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“Trigger”: Real-time data analysis and reduction
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“Trigger”: Real-time data analysis and reduction

accumulate analyze → reduce

analyze → reduce

analyze → reduce

Large 
data rate

First: Hardware trigger
● Data obtained directly from detector
● Decision taken in fixed time, low latency
● Based on local information from a subdetector
● Chip constraints → not too complex calculations

Second: Software trigger
● Data already transferred to a server
● Decision taken with medium latency
● Based on information from several subdetectors
● Processor constraints less stringent
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Match trigger to hardware

Field Programmable Gate Arrays (FPGAs)
● Low & deterministic latency
● Connectivity to any data source → high bandwidth
● Intermediate floating point performance

CPUs and GPUs
● Higher latency
● Very good floating point performance
● Connected to server (via PCIe connection for GPU)

First: Hardware trigger
● Data obtained directly from detector
● Decision taken in fixed time, low latency
● Based on local information from a subdetector
● Chip constraints → not too complex calculations

Second: Software trigger
● Data already transferred to a server
● Decision taken with medium latency
● Based on information from several subdetectors
● Processor constraints less stringent
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Efficient signal selection

Luminosity of 2x1033 cm-2s-1
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Efficient signal selection

LHCb: Mainly beauty and charm physics

● Signal rates at MHz level
● Signal characteristics: Displaced vertices, momentum, particle type
● → No optimal local criteria for selection

ATLAS & CMS: Mainly Higgs properties, high pT new phenomena 
● Signal rates up to hundreds of kHz
● Signal characteristics: high pT / transverse energy
● → Local criteria for selection possible

Luminosity of 2x1033 cm-2s-1
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The LHCb experiment at CERN
LHC  @ CERN

General purpose detector in the forward region specialized in 
beauty and charm physics
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Beauty and charm decays

● B±/0 mass ~5.3 GeV
→ Daughter pT O(1 GeV)

●  ~1.6 ps → flight distance ~1cmτ
● Detached muons from B→J/ X, J/  → Ψ Ψ μ+μ-

● Displaced tracks with high pT

● D±/0 mass ~1.9 GeV
→ Daughter pT O(700 MeV)

● τ ~0.4 ps → flight distance ~4mm
● Also produced from B decays

PV: Primary vertex
SV: Secondary vertex
IP: Impact parameter: distance between point of closest       
      approach of a track and a PV
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LHCb Run 1 & 2 trigger

Update alignment & calibration once available
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Why no low level trigger for LHCb in Run 3?

Low level trigger on E
T
 from the 

calorimeter
Low level trigger on muon p

T
,

B → K*μμ

Need track reconstruction at first trigger stage
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Change in trigger paradigm

Access as much information about the collision as early as possible
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LHCb data processing in Run 3
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Real-time software challenges in HEP

LHC Run 3 (2022)
LHCb: pp collisions at 30 MHz, 
→ 5 TB/s processed in software

ALICE: PbPb collisions at 50 kHz
→ 3.5 TB/s processed in software

LHC Run 4 (~2029)
CMS & ATLAS

pp collisions at 40 MHz, 
Hardware trigger rate increased: 

100 kHz → 1 MHz
→ 6 TB/s processed in software

LHC Run 5 (~2035)
LHCb undergoes Upgrade II

25 TB/s processed in software
Courtesy Alex Cerri, LHCP 2022

https://indico.cern.ch/event/1109611/contributions/4790644/attachments/2444912/4189341/ACerri_LHCP_2022_v3.pdf
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… in the global context

40 exabytes/
month

Global mobile data traffic in 2020

13 exabytes/
month

LHCb experiment in 2022
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A closer look at LHCb

By
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What do we reconstruct at LHCb?
Tracks

Electrons
MuonsCherenkov rings

Vertices

By

μ
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What does track reconstruction imply?

Huge computing challenge for 109 – 1010 tracks / second 

f(x) = … +/- ...

Pattern recognition Track fit
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Two stages of High Level Trigger (HLT)

● High Level Trigger 1 (HLT1):
• Full charged particle track and vertex reconstruction

• Electron and muon identification

• Few inclusive single and two-track selections  

● High Level Trigger 2 (HLT2):
• Aligned and calibrated detector

• Offline-quality pattern recognition

• Full particle identification, including RICH 
reconstruction

• Full track fit, requires detailed magnetic field and 
detector description

Beam-beam crossing
Partial reconstruction

HLT1
Full reconstruction

HLT2Buffer
30 MHz

40 Tbit/s
1 MHz

1-2 Tbit/s

1 MHz

1-2 Tbit/s 80 Gbit/s Storage
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Two stages of High Level Trigger (HLT)

● High Level Trigger 1 (HLT1):
• Full charged particle track and vertex reconstruction

• Electron and muon identification

• Few inclusive single and two-track selections  

● High Level Trigger 2 (HLT2):
• Aligned and calibrated detector

• Offline-quality pattern recognition
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Beam-beam crossing
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Full reconstruction

HLT2Buffer
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1-2 Tbit/s 80 Gbit/s Storage

● Manageable amount of algorithms
● Highly parallel tasks
● No detailed knowledge of magnetic field & detector required

● Exclusive selections using full PID information
● Best knowledge of alignment & calibration
● Reconstruction algorithms optimized for different track types
● Full track fit
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Two stages of High Level Trigger (HLT)

● High Level Trigger 1 (HLT1):
• Full charged particle track and vertex reconstruction

• Electron and muon identification

• Few inclusive single and two-track selections  

● High Level Trigger 2 (HLT2):
• Aligned and calibrated detector

• Offline-quality pattern recognition

• Full particle identification, including RICH 
reconstruction

• Full track fit, requires detailed magnetic field and 
detector description

Beam-beam crossing
Partial reconstruction

HLT1
Full reconstruction

HLT2Buffer
30 MHz

40 Tbit/s
1 MHz

1-2 Tbit/s

1 MHz

1-2 Tbit/s 80 Gbit/s Storage

● Manageable amount of algorithms
● Highly parallel tasks
● No detailed knowledge of magnetic field & detector required

● Exclusive selections using full PID information
● Best knowledge of alignment & calibration
● Reconstruction algorithms optimized for different track types
● Full track fit

Huge computing challenge



D. vom Bruch 22

Computing performance challenge @ CERN

● Estimated improvement increase: 10-15% per year for the same budget
● Computing needs are not met

Courtesy Dr. Bernd Panzer-Steindel
(CERN/IT, CTO) 

Image source

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
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Trend towards heterogeneous solutions: TOP500

ARM processors

IBM Power9

Nvidia GPUs: In 7/10 HPC centers

Manycore processor: Sunway / NUDT

AMD & Intel CPUs

https://www.top500.org/lists/top500/2021/11/

https://www.top500.org/lists/top500/2021/11/
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Graphics Processing Unit (GPU)

Developed for graphics-oriented workloads
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GPU compared to CPU

Low core count / powerful ALU
Complex control unit
Large chaches
→ Latency optimized

High core count
No complex control unit
Small chaches
→ Throughput optimized
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When to go parallel? Amdahl’s law

Speedup in latency = 1 / (S + P/N)
• S: sequential part of program
• P: parallel part of program
• N: number of processors

Consider how much of the problem can actually be parallelized!

Parallel Sequential 
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Two stages of High Level Trigger (HLT)

● High Level Trigger 1 (HLT1):
• Full charged particle track and vertex reconstruction

• Electron and muon identification

• Few inclusive single and two-track selections  

● High Level Trigger 2 (HLT2):
• Aligned and calibrated detector

• Offline-quality pattern recognition

• Full particle identification, including RICH 
reconstruction

• Full track fit, requires detailed magnetic field and 
detector description

Beam-beam crossing
Partial reconstruction

HLT1
Full reconstruction

HLT2Buffer
30 MHz

40 Tbit/s
1 MHz

1-2 Tbit/s

1 MHz

1-2 Tbit/s 80 Gbit/s Storage

● Manageable amount of algorithms
● Highly parallel tasks
● No detailed knowledge of magnetic field & detector required

● Exclusive selections using full PID information
● Best knowledge of alignment & calibration
● Reconstruction algorithms optimized for different track types
● Full track fit

Graphics Processing Units (GPUs)

Central Processing Units (CPUs)
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How does HLT1 map to GPUs?

Characteristics of LHCb HLT1 Characteristics of GPUs

Intrinsically parallel problem:
  - Run events in parallel
  - Reconstruct tracks in parallel

Good for 
  - Data-intensive parallelizable applications 
  - High throughput applications

Huge compute load Many TFLOPS

Full data stream from all detectors is read out 
→ no stringent latency requirements

Higher latency than CPUs, not as predictable as FPGAs

Small raw event data (~100 kB) Connection via PCIe → limited I/O bandwidth

Small event raw data (~100 kB) Thousands of events fit into O(10) GB of memory

Perfect fit!
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Minimize copies to / from GPU
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By

Raw data

Selection decisions

Server GPU
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Three levels of parallelization

Intra-event: Tracks, vertices, ...

��� � ��� ��� ���  ���
�

��

��

�

��

 ��

�

3

Events Event batches
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The Allen software project

● Named after Frances E. Allen

● Fully standalone software project: https://gitlab.cern.ch/lhcb/Allen, Sphinx documentation
● Framework developed for processing LHCb´s HLT1 on GPUs

● Cross-architecture compatibility via macros & few coding guide lines
• GPU code written in CUDA, runs on CPUs, Nvidia GPUs (CUDA), AMD GPUs (HIP)

● Algorithm sequences defined in python and generated at run-time 
● Multi-event processing with dedicated scheduler
● Memory manager allocates large chunk of GPU memory at start-up
● Reconstruction algorithms re-designed for parallelism and low memory usage: O(MB) per core

https://en.wikipedia.org/wiki/Frances_E._Allen
https://gitlab.cern.ch/lhcb/Allen
https://allen-doc.docs.cern.ch/index.html
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Common intra-event parallelization techniques

Raw data decoding
● Transform binary payload from subdetector raw banks into collections of hits (x,y,z) in global coordinate system
● Parallelize over all readout units

Track reconstruction
● Consists of two steps:

• Pattern recognition: Parallelize across hit combinations
• Track fitting: Parallelize across track candidates

Vertex finding
● Reconstruct primary and secondary vertices
● Parallelize across combinations of tracks and vertex seeds

f(x) = … +/- ...
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Example algorithm: “Triplet” finder

● Build “triplets” of three hits on consecutive layers → parallelization
● Choose them based on alignment in phi
● Hits sorted by phi → memory accesses as contiguous as possible: data locality
● Extend triplets to next layer → parallelization

Seeding Forwarding Seeding Forwarding

D. Campora, N. Neufeld, A. Riscos Núñez: “A fast local algorithm for track reconstruction on parallel architectures”, IPDPSW 2019

https://ieeexplore.ieee.org/document/8778210
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HLT1: Track reconstruction performance

Track reconstruction efficiency Fake rate

LHCb-FIGURE-2020-014

Momentum resolution

https://cds.cern.ch/record/2722327?ln=en
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HLT1: Computing throughput
Event processing rate on single GPUs / 2 CPUs

Chose RTX A5000 for 2022

Need O(200) GPUs to 
process HLT1 at 30 MHz

Update of LHCb-FIGURE-2020-014

https://cds.cern.ch/record/2722327?ln=en
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GPU HLT1 within data acquisition system
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HLT1 commissioning: Allen within the DAQ system

HLT1 on GPUs
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HLT1 commissioning: Towards first collisions

LHC beam test October 2021: First time 

Allen was integrated in the DAQ system
May 2022: First time Allen ran at 25 MHz input rate
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HLT1 commissioning: Towards first collisions

LHC beam test October 2021: First time 

Allen was integrated in the DAQ system
May 2022: First time Allen ran at 25 MHz input rate

July 2022: First collisions @ 13.6 TeV at the LHC
Happy trigger commissioning team
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Looking at the physics performance

CERN-LHCC-2020-006
Selection efficiencies for electron and muon final states similar

In Run 2: Electron selection efficiency roughly factor two worse than muons due to hardware level trigger 

https://cds.cern.ch/record/2717938?ln=en
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Physics prospects with the all-software trigger

● Understand the current pattern of flavor anomalies
● Exploiting the higher statistics and larger phase space of electrons
● Precision measurements of rare decays with electrons: b → see, b → dee

• Branching fractions, ratios of branching fractions to muon modes, angular 
analyses

● Semileptonic decays with electrons: b → ceν
• Ratios of branching fractions to tauonic mode, angular analyses

● Exploit higher statistics at low momentum
• Decays with multiple tracks in the final state

• Charm decays

● Adding on to the trigger in the future
• Reconstruct tracks of long-lived particles: Ks studies

• Fill histograms directly in the trigger, for example for dark photon searches

ArXiv 1808.08865

https://arxiv.org/abs/1808.08865
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Summary

● HEP experiments real time analysis systems are entering the exascale computing era
● Need to exploit modern computing techonolgies to face this challenge
● LHCb is commissioning a fully software trigger for Run 3 (started in 2022)
● First full trigger stage entirely on GPUs @ 30 MHz → a first in HEP
● Developed Allen: heterogeneous software framework for multi-event processing
● Gain expertise in heterogeneous DAQ systems 

→ Preparing to exploit emerging new architectures entering the market
● Physics performance opens new options for physics analyses
● In good position to prepare for LHCb Upgrade II with 400 Tbit/s of data rate
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Backup
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HLT2 on CPUs

● Fully aligned & calibrated detector, offline quality track fit & particle identification @ 1MHz
● HLT2 throughput significantly improved over last years 
● Hundreds of exclusive selections being written for specific analyses, using new multi-threaded framework

Beam-beam crossing
Partial reconstruction

HLT1 Buffer
30 MHz

40 Tbit/s
1 MHz

1-2 Tbit/s

1 MHz

1-2 Tbit/s 80 Gbit/s StorageHLT2
Full reconstruction

LHCb-FIGURE-2021-003

https://lhcbproject.web.cern.ch/lhcbproject/Publications/f/p/LHCb-FIGURE-2021-003.html
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Selective persistency: “Turbo stream”

● Trigger bandwidth is crucial, not trigger rate
● Only store high-level objects reconstructed in real-time
● → Reduction of event size
● High degree of flexibility:

• Only objects used in trigger selection 
• Objects used in trigger selection & user-defined 

selection
• All reconstructed objects

● Raw data only stored in calibration stream

Bandwidth [MB/s] ~ Trigger output rate [kHz] x average event size [kB]

JINST 14 (2019) P04006

Beam-beam crossing
Partial reconstruction

HLT1
Full reconstruction

HLT2Buffer
30 MHz

40 Tbit/s
1 MHz

1-2 Tbit/s

1 MHz

1-2 Tbit/s Storage80 Gbit/s

https://iopscience.iop.org/article/10.1088/1748-0221/14/04/P04006
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Recurrent tasks in real-time data analysis

Raw data decoding
● Transform binary payload from subdetector raw banks into collections of hits (x,y,z) in LHCb coordinate system

Track reconstruction
● Consists of two steps:

• Pattern recognition: Which hits were produced by the same particle? → “Track”
• Track fitting: Describe track with mathematical model

Vertex finding
● Where did proton-proton collisions take place? 
● Where did particles decay within the detector volume?

Particle identification
● Reconstruct clusters in the calorimeter / muon detectors
● Reconstruct rings in the RICH detectors
● Match tracks to clusters / RICH signals

f(x) = … +/- ...
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What about the cost?

https://arxiv.org/pdf/2003.11491.pdf

https://arxiv.org/pdf/2003.11491.pdf
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Heterogeneous solutions & sustainability: Green500

https://www.top500.org/lists/green500/2021/11/

● All top 5 Green500 use accelerators
● 4/5 use Nvidia GPUs combined with AMD Epyc
● MN-3 uses an accelerator optimized for matrix 

arithmetic
● Of the top 30 Green500:

• 26 use Nvidia GPUs
• 3 use A64FX vector-processors (ARM)
• 1 uses a many-core microprocessor (PEZY-

SC3)

https://www.top500.org/lists/green500/2021/11/
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Multi-core versus many-core architecture

Multi-core
● O(10) cores
● Flexible: designed for both serial and parallel code
● Larger caches
● Emphasis on single thread performance

Many-core
● O(100-1000) cores
● Designed for parallel code
● Small caches
● Simpler cores 

Image source

https://www.researchgate.net/figure/Multi-core-and-many-core-processors-Multi-core-processors-as-CPUs-are-devices-composed_fig22_262536613
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Types of GPUs

Scientific GPUs Gaming GPUs

Precision

~3 times more single precision TFLOPS than 
double precision

→ suited for double precision

~40 times more single precision 
TFLOPS than double precision

→ not well suited for double 
precision

Error correction Available Not available

Connection NVLink & PCIe Only PCIe 

Price ~5-6 x the price of gaming GPUs Several hundred dollars
Depending on model (and year)
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GPU vs. CPU: Specifications

AMD Ryzen Threadripper 3990X Nvidia A100

Core count 64 cores / 128 threads 6912 cores

Frequency 2.9 GHz 1.41 GHz

Peak Compute Performance 3.7 TFLOPs 19.5 TFLOPs (single precision)

Memory bandwidth Max. 95 GB/s 1.6 TB/s

Memory capacity Max O(1) TB 40/80 GB

Technology 7 nm 7 nm

Die size 717 mm2 826 mm2

Transistor count 3.8 billion 54.2 billion

Model Minimize latency Hide latency through parallelism



D. vom Bruch 52

Connectivity with GPU: PCIe connection

PCIe 
generation

1 lane 16 lanes Year of 
announcement

2.0 500 MB/s 8 GB/s 2007

3.0 985 MB/s 15.75 GB/s 2010

4.0 1.97 GB/s 31.5 GB/s 2011

5.0 3.94 GB/s 63 GB/s     2017

6.0 7.56 GB/s 121 GB/s     2019

https://en.wikipedia.org/wiki/PCI_Express

https://en.wikipedia.org/wiki/PCI_Express
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CPU – GPU - FPGA

https://arxiv.org/pdf/2003.11491.pdf

Latency Connection Engineering cost FP performance Serial / 
parallel

Memory Backward 
compatibility

CPU O(10) sμ Ethernet, 
USB, PCIe

Low entry level: 
Programmable with C++, 
pthon, etc.

O(1-10) TFLOPs Optimized for 
serial, 
increasingly 
vector 
processing

O(100) GB 
RAM

Compatible, 
except for 
vector 
instruction 
sets

GPU O(100) sμ PCIe, Nvlink Low to medium entry level: 
Programmable with CUDA, 
OpenCL, etc.

O(10) TFLOPs Optimized for 
parallel 
performance

O(10) GB Compatible, 
exept for 
specific 
features

FPGA Fixed
O(100) ns

Any 
connection 
via PCB

High entry level: 
traditionally hardware 
description languages,
Some high-level syntax 
available

Optimized for 
fixed point 
performance

Optimized for 
parallel 
performance

O(10) MB 
on the 
FPGA 
itself

Not easily 
backward 
compatible

https://arxiv.org/pdf/2003.11491.pdf
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Overview of GPU usage in various HEP experiments
Experiment Main tasks 

processed on GPU
Event / data rate Number of GPUs Deployment date

Mu3e Track- & vertex 
reconstruction

20 MHz /
32 Gbit/s

O(10) 2023

CMS Decoding, 
clustering, pattern 
recognition in pixel 

detector

100 kHz
O(400) 2022

ALICE Track reconstruction 
in three sub-

detectors

50 kHz Pb-Pb or < 5 
MHz p-p / 30 Tbit/s

O(2000) 2022

LHCb Decoding, 
clustering, track 
reconstruction in 

three sub-detectors, 
vertex 

reconstruction, 
muon ID, selections

30 MHz/ 40 Tbit/s O(250) 2022

https://arxiv.org/pdf/2003.11491.pdf

https://arxiv.org/pdf/2003.11491.pdf
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Common characteristics of software frameworks

● Same code base compiled for various computing architectures: GPUs, x86,…
● Memory management system for GPU memory: avoid dynamic memory allocation
● Schedule pipelines of GPU (and CPU) algorithms → hide memory copies
● Integration into experiments’ main software frameworks

Allen framework at LHCb Patatrack at CMS O2 at ALICE

https://gitlab.cern.ch/lhcb/Allen
https://github.com/cms-patatrack
https://github.com/AliceO2Group/AliceO2


D. vom Bruch 56

History: HLT1 architecture choice
Proposal in TDR (2014)
 CERN-LHCC-2014-016

Updated strategy (as of 5/2020)
● Developed two solutions simultaneously
● Both the multi-threaded CPU & the GPU 

HLT1 fulfilled the requirements from the 2014 
TDR

● Detailed cost benefit analysis 
(arXiv:2105.04031)

● GPU solution leads to cost savings on 
processors and the network

● Throughput headroom for additional features
● Decision: A GPU-based software trigger will 

allow LHCb to expand its physics reach in Run 
3 and beyond.

CERN-LHCC-2020-006

pp collisions

Server farm

HLT1

HLT2

storage

event building170 servers

30 MHz

30 MHz

buffer on disk 
calibration and alignment

40 Tbit/s

40 Tbit/s

80 Gbit/s

pp collisions

Server farm

HLT2

storage

HLT1

event building170 servers

buffer on disk 
calibration and alignment

GPUs

40 Tbit/s

1-2 Tbit/s

80 Gbit/s

~1 MHz

30 MHz

See also arXiv:2106.07701 on 
LHCb’s energy efficiency with a 
CPU and GPU HLT1

https://cds.cern.ch/record/1701361?ln=en
https://arxiv.org/abs/2105.04031
https://cds.cern.ch/record/2717938?ln=en
https://arxiv.org/abs/2106.07701
https://cds.cern.ch/record/2717938?ln=en
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Parallelization of reconstruction tasks
Search for combinations 

of hits in parallel
Store objects (for example hits)

In best suited memory layout

Split problem into
independent tasks

Example: primary vertex 
(PV) reconstruction

z

PV 
candidates
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Kalman Filter

● One method for track fitting 
● Subsequently iterates over all hits on a track
● For every hit, estimate the state of the track at that 

location:
• First: predict it based on the previous state

• Second: update it based on the measurement (hit)

Arbitrary initial 
state vector
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Kalman Filter

● One method for track fitting 
● Subsequently iterates over all hits on a track
● For every hit, estimate the state of the track at that 

location:
• First: predict it based on the previous state

• Second: update it based on the measurement (hit)

First update
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Kalman Filter

● One method for track fitting 
● Subsequently iterates over all hits on a track
● For every hit, estimate the state of the track at that 

location:
• First: predict it based on the previous state

• Second: update it based on the measurement (hit)

Prediction
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Kalman Filter

● One method for track fitting 
● Subsequently iterates over all hits on a track
● For every hit, estimate the state of the track at that 

location:
• First: predict it based on the previous state

• Second: update it based on the measurement (hit)

Update
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Kalman Filter

● One method for track fitting 
● Subsequently iterates over all hits on a track
● For every hit, estimate the state of the track at that location:

• First: predict it based on the previous state

• Second: update it based on the measurement (hit)

● At last plane: best linear estimator for track state

● Only parallelizable over all tracks in one event
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