

Data-driven determination of charm loop effects in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ **decays**

Andrea Mauri On behalf of the LHCb collaboration

CKM 2023, Santiago de Compostela, 18-22 September 2023

Imperial College London

Motivation

- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ mediated by FCNC

- suppressed in the SM \rightarrow sensitive to NP
- rich angular structure
- NP can alter branching ratio and ang. distributions

$$\frac{\mathrm{d}^4 \Gamma[B^0 \to K^{*0} \mu^+ \mu^-]}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \sum_i I_{i} = \frac{9}{32\pi} \left[I_{1s} \sin^2 \theta_K + I_{2s} \sin^2 \theta_K \cos \theta_K \cos \theta_K \sin \theta_K \sin$$

Why we are here...a bit of history ×10-.

Hadronic uncertainties...

- Non-local hadronic contribution "charm-loop"
 - Difficult to calculate reliably from first principles
 - Can mimic NP
 - Can we access it from data?

- Important developments on the theory side (see talk by Meril...)
- SM prediction available @ $q^2 < 0$

Unbinned amplitude analysis

- Perform q^2 unbinned amplitude analysis

model local vs non-local contributions

$$\begin{split} \mathcal{A}_{\lambda}^{L,R} &= \mathcal{N}_{\lambda} \bigg\{ \Big[(\mathcal{C}_{9} \pm \mathcal{C}_{9}') \mp (\mathcal{C}_{10} \pm \mathcal{C}_{10}') \Big] \mathcal{F}_{\lambda}(q^{2} \\ \mathcal{A} &= \perp, \parallel, 0 \end{split} \\ & \text{ wilson coeff.} \end{split}$$

Fit 5-D differential decay rate! $\rightarrow q^2, m_{K\pi}^2, \cos\theta_\ell, \theta_K, \phi$

non-local hadronic matrix elements "charm-loop"

Analysis overview

- Same dataset of previous LHCb $B^0 \rightarrow K^{*0} \mu^+ \mu^$ binned angular analysis (Run-I + 2016) 4.7 fb^{-1}
 - two q^2 regions: [1.1, 8.0] & [11, 12.5] GeV
- Six-dimensional fit
 - `differential decay rate + invariant B mass to separate signal from combinatorial background
- Large number of signal parameters
 - ► Wilson coefficients: C_9 , C_{10} , C'_9 , C'_{10} [floated] + C_7 , C'_7 [fixed to SM]
 - Iocal FF: [constrained to LCSR + latticeQCD] JHEP 01 (2019) 150, Pos LATTICE2014 (2015) 372
 - non-local hadronic parameters $\mathcal{H}_{\lambda}(q^2)$ (see next slides)
 - S-wave (FFs + relative magnitude&phase)

Non-local contributions

Combining theory & experimental information to constrain charm-loop parameters

Non-local contributions

ng ratio constraint

nation can only access the relative size of cients

Scale of Wilson coeff. set by branching ratio

Include branching ratio measurement in the analysis • Normalised to $B^0 \rightarrow J/\psi K^+ \pi^-$ decays

$$N_{sig} = N_{J/\psi K\pi} \times \frac{\mathcal{B}(B^0 \to K^{*0}\mu^+\mu^-) \times \frac{2}{3}}{\mathcal{B}(B^0 \to J/\psi K^+\pi^-) \times f^{J/\psi K\pi} \times \mathcal{B}(J/\psi \to \mu^+\mu^-)} \times R_{\varepsilon},$$

- Largest systematic uncertainties:
 - ${\cal B}(B^0 o J/\psi K^+\pi^-) = (1.15 \pm 0.01 \pm 0.05) \cdot 10^{-3}$ prd 90 (2014) 112009 $f_{\pm 100 \text{MeV}}^{B^0 \to J/\psi K\pi} = 0.644 \pm 0.010$

Fit projections

- Simultaneous fit to Run1 & 2016, $q^2 \in [1.1, 8.0] \& [11, 12.5]$

Form factor results

- Dominant uncertainty in $b \rightarrow s\ell\ell$ SM branching ratio prediction
- Fit results are found to require small adjustment in $\mathcal{F}_{\perp,\parallel}/\mathcal{F}_0$ ratio

ranching ratio prediction ustment in $\mathcal{F}_{\perp,\parallel}/\mathcal{F}_0$ ratio

Non-local hadronic results

- Good overall agreement between the two configurations
 - Small discrepancy in $Im \mathcal{H}_{\parallel}(q^2)$

Non-local hadronic results

- Good overall agreement between the two configurations
 - Small discrepancy in $Im \mathcal{H}_{\parallel}(q^2)$

- $\mathcal{H}_{\lambda}(q^2)$ constrained from 3 theory points $q^2 \in [-7, -5, -3]$ GeV²
- Result can be tested at $q^2 = -1$ GeV²
 - Imaginary part tends to rise more rapidly than predictions

Non-local hadronic results

- Good overall agreement between the two configurations
 - Small discrepancy in $Im \mathcal{H}_{\parallel}(q^2)$

- $\mathcal{H}_{\lambda}(q^2)$ constrained from 3 theory points $q^2 \in [-7, -5, -3]$ GeV²
- Result can be tested at $q^2 = -1$ GeV²
 - Imaginary part tends to rise more rapidly than predictions
- Can measure phase difference between rare mode and Jpsi $arg A_0^{J/\psi} = -1.55^{+0.22}_{-0.18} [q^2 < 0] \\ -1.61^{+0.22}_{-0.20} [q^2 > 0]$ EPJ C77 (2017) 161

Wilson coefficients

Uncertainty obtained from neg. log-likelihood profile

	$q^2 > 0$	0 only
	Fit result	deviation from SM
\mathcal{C}_9	$-0.93^{+0.53}_{-0.57}$	1.9σ
\mathcal{C}_{10}	$0.48^{+0.29}_{-0.31}$	1.5σ
\mathcal{C}_9'	$0.48^{+0.49}_{-0.55}$	0.9σ
\mathcal{C}_{10}'	$0.38^{+0.28}_{-0.25}$	1.5σ
	$q^2 < 0$	prior
\mathcal{C}_9	$-0.68^{+0.33}_{-0.46}$	1.8σ
\mathcal{C}_{10}	$0.24_{-0.28}^{+0.27}$	0.9σ
\mathcal{C}_9'	$0.26\substack{+0.40\\-0.48}$	$0.5~\sigma$
\mathcal{C}_{10}'	$0.27\substack{+0.25 \\ -0.27}$	1.0σ

Global compatibility [4 d.o.f.] with SM $1.3(1.4)\sigma$

Wilson coefficients

Uncertainty obtained from neg. log-likelihood profile

	$q^2 > 0$	0 only
	Fit result	deviation from SM
\mathcal{C}_9	$-0.93^{+0.53}_{-0.57}$	1.9σ
\mathcal{C}_{10}	$0.48^{+0.29}_{-0.31}$	1.5σ
\mathcal{C}_9'	$0.48\substack{+0.49\\-0.55}$	0.9σ
\mathcal{C}_{10}'	$0.38^{+0.28}_{-0.25}$	$1.5 \ \sigma$
	$q^2 < 0$	prior
\mathcal{C}_9	$-0.68^{+0.33}_{-0.46}$	1.8σ
\mathcal{C}_{10}	$0.24_{-0.28}^{+0.27}$	0.9σ
\mathcal{C}_9'	$0.26\substack{+0.40\\-0.48}$	$0.5~\sigma$
\mathcal{C}_{10}'	$0.27\substack{+0.25 \\ -0.27}$	1.0σ

• Global compatibility [4 d.o.f.] with SM $1.3(1.4)\sigma$

Conclusion

- First unbinned amplitude analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decays
- Complementary and more in dept set of information w.r.t. previous binned analyses Non-local hadronic determined from data under two assumptions
- Despite the extra freedom given by $car{c}$ pars, fit still prefers to insert a shift in \mathcal{C}_9
- Tension reduced to $\sim 2\sigma \ln C_9$ and $\sim 1.4\sigma$ global

Backup

Results 68% 95% CL

		$q^2 >$	0 only	
	best fit value	68% CL	95% CL	deviation from SM
\mathcal{C}_9	3.34	[2.77, 3.87]	[2.30, 4.33]	1.9σ
\mathcal{C}_{10}	-3.69	[-4.00, -3.40]	[-4.33, -3.12]	1.5σ
\mathcal{C}_9'	0.48	[-0.07, 0.97]	[-0.62, 1.45]	0.9σ
$\mathcal{C}_{10}^{\prime}$	0.38	[0.13, 0.66]	[-0.14, 0.92]	1.5σ
		$q^2 <$	0 prior	
\mathcal{C}_9	3.59	[3.13, 3.92]	[2.75, 4.34]	1.8σ
\mathcal{C}_{10}	-3.93	[-4.21, -3.66]	[-4.51, -3.40]	0.9σ
\mathcal{C}_9'	0.26	[-0.22, 0.66]	[-0.68, 1.08]	0.5σ
$\mathcal{C}_{10}^{\prime}$	0.27	[0.00, 0.52]	[-0.26, 0.78]	$1.0 \ \sigma$

 Truncation order of polynomial expansion chosen based on NLL improvement observed in data

• $\mathcal{H}_{\lambda}[z^2]$ for fit @ $q^2 > 0$ • $\mathcal{H}_{\lambda}[z^4]$ for fit with $q^2 < 0$ prior

	$2\Delta \log \mathcal{L}$						
	$q^2 < 0$ prior	$q^2 > 0$ only					
$\mathcal{H}_{\lambda}[z^3] - \mathcal{H}_{\lambda}[z^2]$		3.6					
$\mathcal{H}_\lambda[z^4] - \mathcal{H}_\lambda[z^3]$	21.22	-					
$\mathcal{H}_{\lambda}[z^5] - \mathcal{H}_{\lambda}[z^4]$	8.64	-					

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk." J. von Neumann

Systematics

	\mathcal{C}_9	\mathcal{C}_{10}	\mathcal{C}_9'	$\mathcal{C}_{10}^{\prime}$
Amplitude model				
S-wave form factors	< 0.01	< 0.01	< 0.01	< 0.01
S-wave non-local hadronic	0.02	0.02	0.14	0.04
S-wave k^2 model	< 0.01	< 0.01	0.05	0.03
Subtotal	0.02	0.02	0.15	0.05
External inputs on BR				
$\mathcal{B}(B^0 \to J/\psi K^+ \pi^-)$	0.05	0.08	0.02	0.01
$f_{\pm 100 \text{MeV}}^{B^0 \to J/\psi K \pi}$	0.03	0.03	0.01	< 0.01
Others	0.03	0.04	0.03	0.01
Subtotal	0.07	0.09	0.04	0.01
Background model				
Chebyshev polynomial order	0.01	0.01	0.01	< 0.01
Combinatorial shape in k^2	0.02	< 0.01	0.02	< 0.01
Background factorisation	0.01	0.01	0.01	0.01
Peaking background	0.01	< 0.01	0.02	0.01
Subtotal	0.03	0.02	0.03	0.01
Experimental effects				
Acceptance parametrisation	< 0.01	< 0.01	< 0.01	< 0.01
Statistical uncertainty on acceptance	0.02	< 0.01	0.02	< 0.01
Subtotal	0.02	< 0.01	0.02	< 0.01
Total systematic uncertainty	0.08	0.10	0.16	0.05

Upper mass projections

Ang. obs (S-basis)

9