \rightarrow 4039 events observed
 - ightarrow Expected background: 393 \pm 20 events
 - ightarrow Main source of bkg.: ${\it K}^+
 ightarrow \pi^+ \pi^0 \gamma$
- Fit procedure:
 - \rightarrow MC reweighted for different values of \hat{c}_6
 - → Maximum likelihood fit

$K^+ \rightarrow \pi^+ \gamma \gamma$: Preliminary Results

 $\hat{c}_6 = (1.713 \pm 0.084), \qquad \mathcal{B}(K^+ o \pi^+ \gamma \gamma) = (9.73 \pm 0.19) imes 10^{-7}$

Outlook for Rare Kaon Decays from NA62

NA62 Run 1: 2016 – 2018

Multiple analyses ongoing, stay tuned for new results soon

NA62 Run 2: 2021 – CERN LS3

- Increase in beam intensity
- ► Beamline and detector improvements for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ measurement \rightarrow Target relative precision for $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$: 15%
- ► Trigger improvements, reduced downscaling factor for events with e^+e^- final state → Large sample of di-electron decays (including $K^+ \rightarrow \pi^+e^+e^-$) will be collected

Long-term Outlook: HIKE

- Letter of Intent: arXiv:2211.16586, proposal to SPSC in preparation
- ► K⁺ (Phase-1) and K_L (Phase-2) physics program after LS3
- Beam intensity: 4× NA62
- Large improvement in precision for $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ and other kaon decays
- Observation and first measurement of decays K_L → π⁰ℓ⁺ℓ⁻

 \rightarrow See plenary talk by K. Massri

Rare Kaon Decays at NA62: Summary

Run 1 (2016 – 2018):

- ► Golden mode: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{stat} \pm 0.9_{syst}) \times 10^{-11} \text{ [JHEP 06 (2021) 093]}$
- Recent precision measurements of:
 - $\rightarrow K^+ \rightarrow \pi^+ \mu^+ \mu^-$ decay
 - \rightarrow $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ decay
 - $ightarrow~{\it K}^+
 ightarrow \pi^+ \gamma \gamma~{
 m decay}$

[JHEP 11 (2022) 011] [JHEP 09 (2023) 040]

(preliminary, final results in preparation)

Measurement uncertainties dominated by statistical errors

Outlook:

- ▶ NA62 continues to take data in Run 2 (2021 LS3): expect many new results
- Long-term plan (after LS3): proposal for High Intensity Kaon Experiments (HIKE)