Search for $K_I \rightarrow \pi^0 \nu \bar{\nu}$ at KOTO

Koji Shiomi (KEK) for the KOTO collaboration September 19, 2023@CKM 2023, Santiago de Compostela, Spain

Physics on $K_L \rightarrow \pi^0 \nu \nu$

FO experiment

Tar

KOTO area @J-PARC 30GeV Main Ring.

© collaboration meeting (hybrid) on June 30- July 2, 2023

Experimental principle

$K_{L} \rightarrow \pi^{0} \nu \overline{\nu}$ decay

" $2\gamma + Nothing + Pt$ "

Assuming 2γ from π^{0} , Calculate z vertex.

Data accumulation history

Review of 2016-2018 analysis results

- Observed 3 events with 1.22 predicted background(BG)

7

Measures against dominant BG sources

Installed Upstream Charged Veto(UCV) for K± detection \rightarrow Reduced by a factor of 13 with 97% signal efficiency.

• kinematical variables \rightarrow Reduced by a factor of 8 with 94% signal efficiency. Upstream charged veto counter(UCV) installed in 202

A plane of 0.5 mm-square scintillation fibers read by MPPC

Developed a likelihood ratio cut based on shower shape and a Multi variable analysis cut based on

Data set in the latest analysis

We focus on the analysis of 2021 data

Executive summary of the 2021 data analysis

- Key points on the 2021 data analysis
 - Implemented measures to reduce the K[±] and Halo K_L \rightarrow 2 γ BG
 - #(K[±] BG),#(Halo K_L \rightarrow 2 γ BG) < O(0.1)
 - Developed several analysis methods to estimate BG events more accurately.

Photon inefficiency in veto detectors

$K_L \rightarrow \pi^0 \pi^0$ Background(BG)

more photons

- Photon inefficiency in veto detectors • are critical to estimate the KL $\rightarrow 2\pi^0$ BG
- Photon inefficiency evaluated by MC depends on the MC version.

Photon inefficiency evaluation by using 5γ samples from $K_L \rightarrow 3\pi^0$ decay

- Reconstruct the momentum of the remaining 1 γ and the π^0 vertex by a constrain fit
- Check the energy deposit in the detector of destination

Ineffi =
$$\frac{N_{Edep} < Threshold}{N_{all}}$$

Inefficiency evaluation with 5γ data 6 th γ with high energy into barrel detector

Reconstructed E₆_γ>200MeV Destination: Barrel detector

- For 1 MeV threshold
 - IneffiData= $(4.8 \pm 4.8) \times 10^{-5}$
 - Ineffi_{MC}=(6.2 ± 2.5)x10⁻⁵ (for v10.6) =(2.1 ± 1.5)x10⁻⁵ (for v9.5)

Need more statistics to evaluate inefficiency by data. -Set 100% systematic uncertainty on photon inefficiency of the barrel detector.

Evaluation of the number of $K_L \rightarrow 2\pi^0 BG$

Errors on SF are considered as systematic uncertainties

	Barrel for high energy photon	Barrel for low energy photon	FBAR	BHPV
Scale factor(SF)	$0.77^{+0.85}_{-0.77}$	$1.10^{+0.10}_{13-0.10}$	$1.42^{+0.13}_{-0.13}$	$1.50^{+0.42}_{-0.51}$

ies Barrel CSI BHPV

> Beam Hole Photon Veto (BHPV)

Inner Barrel (IB)

cf. :N(K_L $\rightarrow 2\pi^{0}$) BG before SF correction -0.049 ± 0.018 (stat)

Upstream π^0 BG caused by photo nuclear interaction

Mechanism

- -Neutrons generated in photo-nuclear interaction take away a part of energy from the Csl
- -Reconstructed vertex shifts to

downstream and enters the signal box

How to estimate

-Simulate the π production in upstream

detectors with halo neutrons

-MC is normalized to data using events around z=2400 mm under a loose cut condition

Key: Probability of energy mismeasurement in Csl

Neutrons Photo-nuclear interaction

Confirm probability of energy mismeasurement in CsI by using $K_L{\rightarrow}3\pi^0$ samples

 $K_L \rightarrow 3\pi^0$ samples with large Radius of Center of Energy (RCOE) in Csl $M_{6\gamma} \neq M_{KL}$

Confirm probability of energy mismeasurement in CsI by using $K_L{\rightarrow}3\pi^0$ samples

-Compare the number of events in the region of 100 mm <RCOE<200 mm between data and MC.

Assume that the difference between data and MC
is caused by the core KL events due to photo-nuclear interaction

-An additional scale factor is applied to the photo-nuclear events to reach the agreement between data and MC -Additional scale factor : 2.64 ± 0.35 -Used for the estimation of upstream π^{0} background

RCOE (mm)

of upstream π^0 background events

25% difference between data/MC comes from an imperfect reproducibility of π^{0} 's kinematics

Results of 2021 data analysis

	inary	
Pr	source	Current estimation
	Upstream π^{0}	0.064±0.050(stat)±0.006(sys)
	$K_L \rightarrow 2\pi^0$	$0.060 \pm (0.022)_{stat} (^{+0.051}_{-0.060})_{sys}$
	K+	$0.043 \pm (0.015)_{stat} (^{+0.004}_{-0.030})_{sys}$
	Hadron cluster BG	0.024±0.004(stat)±0.006(sys)
	Scattered $K_L \rightarrow 2\gamma$	0.022±0.005(stat)±0.004(sys)
	Halo K∟→2γ	0.018±0.007(stat)±0.004(sys)
	η production in CV	0.023±0.010(stat)±0.006(sys)
	Sum	0.255 ± 0.058 (stat) $\binom{+0.053}{-0.068}$ _{sys}

Single Event Sensitivity(S.E.S.):8.7×10-10

Open the signal box

Open the signal box

Prospect

- Analysis of 2020 and 2019 data
 - Deteriorate performance of a prototype detector for K+ detection due to irradiation of MPPC in 2020 data.
 - Develop a new cut to reduce K+ background without a detector for K+ detection in 2019 data
- Future physics run
 - Collect 10 times more POT in 3-4 years by assuming 60 days data taking per year.
 - Reach a sensitivity below 10⁻¹⁰

Summary

- The KOTO experiment studies the $K_{L} \rightarrow \pi^{0} \nu \nu$ decay.
- No signal candidate was observed in 2021 data prelin BR<2.0x10-9 @90% C.L.
 - Improved the current upper limit by 50% with a 5 times smaller background level.

Continue to take physics data to achieve the sensitivity below 10-10.

Backup

were evaluated by identifying $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ decay

Upstream Charged Veto

25

Estimation of N(Halo $K_L \rightarrow 2\gamma BG$) Estimation of Halo K_L flux 10°

Estimation of N(Halo K_L $\rightarrow 2\gamma$ BG) Newly developed cuts

 Shower shape consistency - Likelihood Ratio based on shower shape and reconstructed angle

 Multi variable Analysis with kinematical variables Input variables Blue:signal Red:Halo $KL \rightarrow 2\gamma$

Estimation of N(Halo $K_L \rightarrow 2\gamma BG$) # of Halo $K_L \rightarrow 2\gamma$ BG

Signal acceptance of those cuts -94%

of BG expected in the signal box

-#(Halo K_L $\rightarrow 2\gamma$ BG)

 $0.13 \rightarrow 0.018 \pm 0.007_{(stat)} \pm 0.004_{(sys)}$

-#(Scatter K_L $\rightarrow 2\gamma$ BG) $0.18 \rightarrow 0.022 \pm 0.005(\text{stat}) \pm 0.004(\text{sys})$

Reduction by a factor of 8 was achieved in both case

Photon inefficiency in veto detectors

-Photon inefficiency in veto detectors are critical to estimate the KL $\rightarrow 2\pi^{0}$ BG -But, the photon inefficiency evaluated by MC depends on the version.

-Physics model was changed between two versions due to difficulty of code management. (Info from a GEANT4 code manager) Simulation study with a modeled barrel detector

Halo KL \rightarrow 2 γ MVA cut for upstream π^{0} events

• Halo $K_L \rightarrow 2\gamma$ MVA cut with kinematical variables

of events/0.2 [MeV]

• π^0 energy in upstream π^0 events before applying the Halo $K_L \rightarrow 2\gamma$ MVA cut

