
Maurizio Pierini

CERN

Deep learning applied to
fundamental science

Lecture 2

Plan for this week

2

Day 1 Introduction Hands-on session

Day 2 Applications at the LHC Deep Learning for
Discovery Hands-on session

Event Reconstruction with
Graph Networks

๏We saw yesterday how images are
processed y Convolutional
Networks

๏Problem: LHC data are not images:

๏ difficult to fit an irregular
array of sensors (unordered set
of dots in some feature space)
in a regular array of pixels

๏One can deal with this problem
loosing some information

๏pixelate the data with a
coarser binning (as we did for
jets)

๏Or using some network that works
better with sparse and irregular
arrays

What LHC data look like

4

Graph Neural Networks in Particle Physics 3

calorimeters, muon detector, etc — each using a di↵erent technology to measure the

trace of particles. The data in particle physics are therefore heterogeneous. Detectors

in astrophysics are typically bigger, with size up to kilometers (IceCube, Antares,

etc) constructed around a single measurement technology, the data are therefore

homogeneous. In both cases, the measurements are inherently sparse in space, due to

the design of the geometry of the sensors. The measurements therefore do not a-priori

fit homogeneous, grid-like data structures.

Deep learning is often applied on high level features derived from particle physics

data [1]. This can improve over more classical data analysis methods, but does not use

the full potential of deep learning, which can be e↵ective when operating on lower level

information.

(a)

(b)

(c) (d)

Figure 2. HEP data lend itself to being represented as a graph for many applications:
(a) clustering tracking detector hits into tracks, (b) segmenting calorimeter cells, (c)
classifying events with multiple types of physics objects, (d) jet classification based on
the particles associated to the jet.

A generic problem in science

๏ Many scientific problems have this
issue:

๏ Galaxies or star populations in sky

๏ Sensors from HEP detector

๏ Molecules in chemistry

๏ These data can all be seen as sparse
sets in some abstract space

๏ each element of the set being
specified by some array of features

๏ Some of these features (or function
of) could be seen as coordinates in
some random space

MB II simulation, animation credit: Kim Albrecht

Generalising CNN to point clouds

6

๏The input is a set of vertices V
connected by edges E

๏Edges can be directional

๏Graphs can be fully connected (N2)

๏Or you could use some criterion
(e.g., nearest k neighbours in some
space) to reduce number of
connections

๏if more than one kind of vertex, you
could connect only Vs of same kind,
of different kind, etc

๏The (V,E) construction is your graph.
Building it, you could enforce some
structure in your data

๏If you have no prior, then go for a
directional fully connected graph

Building a Graph

7

๏Once you have a graph, you want to
learn from it

๏Each item in a dataset is
represented as a set of vertices
(like pixels in an image)

๏Each vertex is represented by a
vector of features (like RGB
indices for images

๏Vertices are connected through links

๏Messages are passed through links
and aggregated on the vertices

๏A new representation of each node is
created, based on the information
gathered across the graph

Graph Networks

v1 = (f1
1 , f 2

1 , . . . , f k
1)

v2 = (f1
2 , f 2

2 , . . . , f k
2)

v3 = (f1
3 , f 2

3 , . . . , f k
3)

v4 = (f1
4 , f 2

4 , . . . , f k
4)

v5 = (f1
5 , f 2

5 , . . . , f k
5)

v6 = (f1
6 , f 2

6 , . . . , f k
6)

https://arxiv.org/pdf/1704.01212.pdf8

https://arxiv.org/pdf/1704.01212.pdf

๏Once you have a graph, you want to
learn from it

๏Each item in a dataset is
represented as a set of vertices
(like pixels in an image)

๏Each vertex is represented by a
vector of features (like RGB
indices for images

๏Vertices are connected through links

๏Messages are passed through links
and aggregated on the vertices

๏A new representation of each node is
created, based on the information
gathered across the graph

Graph Networks

9 https://arxiv.org/pdf/1704.01212.pdf

https://arxiv.org/pdf/1704.01212.pdf

๏Once you have a graph, you want to
learn from it

๏Each item in a dataset is
represented as a set of vertices
(like pixels in an image)

๏Each vertex is represented by a
vector of features (like RGB
indices for images

๏Vertices are connected through links

๏Messages are passed through links
and aggregated on the vertices

๏A new representation of each node is
created, based on the information
gathered across the graph

Graph Networks

10

m3→2 = g(⃗f3, ⃗f2)

m1→2 = g(⃗f3, ⃗f2)

m4→2 = g(⃗f4, ⃗f2)

m5→2 = g(⃗f5, ⃗f2)

m6→2 = g(⃗f6, ⃗f2)

https://arxiv.org/pdf/1704.01212.pdf

https://arxiv.org/pdf/1704.01212.pdf

Graph Networks

11

v′￼1 = ⃗f ′￼1(m2→1, . . . , m6→1)

v′￼2 = ⃗f ′￼2(m1→2, . . . , m6→2)

v′￼4 = ⃗f ′￼4(m1→4, . . . , m6→4)

v′￼5 = ⃗f ′￼5(m1→5, . . . , m6→5)

v′￼6 = ⃗f ′￼6(m1→6, . . . , m5→6)

v′￼3 = ⃗f ′￼3(m1→3, . . . , m6→3)

https://arxiv.org/pdf/1704.01212.pdf

๏Once you have a graph, you want to
learn from it

๏Each item in a dataset is
represented as a set of vertices
(like pixels in an image)

๏Each vertex is represented by a
vector of features (like RGB
indices for images

๏Vertices are connected through links

๏Messages are passed through links
and aggregated on the vertices

๏A new representation of each node is
created, based on the information
gathered across the graph

https://arxiv.org/pdf/1704.01212.pdf

…and repeat

12

๏Take the case of a locally-
connected graph

๏At first step, only near
neighbours are considered

๏The first message passing
creates a new representation

๏Then you could connect to more
far-away vertices

๏And obtain a new representation
of the vertices

๏etc etc…

๏This new representation emerges
collectively from the graph, not
just from the vertex it refers to

…and repeat

13

๏Take the case of a locally-
connected graph

๏At first step, only near
neighbours are considered

๏The first message passing
creates a new representation

๏Then you could connect to more
far-away vertices

๏And obtain a new representation
of the vertices

๏etc etc…

๏This new representation emerges
collectively from the graph, not
just from the vertex it refers to

…and repeat

14

๏Take the case of a locally-
connected graph

๏At first step, only near
neighbours are considered

๏The first message passing
creates a new representation

๏Then you could connect to more
far-away vertices

๏And obtain a new representation
of the vertices

๏etc etc…

๏This new representation emerges
collectively from the graph, not
just from the vertex it refers to

…and repeat

15

๏Take the case of a locally-
connected graph

๏At first step, only near
neighbours are considered

๏The first message passing
creates a new representation

๏Then you could connect to more
far-away vertices

๏And obtain a new representation
of the vertices

๏etc etc…

๏This new representation emerges
collectively from the graph, not
just from the vertex it refers to

…and repeat

16

๏Take the case of a locally-
connected graph

๏At first step, only near
neighbours are considered

๏The first message passing
creates a new representation

๏Then you could connect to more
far-away vertices

๏And obtain a new representation
of the vertices

๏etc etc…

๏This new representation emerges
collectively from the graph, not
just from the vertex it refers to

It works!

17

Figure 7. ROC curves for JEDI-net and the three alternative models, computed for gluons (top-
left), light quarks (top-right), W (center-left) and Z (center-right) bosons, and top quarks (bottom).
The solid lines represent the average ROC curves derived from 10 k-fold trainings of each model.
The shaded bands around the average lines are represent one standard deviation, computed with
the same 10 k-fold trainings.

– 17 –

Figure 7. ROC curves for JEDI-net and the three alternative models, computed for gluons (top-
left), light quarks (top-right), W (center-left) and Z (center-right) bosons, and top quarks (bottom).
The solid lines represent the average ROC curves derived from 10 k-fold trainings of each model.
The shaded bands around the average lines are represent one standard deviation, computed with
the same 10 k-fold trainings.

– 17 –

Figure 7. ROC curves for JEDI-net and the three alternative models, computed for gluons (top-
left), light quarks (top-right), W (center-left) and Z (center-right) bosons, and top quarks (bottom).
The solid lines represent the average ROC curves derived from 10 k-fold trainings of each model.
The shaded bands around the average lines are represent one standard deviation, computed with
the same 10 k-fold trainings.

– 17 – �
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
ℰ [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

�
�P features

NO constituents

…

…
… … … …

…

…

…

… … … …

…

…

…

… … … … … … … …

…

…

NO: # of constituents

P: # of features

NE = NO(NO-1): # of edges

𝟇C, 𝒇O , 𝒇R
parameterize

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
ℰ [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

�

�P features

NO constituents

…

…
… … … …

…

…

…

… … … …

…

…

…

… … … … … … … …

…

…

�∙ RR [Np × Np-p] �
∙ RS [Np × Np-p]

Bp-p [2P × Np-p]

…

…

�Rp-p

…

�Rp-p

�Rp-p

�Rp-p�

�P features

Np particles

…

…

… … … …

… Ep-p [DE × Np-p]

��

�
∙ RK [Np × Np-v,]

∙ RV [Nv × Np-v]

Bp-v [(P+S) × Np-v]

…

…�
S

fe
at

ur
es …

… … …

… �Nv vertices

� �…

�Rp-v
�Rp-v

�Rp-v

�Rp-v

Ep-v [DE × Np-v]

� � �
Ep-v [DE × Np]

… … … …

…

…
—

� �… … … …

…

…

Ep-p [DE × Np]
—

∙ RR [Np-p × Np]
T

∙ RK [Np-v × Np]
T

… … … …

…

…

)(C [(P+2DE) × Np]
…

…

… … … …

…

…

…

… … … …

�O �O
�O

…� �
O [DO × Np]

O [DO]
—

Sum
rows

� �ŷH(bb) �C

ŷQCD

Figure 2: Illustration of the IN classifier. The particle feature matrix X is multiplied by the receiving
and sending matrices RR and RS to build the particle-particle interaction feature matrix Bp�p.
Similarly, the particle feature matrix X and the vertex feature matrix Y are multiplied by the
adjacency matrices RK and RV , respectively, to build the particle-vertex interaction feature matrix
Bp�v. These pairs are then processed by the interaction functions f

p�p

R
and f

p�v

R
, and the post-

interaction function fO, which are expressed as neural networks and learned in the training process.
This procedure creates a learned representation of the each particle’s post-interaction features, given
by Np vectors of size DO. The Np vectors are summed, giving Do features for the entire jet, which is
given as input to a classifier �C , also represented by a neural network. More details on the various
steps are given in the text.

p3

p1 p2
(p-p)1

(p-p)2 (p-p)3

(p-p)4

(p-p)5 (p-p)6

p3

p1 p2

v1 v2

(p-v)1 (p-v)4
(p-v)2 (p-v)3

(p-v)5 (p-v)6

Figure 3: Two example graphs with 3 particles and 2 vertices and the corresponding edges.

each other through Np�v = NpNv undirected edges. This is pictorially represented in Fig. 3 for the
case of a three particles and two vertices.

For the first graph, a receiving matrix (RR) and a sending matrix (RS) are defined, both of size
Np ⇥ Np�p. The element (RR)ij is set to 1 when the i

th particle receives the j
th edge and is 0

otherwise. Similarly, the element (RS)ij is set to 1 when the i
th particle sends the j

th edge and is 0
otherwise. For the second graph, the corresponding adjacency matrices RK (of size Np ⇥Np�v) and
RV (of size Nv ⇥ Np�v are defined. In the example of Fig. 3, the RR, RS , RK , and RV matrices

7

Your hands-on exercise,
with Graph NNs (and more
data)

The math

18

๏The inputs X

๏The weights W

๏The Adjacency matrix

The Inputs

19

๏Same as all other networks

๏Each vertex (row) is represented as an array of
features (columns)

The Weights

20

๏The weight matrix W is used on each vertex to create new
function of the inputs x (encoding)

๏If wij=1, the input representations is used directly in
the message passing

The Adjacency Matrix

21

๏Embeds graph structure: says which vertex is connected to which.

๏The value could be 1 (0 for no connection) or it could be a weight

๏Could be used with attention mechanism: the fixed weights are replaced
by learnable parameters. In training, the graph decides which
connections are relevant

The Message Passing

22

๏By performing a standard matrix product, one builds the
message

๏This is for one filter. One can have multiple filters, as
for CNNs

Dynamic Graph CNN for Learning on Point Clouds

YUE WANG, Massachuse�s Institute of Technology
YONGBIN SUN, Massachuse�s Institute of Technology
ZIWEI LIU, UC Berkeley / ICSI
SANJAY E. SARMA, Massachuse�s Institute of Technology
MICHAEL M. BRONSTEIN, Imperial College London / USI Lugano
JUSTIN M. SOLOMON, Massachuse�s Institute of Technology

Fig. 1. Point cloud segmentation using the proposed neural network. Bo�om: schematic neural network architecture. Top: Structure of the feature
spaces produced at di�erent layers of the network, visualized as the distance from the red point to all the rest of the points (shown le�-to-right are the input
and layers 1-3; rightmost figure shows the resulting segmentation). Observe how the feature space structure in deeper layers captures semantically similar
structures such as wings, fuselage, or turbines, despite a large distance between them in the original input space.

Point clouds provide a �exible geometric representation suitable for count-
less applications in computer graphics; they also comprise the raw output
of most 3D data acquisition devices. While hand-designed features on point
clouds have long been proposed in graphics and vision, however, the recent
overwhelming success of convolutional neural networks (CNNs) for image
analysis suggests the value of adapting insight from CNN to the point cloud
world. Point clouds inherently lack topological information so designing

Authors’ addresses: Yue Wang, Massachusetts Institute of Technology, yuewang@
csail.mit.edu; Yongbin Sun, Massachusetts Institute of Technology, yb_sun@mit.edu;
Ziwei Liu, UC Berkeley / ICSI, zwliu@icsi.berkeley.edu; Sanjay E. Sarma, Massachusetts
Institute of Technology, sesarma@mit.edu; Michael M. Bronstein, Imperial College
London / USI Lugano, m.bronstein@imperial.ac.uk; Justin M. Solomon, Massachusetts
Institute of Technology, jsolomon@mit.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/1-ART1 $15.00
https://doi.org/10.1145/3326362

a model to recover topology can enrich the representation power of point
clouds. To this end, we propose a new neural network module dubbed Edge-
Conv suitable for CNN-based high-level tasks on point clouds including
classi�cation and segmentation. EdgeConv acts on graphs dynamically com-
puted in each layer of the network. It is di�erentiable and can be plugged into
existing architectures. Compared to existing modules operating in extrinsic
space or treating each point independently, EdgeConv has several appealing
properties: It incorporates local neighborhood information; it can be stacked
applied to learn global shape properties; and in multi-layer systems a�nity
in feature space captures semantic characteristics over potentially long dis-
tances in the original embedding. We show the performance of our model
on standard benchmarks including ModelNet40, ShapeNetPart, and S3DIS.

CCSConcepts: •Computingmethodologies→Neural networks;Point-
based models; Shape analysis;

Additional Key Words and Phrases: point cloud, classi�cation, segmentation

ACM Reference Format:
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein,
and Justin M. Solomon. 2019. Dynamic Graph CNN for Learning on Point
Clouds. ACM Trans. Graph. 1, 1, Article 1 (January 2019), 13 pages. https:
//doi.org/10.1145/3326362

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

ar
X

iv
:1

80
1.

07
82

9v
2

 [c
s.C

V
]

11
 Ju

n
20

19 ๏Dynamic Graph CNN (DGCNN) is one
kind of message-passing neural
network

๏It uses EdgeConv layers to perform
point-cloud segmentation

๏Segmentation is the process of
clustering pixels in an image into
objects

๏EdgeConv was capable of extending
semantic segmentation beyond
nearby-pixel clustering

๏the two wings of the airplane
are associated to the same
cluster, since they are found to
be similar

EdgeConv

23 https://arxiv.org/abs/1801.07829

https://arxiv.org/abs/1801.07829

๏The actual model is much more complicated than that

EdgeConv

24 https://arxiv.org/abs/1801.07829

1:4 • Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon

Fig. 3. Model architectures: The model architectures used for classification (top branch) and segmentation (bo�om branch). The classification model takes
as input n points, calculates an edge feature set of size k for each point at an EdgeConv layer, and aggregates features within each set to compute EdgeConv
responses for corresponding points. The output features of the last EdgeConv layer are aggregated globally to form an 1D global descriptor, which is used to
generate classification scores for c classes. The segmentation model extends the classification model by concatenating the 1D global descriptor and all the
EdgeConv outputs (serving as local descriptors) for each point. It outputs per-point classification scores for p semantic labels. �: concatenation. Point cloud
transform block: The point cloud transform block is designed to align an input point set to a canonical space by applying an estimated 3 ⇥ 3 matrix. To
estimate the 3 ⇥ 3 matrix, a tensor concatenating the coordinates of each point and the coordinate di�erences between its k neighboring points is used.
EdgeConv block: The EdgeConv block takes as input a tensor of shape n ⇥ f , computes edge features for each point by applying a multi-layer perceptron
(mlp) with the number of layer neurons defined as {a1, a2, ..., an }, and generates a tensor of shape n ⇥ an a�er pooling among neighboring edge features.

a connection to existing work, Non-local Neural Networks [Wang
et al. 2018a] explored similar ideas in the video recognition �eld,
and follow-up work by Xie et al. [2018] proposed using non-local
blocks to denoise feature maps to defend against adversarial attacks.

3.1 Edge Convolution
Consider an F -dimensional point cloud with n points, denoted by
X = {x1, . . . , xn } ✓ RF . In the simplest setting of F = 3, each point
contains 3D coordinates xi = (xi ,�i , zi); it is also possible to include
additional coordinates representing color, surface normal, and so
on. In a deep neural network architecture, each subsequent layer
operates on the output of the previous layer, so more generally the
dimension F represents the feature dimensionality of a given layer.

We compute a directed graph G = (V, E) representing local point
cloud structure, where V = {1, . . . ,n} and E ✓ V ⇥ V are the
vertices and edges, respectively. In the simplest case, we construct
G as the k-nearest neighbor (k-NN) graph of X in RF . The graph
includes self-loop, meaning each node also points to itself. We de�ne
edge features as ei j = h�(xi , xj), where h� : RF ⇥ RF ! RF 0

is a
nonlinear function with a set of learnable parameters �.

Finally, we de�ne the EdgeConv operation by applying a channel-
wise symmetric aggregation operation ⇤ (e.g.,

Õ
or max) on the

edge features associated with all the edges emanating from each

vertex. The output of EdgeConv at the i-th vertex is thus given by

x0i = ⇤
j :(i, j)2E

h�(xi , xj). (1)

Making analogy to convolution along images, we regard xi as the
central pixel and {xj : (i, j) 2 E} as a patch around it (see Fig-
ure 2). Overall, given an F -dimensional point cloud with n points,
EdgeConv produces an F 0-dimensional point cloud with the same
number of points.
Choice of h and ⇤. The choice of the edge function and the ag-

gregation operation has a crucial in�uence on the properties of
EdgeConv. For example, when x1, . . . , xn represent image pixels
on a regular grid and the graph G has connectivity representing
patches of �xed size around each pixel, the choice �m · xj as the
edge function and sum as the aggregation operation yields standard
convolution:

x 0im =
’

j :(i, j)2E
�m · xj , (2)

Here, � = (�1, . . . ,�M) encodes the weights ofM di�erent �lters.
Each �m has the same dimensionality as x, and · denotes the Eu-
clidean inner product.

A second choice of h is

h�(xi , xj) = h�(xi), (3)

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2019.

๏Each EdgeConv layer runs a message passing and creates an
updated representation of the graph of points

๏Similar to a CNN, but capable of processing unordered sets
of points

https://arxiv.org/abs/1801.07829

๏DGCNN fits very well particle
reconstruction in High Energy
Physics

๏Particles seen as energy
showers in calorimeters

๏DGCNN can be trained to
distinguish overlapping
showers from different
particles

๏Success comes at some
computational cost:

๏15 sec/event on a CPU

๏Lowered to 5 sec/event on GPU
when using a batch of 100

EdgeConv for Particle Physics

25

๏DGCNN fits very well particle
reconstruction in High Energy
Physics

๏Particles seen as energy
showers in calorimeters

๏DGCNN can be trained to
distinguish overlapping
showers from different
particles

๏Success comes at some
computational cost:

๏15 sec/event on a CPU

๏Lowered to 5 sec/event on GPU
when using a batch of 100

EdgeConv for Particle Physics

26

6 S.R. Qasim et al.: Distance-weighted graph networks for irregular particle-detector geometries

single particle passing the central part of the calorimeter
before showering. The second pion passes the first layers
as a minimally ionizing particle and showers in the cen-
tral part of the calorimeter. Even though the two showers
largely overlap, the GravNet network (shown here as an
example) is able to identify and separate the two showers
very well. The track within the calorimeter is well identi-
fied and reconstructed and the energy fractions properly
assigned, even in the parts where the two showers heav-
ily overlap. Similar performance can be observed with the
other investigated methods.

(a) Truth

(b) Reconstructed

Fig. 3: Comparison of true energy fractions and energy
fractions reconstructed by the GravNet model for two
charged pions with approx. 50GeV energy showering in
di↵erent parts of the calorimeter. Colours indicate the
fraction belonging to each of the showers. The size of the
markers scales with the square root of the energy deposit
in each sensor.

Quantitatively, the performance of the models is com-
pared using the mean loss (µL) on the test data set, as well

as the clustering response as defined in Equations 2 and 3.
For every event, we define one of the shower as the test
shower and the other overlapping shower as noise shower.
Performance characteristics are evaluated only for the test
shower and are quantified by the mean (µR) and variance
(�R) of the response in the test data set. In addition, we
define clustering accuracy (A) as the fraction of show-
ers with response between 0.7 and 1.3. Given that some
showers are not properly clustered, the response distribu-
tion has a small fraction of outliers that disturb its other-
wise rather Gaussian shape. Therefore, test showers with
response less than 0.2 and higher than 2.8 are removed,
resulting in the response kernel mean µ⇤

R and variance �⇤
R.

The reconstruction of hits with significant overlaps is par-
ticularly challenging. Therefore, we also evaluate the per-
formance of the models restricted to those sensors with
energy fractions between 0.2 and 0.8.

As listed in Table 2, the GravNet layer outperforms
the other approaches as far as the inclusive metrics are
concerned, including even the more resource-intensiveDG-
CNN model. The GarNet model is slightly worse than
the DGCNN model but still outperforms the binning ap-
proach as far as the reconstruction of individual shower
hit fractions is concerned, represented by the loss func-
tion. However, with respect to the clustering response, the
binning model outperforms the GarNet and DGCNN
model slightly. For the overlapping parts of the show-
ers, the graph based approaches outperform the binning
approach. The DGCNN and GravNet model perform
equally well, and the GarNet model lies in-between the
binning approach and GravNet.

Table 2: Mean and variance of loss, response, and response
within the Gaussian kernel as well as clustering accuracy.

Inclusive
µL �L µR �R µ⇤

R �⇤
R A

Binning 0.191 0.017 1.083 0.183 1.046 0.057 0.867
DGCNN 0.174 0.012 1.082 0.179 1.045 0.052 0.881
GarNet 0.182 0.011 1.086 0.190 1.048 0.055 0.872
GravNet 0.172 0.012 1.077 0.173 1.042 0.049 0.886

Overlapping showers (20-80%)
µL �L µR �R µ⇤

R �⇤
R A

Binning 0.163 0.0045 1.005 0.099 1.004 0.096 0.697
DGCNN 0.154 0.0046 1.004 0.090 1.002 0.087 0.728
GarNet 0.157 0.0048 1.005 0.095 1.004 0.092 0.714
GravNet 0.156 0.0047 1.004 0.091 1.003 0.088 0.721

One should notice that part of the incorrectly pre-
dicted events are actually correctly clustered events in
which the test shower is labelled as noise shower (shower
swapping). Since the labelling is irrelevant in a clustering
problem, this behavior is not a real ine�ciency of the al-
gorithm. We denote by s the fraction of events where this
behaviour is observed. In Table 3, we calculate the loss for
both choices and evaluate the performance parameters for
the assignment that minimises the loss. The binning model
shows the largest fraction of swapped showers. The di↵er-
ence in response between the best-performing GravNet

Separating overlapping showers

27

6 S.R. Qasim et al.: Distance-weighted graph networks for irregular particle-detector geometries

single particle passing the central part of the calorimeter
before showering. The second pion passes the first layers
as a minimally ionizing particle and showers in the cen-
tral part of the calorimeter. Even though the two showers
largely overlap, the GravNet network (shown here as an
example) is able to identify and separate the two showers
very well. The track within the calorimeter is well identi-
fied and reconstructed and the energy fractions properly
assigned, even in the parts where the two showers heav-
ily overlap. Similar performance can be observed with the
other investigated methods.

(a) Truth

(b) Reconstructed

Fig. 3: Comparison of true energy fractions and energy
fractions reconstructed by the GravNet model for two
charged pions with approx. 50GeV energy showering in
di↵erent parts of the calorimeter. Colours indicate the
fraction belonging to each of the showers. The size of the
markers scales with the square root of the energy deposit
in each sensor.

Quantitatively, the performance of the models is com-
pared using the mean loss (µL) on the test data set, as well

as the clustering response as defined in Equations 2 and 3.
For every event, we define one of the shower as the test
shower and the other overlapping shower as noise shower.
Performance characteristics are evaluated only for the test
shower and are quantified by the mean (µR) and variance
(�R) of the response in the test data set. In addition, we
define clustering accuracy (A) as the fraction of show-
ers with response between 0.7 and 1.3. Given that some
showers are not properly clustered, the response distribu-
tion has a small fraction of outliers that disturb its other-
wise rather Gaussian shape. Therefore, test showers with
response less than 0.2 and higher than 2.8 are removed,
resulting in the response kernel mean µ⇤

R and variance �⇤
R.

The reconstruction of hits with significant overlaps is par-
ticularly challenging. Therefore, we also evaluate the per-
formance of the models restricted to those sensors with
energy fractions between 0.2 and 0.8.

As listed in Table 2, the GravNet layer outperforms
the other approaches as far as the inclusive metrics are
concerned, including even the more resource-intensiveDG-
CNN model. The GarNet model is slightly worse than
the DGCNN model but still outperforms the binning ap-
proach as far as the reconstruction of individual shower
hit fractions is concerned, represented by the loss func-
tion. However, with respect to the clustering response, the
binning model outperforms the GarNet and DGCNN
model slightly. For the overlapping parts of the show-
ers, the graph based approaches outperform the binning
approach. The DGCNN and GravNet model perform
equally well, and the GarNet model lies in-between the
binning approach and GravNet.

Table 2: Mean and variance of loss, response, and response
within the Gaussian kernel as well as clustering accuracy.

Inclusive
µL �L µR �R µ⇤

R �⇤
R A

Binning 0.191 0.017 1.083 0.183 1.046 0.057 0.867
DGCNN 0.174 0.012 1.082 0.179 1.045 0.052 0.881
GarNet 0.182 0.011 1.086 0.190 1.048 0.055 0.872
GravNet 0.172 0.012 1.077 0.173 1.042 0.049 0.886

Overlapping showers (20-80%)
µL �L µR �R µ⇤

R �⇤
R A

Binning 0.163 0.0045 1.005 0.099 1.004 0.096 0.697
DGCNN 0.154 0.0046 1.004 0.090 1.002 0.087 0.728
GarNet 0.157 0.0048 1.005 0.095 1.004 0.092 0.714
GravNet 0.156 0.0047 1.004 0.091 1.003 0.088 0.721

One should notice that part of the incorrectly pre-
dicted events are actually correctly clustered events in
which the test shower is labelled as noise shower (shower
swapping). Since the labelling is irrelevant in a clustering
problem, this behavior is not a real ine�ciency of the al-
gorithm. We denote by s the fraction of events where this
behaviour is observed. In Table 3, we calculate the loss for
both choices and evaluate the performance parameters for
the assignment that minimises the loss. The binning model
shows the largest fraction of swapped showers. The di↵er-
ence in response between the best-performing GravNet

6 S.R. Qasim et al.: Distance-weighted graph networks for irregular particle-detector geometries

single particle passing the central part of the calorimeter
before showering. The second pion passes the first layers
as a minimally ionizing particle and showers in the cen-
tral part of the calorimeter. Even though the two showers
largely overlap, the GravNet network (shown here as an
example) is able to identify and separate the two showers
very well. The track within the calorimeter is well identi-
fied and reconstructed and the energy fractions properly
assigned, even in the parts where the two showers heav-
ily overlap. Similar performance can be observed with the
other investigated methods.

(a) Truth

(b) Reconstructed

Fig. 3: Comparison of true energy fractions and energy
fractions reconstructed by the GravNet model for two
charged pions with approx. 50GeV energy showering in
di↵erent parts of the calorimeter. Colours indicate the
fraction belonging to each of the showers. The size of the
markers scales with the square root of the energy deposit
in each sensor.

Quantitatively, the performance of the models is com-
pared using the mean loss (µL) on the test data set, as well

as the clustering response as defined in Equations 2 and 3.
For every event, we define one of the shower as the test
shower and the other overlapping shower as noise shower.
Performance characteristics are evaluated only for the test
shower and are quantified by the mean (µR) and variance
(�R) of the response in the test data set. In addition, we
define clustering accuracy (A) as the fraction of show-
ers with response between 0.7 and 1.3. Given that some
showers are not properly clustered, the response distribu-
tion has a small fraction of outliers that disturb its other-
wise rather Gaussian shape. Therefore, test showers with
response less than 0.2 and higher than 2.8 are removed,
resulting in the response kernel mean µ⇤

R and variance �⇤
R.

The reconstruction of hits with significant overlaps is par-
ticularly challenging. Therefore, we also evaluate the per-
formance of the models restricted to those sensors with
energy fractions between 0.2 and 0.8.

As listed in Table 2, the GravNet layer outperforms
the other approaches as far as the inclusive metrics are
concerned, including even the more resource-intensiveDG-
CNN model. The GarNet model is slightly worse than
the DGCNN model but still outperforms the binning ap-
proach as far as the reconstruction of individual shower
hit fractions is concerned, represented by the loss func-
tion. However, with respect to the clustering response, the
binning model outperforms the GarNet and DGCNN
model slightly. For the overlapping parts of the show-
ers, the graph based approaches outperform the binning
approach. The DGCNN and GravNet model perform
equally well, and the GarNet model lies in-between the
binning approach and GravNet.

Table 2: Mean and variance of loss, response, and response
within the Gaussian kernel as well as clustering accuracy.

Inclusive
µL �L µR �R µ⇤

R �⇤
R A

Binning 0.191 0.017 1.083 0.183 1.046 0.057 0.867
DGCNN 0.174 0.012 1.082 0.179 1.045 0.052 0.881
GarNet 0.182 0.011 1.086 0.190 1.048 0.055 0.872
GravNet 0.172 0.012 1.077 0.173 1.042 0.049 0.886

Overlapping showers (20-80%)
µL �L µR �R µ⇤

R �⇤
R A

Binning 0.163 0.0045 1.005 0.099 1.004 0.096 0.697
DGCNN 0.154 0.0046 1.004 0.090 1.002 0.087 0.728
GarNet 0.157 0.0048 1.005 0.095 1.004 0.092 0.714
GravNet 0.156 0.0047 1.004 0.091 1.003 0.088 0.721

One should notice that part of the incorrectly pre-
dicted events are actually correctly clustered events in
which the test shower is labelled as noise shower (shower
swapping). Since the labelling is irrelevant in a clustering
problem, this behavior is not a real ine�ciency of the al-
gorithm. We denote by s the fraction of events where this
behaviour is observed. In Table 3, we calculate the loss for
both choices and evaluate the performance parameters for
the assignment that minimises the loss. The binning model
shows the largest fraction of swapped showers. The di↵er-
ence in response between the best-performing GravNet

๏DGCNN fits very well particle
reconstruction in High Energy
Physics

๏Particles seen as energy
showers in calorimeters

๏DGCNN can be trained to
distinguish overlapping
showers from different
particles

๏Success comes at some
computational cost:

๏15 sec/event on a CPU

๏Lowered to 5 sec/event on GPU
when using a batch of 100

EdgeConv for Particle Physics

28

S.R. Qasim et al.: Distance-weighted graph networks for irregular particle-detector geometries 7

(a) Mean (b) Variance

(c) Mean (d) Variance

Fig. 4: Mean (left) and variance (right) of the test shower response as a function of the test shower energy for full
shower (top) and for overlapping shower (bottom), computed summing the true deposited energy. Swapping of the
showers is allowed here.

model and the GarNet model is enhanced, while the dif-
ference between theGravNet andDGCNNmodel scales
similarly, likely because of their similar general structure.

As shown in Fig. 4, all models exhibit a bias toward
larger energy values for low-energy incoming particles.
Contributing to this bias are edge e↵ects from training the
models to predict fractions within the bounds of 0 and
1 with an adapted mean-squared error loss. This choice
is creating an expectation value larger than 0 at a peak
value of 0 (and vice-versa at a fraction of 1), and therefore
pushing the prediction away from predicting exactly 0 or
1, leading to an underestimation at high energies, and an
overestimation at low energies. Since we aim for a relative
comparison of the models, a study of other loss functions
is left for future study. In both metrics, mean and vari-
ance, the GravNet model outperforms the other models
in the full range, and the GarNet model shows the worst
performance, albeit in a comparable range. The resource-
intensive DGCNN model lies in between GravNet and
GarNet. For fractions between 0.2 and 0.8, the edge ef-

fects become negligible, and the Figures confirm that the
graph based models outperform the binning method at all
test shower energies, as well as that the GravNet and
the DGCNN model show similar performance.

8 Resource requirements

In addition to the clustering performance, it is impor-
tant to take into account the computational resources de-
manded by each model during inference. The inference
time can have a significant impact on the applicability of
the network for reconstruction tasks, in particular for the
kind of real-time processing performed by the trigger sys-
tems of typical collider experiments. We evaluate the in-
ference time t and memory consumption m for the models
studied here on one NVIDIA GTX 1080 Ti GPU for batch
sizes of 1 and 100, denoted as (t1,m1) and (t100, m100),
respectively. The inference time is also evaluated on one
Intel Xeon E5-2650 CPU core (tCPU

10
) for a fixed batch size

S.R. Qasim et al.: Distance-weighted graph networks for irregular particle-detector geometries 7

(a) Mean (b) Variance

(c) Mean (d) Variance

Fig. 4: Mean (left) and variance (right) of the test shower response as a function of the test shower energy for full
shower (top) and for overlapping shower (bottom), computed summing the true deposited energy. Swapping of the
showers is allowed here.

model and the GarNet model is enhanced, while the dif-
ference between theGravNet andDGCNNmodel scales
similarly, likely because of their similar general structure.

As shown in Fig. 4, all models exhibit a bias toward
larger energy values for low-energy incoming particles.
Contributing to this bias are edge e↵ects from training the
models to predict fractions within the bounds of 0 and
1 with an adapted mean-squared error loss. This choice
is creating an expectation value larger than 0 at a peak
value of 0 (and vice-versa at a fraction of 1), and therefore
pushing the prediction away from predicting exactly 0 or
1, leading to an underestimation at high energies, and an
overestimation at low energies. Since we aim for a relative
comparison of the models, a study of other loss functions
is left for future study. In both metrics, mean and vari-
ance, the GravNet model outperforms the other models
in the full range, and the GarNet model shows the worst
performance, albeit in a comparable range. The resource-
intensive DGCNN model lies in between GravNet and
GarNet. For fractions between 0.2 and 0.8, the edge ef-

fects become negligible, and the Figures confirm that the
graph based models outperform the binning method at all
test shower energies, as well as that the GravNet and
the DGCNN model show similar performance.

8 Resource requirements

In addition to the clustering performance, it is impor-
tant to take into account the computational resources de-
manded by each model during inference. The inference
time can have a significant impact on the applicability of
the network for reconstruction tasks, in particular for the
kind of real-time processing performed by the trigger sys-
tems of typical collider experiments. We evaluate the in-
ference time t and memory consumption m for the models
studied here on one NVIDIA GTX 1080 Ti GPU for batch
sizes of 1 and 100, denoted as (t1,m1) and (t100, m100),
respectively. The inference time is also evaluated on one
Intel Xeon E5-2650 CPU core (tCPU

10
) for a fixed batch size

Mean Reco/True
Energy Ratio

Variance Reco/True
Energy Ratio

GraphNets for Calorimetry

29

model using the G���N�� layers requires about 50% less. The G��N�� model provides the best
compromise of memory consumption with respect to performance. In terms of inference time, the
binning model is the fastest and the graph-based models show a similar behaviour for small batch
sizes on a GPU. The G��N�� and the G���N�� model benefit from parallelizing over a larger
batch. In particular, the G��N�� model is mostly sequential, which also explains the outstanding
performance on a single CPU core, with almost a factor of 10 shorter inference time compared to
the DGCNN model.

t1(ms) t100/100(ms) tCPU
10 (s) m1 m100/100

0

10

20

30

40

50

In
fe

re
nc

e
ti
m

e
0

20

40

60

80

M
em

or
y

(M
iB

)

DGCNN

GravNet

Binning

GarNet

Figure 5: Comparison of inference time for the network architectures described in the text, evaluated
on CPUs and GPUs with di�erent choices of batch size. The shaded area represents the +1�
statistical uncertainty band.

9 Conclusions

In this work, we introduced the G��N�� and G���N�� layers, which are distance-weighted graph
networks capable of learning irregular patterns of sparse data, such as the detector hits in a particle
physics detector with realistic geometry. Using as a benchmark problem the hit clustering in a
highly granular calorimeter, we show how these network architectures o�er a good compromise
between clustering performance and computational resource needs, when compared to CNN-based
and other graph-based networks. In the specific case considered here, the performance of the
G��N�� and G���N�� models are comparable to the CNN and graph baselines. On the other
hand, the simulated calorimeter in the benchmark study is only slightly irregular and can still be
represented by an almost regular array. In more realistic applications, e.g. with the hexagonal
sensors and the non-projective geometry of the future HGCAL detector of CMS, the di�erence
in performance between the graph-based approaches and the CNN-based approaches is expected
to increase further, making the G��N�� approach a very e�cient candidate for fast and accurate
inference and the G���N�� approach a good candidate for high-performance reconstruction with
less resource requirements and better performance than the DGCNN model.

– 12 –

๏Good performance
achieved,
comparable to
more traditional
approaches

๏Using a potential
(V(d)) to weight
up the near
neighbours allows
to keep memory
footprint under
control (with
respect to other
graph approaches)

S.R. Qasim et al.: Distance-weighted graph networks for irregular particle-detector geometries 7

(a) Mean (b) Variance

(c) Mean (d) Variance

Fig. 4: Mean (left) and variance (right) of the test shower response as a function of the test shower energy for full
shower (top) and for overlapping shower (bottom), computed summing the true deposited energy. Swapping of the
showers is allowed here.

model and the GarNet model is enhanced, while the dif-
ference between theGravNet andDGCNNmodel scales
similarly, likely because of their similar general structure.

As shown in Fig. 4, all models exhibit a bias toward
larger energy values for low-energy incoming particles.
Contributing to this bias are edge e↵ects from training the
models to predict fractions within the bounds of 0 and
1 with an adapted mean-squared error loss. This choice
is creating an expectation value larger than 0 at a peak
value of 0 (and vice-versa at a fraction of 1), and therefore
pushing the prediction away from predicting exactly 0 or
1, leading to an underestimation at high energies, and an
overestimation at low energies. Since we aim for a relative
comparison of the models, a study of other loss functions
is left for future study. In both metrics, mean and vari-
ance, the GravNet model outperforms the other models
in the full range, and the GarNet model shows the worst
performance, albeit in a comparable range. The resource-
intensive DGCNN model lies in between GravNet and
GarNet. For fractions between 0.2 and 0.8, the edge ef-

fects become negligible, and the Figures confirm that the
graph based models outperform the binning method at all
test shower energies, as well as that the GravNet and
the DGCNN model show similar performance.

8 Resource requirements

In addition to the clustering performance, it is impor-
tant to take into account the computational resources de-
manded by each model during inference. The inference
time can have a significant impact on the applicability of
the network for reconstruction tasks, in particular for the
kind of real-time processing performed by the trigger sys-
tems of typical collider experiments. We evaluate the in-
ference time t and memory consumption m for the models
studied here on one NVIDIA GTX 1080 Ti GPU for batch
sizes of 1 and 100, denoted as (t1,m1) and (t100, m100),
respectively. The inference time is also evaluated on one
Intel Xeon E5-2650 CPU core (tCPU

10
) for a fixed batch size

Collision Simulation
with generative models

๏The capability of simulating LHC
collisions is crucial for data
analysis

๏So that we can study what a
given new phenomenon (e.g.,
dark matter produced in the
collision) would look like

๏So that we can have an idea of
the background we have to
fight from known physics
phenomena

๏This is done with a set of rule-
based algorithms

๏Very accurate, but very
computing demanding

Why we use simulation

31

Analysis Strategy

June 9, 2021Monojet search @ CMS & ATLAS -- Varun Sharma 6

Mono-Jet Mono-V

Good agreement between Data and SM predictions

Signal Region

ATLAS Resultsa

CMS Results

%/Z+jets processes, their MC predictions were
reweighted to account for higher-order QCD
and electroweak corrections

Simultaneous maximum likelihood fit

Bkg shape &
norm. from data

These prescriptions allows constrain the Z+jets
in the SR

CMS PAS EXO-20-004

Why this is a problem

32

GEN SIM DIGI+RECO
xxx sec/evt
xxx MB/evt

xxx sec/evt
xxx MB/evt

xxx sec/evt
xxx MB/evt

CPUGEN
SIM
DIGI-RECO

DiskGEN
SIM
DIGI-RECO

GEN SIM DIGI+RECO+MINIAOD

CPU 1.1%
16.8%

57.6%

24.4%
0.1%

GEN
SIM
DIGI
RECO
MINIAOD

Disk
9%

81%

10%

GEN
SIM
MINIAOD

Figure 1: TOP: The event generation workflow of the CMS experiment. The proton-proton collision process is
simulated up to the production of stable (hence observable) particles (GEN). The simulation of the detector response is
modelled by the GEANT4 library (SIM). The resulting energy deposits are turned into digital signals (DIGI) that are then
reconstructed by the same software used to process real collision events (RECO). At this stage, high-level objects such
as jets are reconstructed. Starting from the RECO data format, a reduced analysis data format (MINIAOD) is derived.
BOTTOM: computing resource breakdown for the generation workflow of the CMS experiment, in terms of CPU (left)
and storage disk (right). See Appendix A for details.

are then seen by the detector. This step creates the so-called generator-level view of a collision event, corresponding
to what a perfect detector would see. The simulation of the detector response (SIM) translates this flow of particles
into a set of detector hits, taking into account detector imperfections and the limited experimental resolution. These
hits are converted to the same digital format (DIGI) produced by the detector electronics and then reconstructed by the
same software used to process real collision events (RECO). At this stage, high-level objects such as jets are created.
Starting from the RECO data format, a reduced analysis data format (MINIAOD) is derived [3]. Figure 1 also provides
a breakdown of CPU and disk resources for each of these steps. Details on the procedure followed to measure these
values are given in Appendix A.

Recently, generative algorithms based on Deep Learning (DL) techniques have been proposed as a possible solution to
speed up GEANT4. When following this approach, one typically focuses on an image representation of LHC collisions
(e.g., energy deposits in a calorimeter) and develops some kind of generative model [4–8] to by-pass GEANT4 when
simulating the detector response to individual particles [9–13] or to groups of particles, such as jets [14–16] or cosmic
rays [17]. Generative models were considered also for similar applications in HEP, such as amplitude [18] and full event
topology [19–21] generation. While these studies demonstrate the potential of generative models for HEP, more work
is needed to fully integrate this new methodology in the centralized computing system of a typical LHC experiment.
In particular, one needs to work beyond the collision-as-image paradigm so that the DL-based simulation accounts
for the irregular geometry of a typical detector while delivering a dataset in a format compatible with downstream
reconstruction software.

Other studies [22, 23] investigated a more extreme approach: rather than training models to perform generic generation
tasks in a broader software framework (e.g., a DL-based shower generator in GEANT), one could design analysis-
specific generators, with the limited scope of delivering arrays of values for physics quantities which are relevant
to a specific analysis. Reducing the event representation to a vector of meaningful quantities, one could obtain a
large amount of events in short time and with small storage requirements by skipping all the intermediate steps of
the data processing. The considered features could be the fundamental quantities used by a given analysis (e.g., the
four-momenta of the final-state reconstructed objects in a search for new particles). In this context, both generative

2

๏Large part of computing resources
goes into simulating the detector
response (SIM)

๏In addition, once simulated,
these data are processed as if
they were real data (more CPU and
Disk)

๏Generating simulations for the
whole experiment takes ~ 1 year

๏A tot of CPU “burned”

๏Disk occupied for a lot of time

๏Because of this, we ended up
taking less data than what we
could (because we would not know
how to process the extra data)

๏We have a working
algorithm, accurate but
slow (tens of seconds/
collision)

๏A neural network could
run in O(100 μsec)

๏Potential gain of a few
orders of magnitude

๏We can use data from
slow algorithm to train
a network to do better

Speeding up Generation with DL

33

๏Two networks trained against
each other

๏A generator aims at
creating realistic data
(e.g., images similar to
those in the training
dataset)

๏A discriminator aims at
identifying which data in
a dataset are real and
which come from the
generator

Generative Adversarial Training

34

�+*&$/�)DVW�6LPXODWLRQ�ZLWK�'HHS�/HDUQLQJ _ 9LWµULD�%DULQ�3DFHOD _ ��������

*$1V

๏ The total loss is written as the difference between the generator and the
discriminator loss:

๏ If the discriminator improves, the loss increases

๏ If the generator improves, the loss decreases

๏ The training continues until the generator fools the discriminator

Generative Adversarial Training

35

�+*&$/�)DVW�6LPXODWLRQ�ZLWK�'HHS�/HDUQLQJ _ 9LWµULD�%DULQ�3DFHOD _ ��������

*$1V
๏Two networks trained against
each other

๏A generator aims at
creating realistic data
(e.g., images similar to
those in the training
dataset)

๏A discriminator aims at
identifying which data in
a dataset are real and
which come from the
generator

๏ The total loss is written as the difference between the generator and the
discriminator loss:

๏ If the discriminator improves, the loss increases

๏ If the generator improves, the loss decreases

๏ The training continues until the generator fools the discriminator

Generative Adversarial Training

36

�+*&$/�)DVW�6LPXODWLRQ�ZLWK�'HHS�/HDUQLQJ _ 9LWµULD�%DULQ�3DFHOD _ ��������

*$1V
๏Two networks trained against
each other

๏A generator aims at
creating realistic data
(e.g., images similar to
those in the training
dataset)

๏A discriminator aims at
identifying which data in
a dataset are real and
which come from the
generator

๏ The total loss is written as the difference between the generator and the
discriminator loss:

๏ If the discriminator improves, the loss increases

๏ If the generator improves, the loss decreases

๏ The training continues until the generator fools the discriminator

Generative Adversarial training in action

Generating detector response

38

• Start from random noise

• Works very well with images

• Applied to electron showers in digital calorimeters as a
replacement of GEANTSome images

13

Preliminary

¤ Slice energy spectrum

¤ Start with photons & electrons

GAN generated electrons

14

Shower longitudinal section
Geant4
GAN generated

a
.u

.

Y

Geant4
GAN generateda

.u
. Shower transverse section

Geant4
GAN generated a

.u
.

X

XY

Y

Z

a
.u

. Geant4
GAN generated

Geant4
GAN generated

Preliminary

GAN generated electrons

14

Shower longitudinal section
Geant4
GAN generated

a
.u

.

Y

Geant4
GAN generateda

.u
. Shower transverse section

Geant4
GAN generated a

.u
.

X

XY

Y

Z

a
.u

. Geant4
GAN generated

Geant4
GAN generated

Preliminary

See contribution to NIPS workshop

https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf

Generating a full jets

39

• Start from random noise

• Works very well with images

• Applied to electron showers in digital calorimeters
as a replacement of GEANT

where Ii, ⌘i, and �i are the pixel intensity, pseudorapidity, and azimuthal angle, respectively. The
sums run over the entire image. The quantities ⌘a and �a are axis values determined with the one-pass
kt axis selection using the winner-take-all combination scheme [42].

The distributions of m(I), pT(I), and ⌧21(I) are shown in Fig. 6 for both GAN and Pythia images.
These quantities are highly non-linear, low dimensional manifolds of the 625-dimensional space in
which jet images live, so there is no guarantee that these non-trivial mappings will be preserved under
generation. However this property is desirable and easily verifiable. The GAN images reproduce many
of the jet-observable features of the Pythia images. Shapes are nearly matched, and, for example, signal
mass exhibits a peak at ⇠ 80GeV, which corresponds to the mass of the W boson that generates the
hadronic shower. This is an emergent property - nothing in the training or architecture encourages
this. Importantly, the generated GAN images are as diverse as the true Pythia images used for training
- the fake images do not simply occupy a small subspace of credible images.

Figure 6: The distributions of image mass m(I), transverse momentum pT(I), and n-subjettiness
⌧21(I). See the text for definitions.

We claim that the network is not only learning to produce samples with a diverse range of m, pT
and ⌧21, but it’s also internally learning these projections of the true data distribution and making use
of them in the discriminator. To provide evidence for this claim, we explore the relationships between
the D’s primary and auxiliary outputs, namely P (real) and P (signal), and the physical quantities that
the generated images possess, such as mass m and transverse momentum pT .

The auxiliary classifier is trained to achieve optimal performance in discriminating signal from
background images. Fig. 7 confirms its ability to correctly identify the class most generated images
belong to. Here, we can identify the response’s dependence on the kinematic variables. Notice how
D is making use of its internal representation of mass to identify signal-like images: the peak of the
m distribution for signal events is located around 80 GeV, and indeed images with mass around that
point have a higher P (signal) than the ones at very low or very high mass. Similarly, low pT images
are more likely to be classified as background, while high pT ones have a higher probability of being
categorized as signal images. This behavior is well understood from a physical standpoint and can be
easily cross-checked with the m and pT distribution for boosted W and QCD jets displayed in Fig. 6.
Although mass and transverse momentum influence the label assignment, D is only partially relying
on these quantities; there is more knowledge learned by the network that allows it, for example, to
still manage to correctly classify the majority of signal and background images regardless of their m
and pT values.

– 9 –

Figure 2: In the simplest (i.e., all-square) case, a convolutional layer consists of N filters of size F⇥F
sliding across an L ⇥ L image with stride S. For a valid convolution, the dimensions of the output
volume will be W ⇥W ⇥N , where W = (L� F)/S + 1.

Figure 3: A locally connected layer consists of N unique filters applied to each individual patch of
the image. Each group of N filters is specifically learned for one patch, and no filter is slid across
the entire image. The diagram shows the edge case in which the stride S is equal to the filter size F ,
but in general patches would partially overlap. A convolution, as described above, is simply a locally
connected layer with a weight sharing constraint.

distribution. Both batch normalization [37] and label flipping [4, 35] were also essential in obtaining
stability in light of the large dynamic range.

In summary, a Location Aware Generative Adversarial Network (LAGAN) is a set of guidelines
for learning GANs designed specifically for applications in a sparse regime, when location within the

– 5 –

de Olivera, Paganini, and Nachman
https://arxiv.org/pdf/1701.05927.pdf

https://arxiv.org/pdf/1701.05927.pdf

๏As for reconstruction, the ultimate challenge of DL for simulation is the
sparse nature of the data

๏As for reconstruction, a solution is adopting Graph Architectures

๏Graph GANs have been successfully trained (e.g., to reconstruct jets)

๏Work ongoing to scale up the models, so that graphs of O(1000) could ge
generated

Same problems, same solution

40

MP(-LFC) Generator
fe

fn

…

{Initial Noise/Intermediate Features

h1

h2

{Final Features� � pT 1

FC Layer…

Initial Noise

… 1

1

1

0

mask

Number of particles randomly
samples from real distribution

N = ∑ masks

Masks assigned to first
points, sorted in point

feature space

N

Message Passing

Generated Particle
Cloud

FC LayerAve
Pool

…

{Initial Features� � pT 1

fe

fn

…

{Initial Features

MP Discriminator

Real Particle
Cloud

Generated
Particle Cloud

Real or
Generated

Message Passing

Figure 2: Top: The MP generator uses message passing to generate a particle cloud. In blue is the
initial latent vector and FC layer part of the MP-LFC variant. Bottom: The MP discriminator uses
message passing to classify an input particle cloud as real or generated.

Computer-vision-inspired metrics A popular metric for evaluating images which has shown to be
sensitive to output quality and mode-collapse, though it has its limitations [38], is the Fréchet Inception
Distance [39] (FID). FID is defined as the Fréchet distance between Gaussian distributions fitted
to the activations of a fully-connected layer of the Inception-v3 image classifier in response to real
and generated samples. We develop a particle-cloud-analogue of this metric, which we call Fréchet
ParticleNet Distance (FPND), using the state-of-the-art (SOTA) ParticleNet graph convolutional jet
classifier [10] in lieu of the Inception network. We note that the FPND and comparing distributions as
above is conceptually equivalent, except here instead of physically meaningful and easily interpretable
features, we are comparing those found to be statistically optimum for distinguishing jets.

Two common metrics for evaluating point cloud generators are coverage (COV) and minimum
matching distance (MMD) [30]. Both involve finding the closest point cloud in a sample X to each
cloud in another sample Y , based on a metric such as the Chamfer distance or the earth mover’s
distance. Coverage is defined as the fraction of samples in X which were matched to one in Y ,
measuring thus the diversity of the samples in Y relative to X , and MMD is the average distance
between matched samples, measuring the quality of samples. We use both, and due to drawbacks of
the Chamfer distance pointed out in Ref. [30], for our distance metric choose only the analogue of
the earth mover’s distance for particle clouds a.k.a. the energy mover’s distance (EMD) [40]. We
discuss the effectiveness and complementarity of all four metrics in evaluating clouds in Sec. 5.

4 MPGAN Architecture

We describe now the architecture of our MPGAN model (Fig. 2), noting particle cloud-motivated
aspects compared to its r-GAN and GraphCNN-GAN predecessors.

Message passing. Jets originate from a single source particle decaying and hadronizing, hence
they end up with important high-level jet features and a rich global structure, known as the jet
substructure [1], stemming from the input particle. Indeed any high-level feature useful for analyzing
jets, such as jet mass or multi-particle correlations, is necessarily global [37]. Because of this, while
past work in learning on point clouds [10, 41, 42], including GraphCNN-GAN, has used a locally

5

Table 1: W1 distances between real jet mass (WM
1), averaged particle features (WP

1), and averaged
jet EFPs (WEFP

1) distributions calculated as a baseline, for three classes of jets.

Jet class WM
1 (⇥10�3) WP

1 (⇥10�3) WEFP
1 (⇥10�5)

Gluon 0.7± 0.2 0.44± 0.09 0.62± 0.07
Light quark 0.5± 0.1 0.5± 0.1 0.46± 0.04
Top quark 0.51± 0.07 0.55± 0.07 1.1± 0.1

of 10,000 real and generated jets, and averaged over 5 batches. Baseline W1 distances are calculated
between two sets of randomly sampled real jets with 10,000 samples each, and are listed for each
feature in Table 1. The real samples are split 70/30 for training/evaluation. We train ParticleNet for
classification on our dataset to develop the FPND metric. FPND is calculated between 50,000 random
real and generated samples, based on the activations of the first FC layer in our trained model8.
Coverage and MMD are calculated between 100 real and 100 generated samples, and averaged over
10 such batches. Implementations for all metrics are provided in the JETNET package [3].

Figure 3: Comparison of real and generated distributions for a subset of jet and particle features. We
use the best performing model for each of the FC, GraphCNN, TreeGAN, and MP generators, as per
Table 2. Top: gluon jet features, Middle: light quark jets, Bottom: top quark jets.

Results. On each of JetNet’s three classes, we test r-GAN’s FC, GraphCNN, and TreeGAN gener-
ators with rGAN’s FC and the PointNet-Mix discriminators, and compare them to MPGAN’s MP
generator and discriminator models, including both MP and MP-LFC generator variations. Training
and implementation details for each can be found in App. D, and all code in Ref. [43].

We choose model parameters which, during training, yield the lowest WM
1 score. This is because (1)

W1 scores between physical features are more relevant for physics applications than the other three
metrics, and (2) qualitatively we find it be a better discriminator of model quality than particle features
or EFP scores. Table 2 lists the scores for each model and class, and Fig. 3 shows plots of selected
feature distributions of real and generated jets, for the best performing FC, GraphCNN, TreeGAN,

8ParticleNet training details are given in App. D.3. The trained model is provided in the JETNET library [3].

7

Kansal et al. https://arxiv.org/pdf/2106.11535.pdf

๏As for reconstruction, the ultimate challenge of DL for simulation is the
sparse nature of the data

๏As for reconstruction, a solution is adopting Graph Architectures

๏Graph GANs have been successfully trained (e.g., to reconstruct jets)

๏Work ongoing to scale up the models, so that graphs of O(1000) could ge
generated

Same problems, same solution

41

Results
realistic???

GAN WGAN BIB-AE

Geant4

7

Results
realistic???

GAN WGAN BIB-AE

Geant4

7

Generative Models

Generative Adversarial Network (GAN)

• Generator generates new fake images from noise

• Discriminator tries to differentiate: Fake or Real ?

➡ Binary classification

GAN and WGAN

Wasserstein GAN (WGAN)

• Alternative to classical GAN training

➡ Helps improve the stability of the training

➡ Use Wasserstein-1 distance as a loss function

➡ Critic network does regression (i.e. gives a score)

• Second network to constrain the energy

5

Generative Models

Generative Adversarial Network (GAN)

• Generator generates new fake images from noise

• Discriminator tries to differentiate: Fake or Real ?

➡ Binary classification

GAN and WGAN

Wasserstein GAN (WGAN)

• Alternative to classical GAN training

➡ Helps improve the stability of the training

➡ Use Wasserstein-1 distance as a loss function

➡ Critic network does regression (i.e. gives a score)

• Second network to constrain the energy

5

Buhmann et al. https://arxiv.org/pdf/2005.05334.pdf

๏We looked into two applications of Neural Networks

๏Reconstruction of particles in LHC detector from the
“hits” left by particles generated in the collision

๏Simulation of the hits left by the particles generated
in the collision

๏Both problems require ones to deal with the sparse and
irregular nature of the data

๏Particle physics data are point clouds

๏Graph neural networks can effectively solve problems
with point-cloud data

Summary of Lecture 2

42

๏A few recent reviews that could guide you through the
many applications and networks

๏A nice BLOG article on GNNs

๏Another nice BLOG article on GNNs

๏A generic review

๏A particle-physics specific one

๏And the study from which our hands-on session comes

๏JEDI-net Interaction Networks for jet tagging on these
data

Further Reading & Coding

43

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
https://arxiv.org/abs/1812.08434
https://arxiv.org/pdf/2007.13681.pdf
https://github.com/jmduarte/JEDInet-code
https://zenodo.org/record/3602260#.X6ysrS9h2L8
https://zenodo.org/record/3602260#.X6ysrS9h2L8

Backup

๏When building a graph of N vertices,
number of edges (and number of
computing operations) scale with N2

๏This might clash with computing
resource limitations (both for training
and inference)

๏Certainly, this is the case at the LHC

๏real-time event selection runs in
short time

๏most of the selection runs as
electronic circuit on electronic
board

๏Gravnet & Garnet: resource friendly
graph architectures

Reducing memory consumption

45

https://arxiv.org/abs/1902.07987

https://arxiv.org/abs/1902.07987

GravNet

46

https://arxiv.org/abs/1902.07987

1) Start with a
graph in geometric
space. Each vertex
feature vector FIN
is characterized
by coordinates and
features

2) Each FIN is
processed by a linear
network, returning
two outputs: a
coordinate vector s &
a learned
representation FLR

3) With s and
FLR we build the
new graph in
the learned
space

https://arxiv.org/abs/1902.07987

GravNet

47

https://arxiv.org/abs/1902.07987

4) Unlike DGCNN,
the message
function is a
potential function
(we use where
d is the Euclidean
distance in
learned space)

e−d2

5) Message
aggregated with
different
functions (Max,
Average,…)

6) Final
representation
is learned from
the engineered
features and
the original
ones

https://arxiv.org/abs/1902.07987

48

1) Start with a
graph in geometric
space. Each vertex
feature vector FIN
is characterized
by coordinates and
features

2) Each FIN is
processed by a linear
network, returning two
outputs: a vector of
distances s & a
learned representation
FLR

3) s are the
distances
from Ns
aggregators

di2

di1

dj2
dj1

https://arxiv.org/pdf/2008.03601.pdf

https://arxiv.org/abs/1902.07987

(simplified) GarNet

https://arxiv.org/pdf/2008.03601.pdf
https://arxiv.org/abs/1902.07987

(simplified) GarNet

49 https://arxiv.org/pdf/2008.03601.pdf

4) Fwd distance-
weighted messages
from vertices are
gathered at
aggregators (weight

 where d is
Euclidean distance
in learned space)

Wab = e−dab

5) Bkw distance-
weighted messages
from aggregators
are gathered at
vertices (weight

) Wab = e−dab

6) Final
representation
is learned from
the engineered
features and
the original
onesFigure 1: Processing flow of the modified GarNet algorithm: (a) The input features (gj

v) of each vertex are
processed by a linear network, that returns a new set of features (f i

v) and its distance from the S aggregators
(dav). (b) A graph is built in the learned space, using the dav distances. (c) A message is gathered by each
aggregator, as a weighted sum across the vertices of f

i
v, with Wav = exp(≠d

2
av) as weights. (d) A message is

from each aggregator (f̃ i
av) is passed back to each vertex, with the same Wav weight. (e) The aggregated

outputs of each vertex are given as input to a neural network, which returns the learned representation.

with linear activation functions, so one can write them as linear transformations

f
i
v =

Finÿ

j=1
w

i
jg

j
v + b

i (1)

dav =
Finÿ

j=1
–ajg

j
v + —a , (2)

5

Figure 1: Processing flow of the modified GarNet algorithm: (a) The input features (gj
v) of each vertex are

processed by a linear network, that returns a new set of features (f i
v) and its distance from the S aggregators

(dav). (b) A graph is built in the learned space, using the dav distances. (c) A message is gathered by each
aggregator, as a weighted sum across the vertices of f

i
v, with Wav = exp(≠d

2
av) as weights. (d) A message is

from each aggregator (f̃ i
av) is passed back to each vertex, with the same Wav weight. (e) The aggregated

outputs of each vertex are given as input to a neural network, which returns the learned representation.

with linear activation functions, so one can write them as linear transformations

f
i
v =

Finÿ

j=1
w

i
jg

j
v + b

i (1)

dav =
Finÿ

j=1
–ajg

j
v + —a , (2)

5

https://arxiv.org/abs/1902.07987

https://arxiv.org/pdf/2008.03601.pdf
https://arxiv.org/abs/1902.07987

GarNet & GravNet for Calorimetry

50

model using the G���N�� layers requires about 50% less. The G��N�� model provides the best
compromise of memory consumption with respect to performance. In terms of inference time, the
binning model is the fastest and the graph-based models show a similar behaviour for small batch
sizes on a GPU. The G��N�� and the G���N�� model benefit from parallelizing over a larger
batch. In particular, the G��N�� model is mostly sequential, which also explains the outstanding
performance on a single CPU core, with almost a factor of 10 shorter inference time compared to
the DGCNN model.

t1(ms) t100/100(ms) tCPU
10 (s) m1 m100/100

0

10

20

30

40

50

In
fe

re
nc

e
ti
m

e
0

20

40

60

80

M
em

or
y

(M
iB

)

DGCNN

GravNet

Binning

GarNet

Figure 5: Comparison of inference time for the network architectures described in the text, evaluated
on CPUs and GPUs with di�erent choices of batch size. The shaded area represents the +1�
statistical uncertainty band.

9 Conclusions

In this work, we introduced the G��N�� and G���N�� layers, which are distance-weighted graph
networks capable of learning irregular patterns of sparse data, such as the detector hits in a particle
physics detector with realistic geometry. Using as a benchmark problem the hit clustering in a
highly granular calorimeter, we show how these network architectures o�er a good compromise
between clustering performance and computational resource needs, when compared to CNN-based
and other graph-based networks. In the specific case considered here, the performance of the
G��N�� and G���N�� models are comparable to the CNN and graph baselines. On the other
hand, the simulated calorimeter in the benchmark study is only slightly irregular and can still be
represented by an almost regular array. In more realistic applications, e.g. with the hexagonal
sensors and the non-projective geometry of the future HGCAL detector of CMS, the di�erence
in performance between the graph-based approaches and the CNN-based approaches is expected
to increase further, making the G��N�� approach a very e�cient candidate for fast and accurate
inference and the G���N�� approach a good candidate for high-performance reconstruction with
less resource requirements and better performance than the DGCNN model.

– 12 –

๏Good performance
achieved,
comparable to DGCNN
and traditional
approaches

๏Using a potential
(V(d)) to weight
up the near
neighbours allows
to keep memory
footprint under
control (with
respect to other
graph approaches)

S.R. Qasim et al.: Distance-weighted graph networks for irregular particle-detector geometries 7

(a) Mean (b) Variance

(c) Mean (d) Variance

Fig. 4: Mean (left) and variance (right) of the test shower response as a function of the test shower energy for full
shower (top) and for overlapping shower (bottom), computed summing the true deposited energy. Swapping of the
showers is allowed here.

model and the GarNet model is enhanced, while the dif-
ference between theGravNet andDGCNNmodel scales
similarly, likely because of their similar general structure.

As shown in Fig. 4, all models exhibit a bias toward
larger energy values for low-energy incoming particles.
Contributing to this bias are edge e↵ects from training the
models to predict fractions within the bounds of 0 and
1 with an adapted mean-squared error loss. This choice
is creating an expectation value larger than 0 at a peak
value of 0 (and vice-versa at a fraction of 1), and therefore
pushing the prediction away from predicting exactly 0 or
1, leading to an underestimation at high energies, and an
overestimation at low energies. Since we aim for a relative
comparison of the models, a study of other loss functions
is left for future study. In both metrics, mean and vari-
ance, the GravNet model outperforms the other models
in the full range, and the GarNet model shows the worst
performance, albeit in a comparable range. The resource-
intensive DGCNN model lies in between GravNet and
GarNet. For fractions between 0.2 and 0.8, the edge ef-

fects become negligible, and the Figures confirm that the
graph based models outperform the binning method at all
test shower energies, as well as that the GravNet and
the DGCNN model show similar performance.

8 Resource requirements

In addition to the clustering performance, it is impor-
tant to take into account the computational resources de-
manded by each model during inference. The inference
time can have a significant impact on the applicability of
the network for reconstruction tasks, in particular for the
kind of real-time processing performed by the trigger sys-
tems of typical collider experiments. We evaluate the in-
ference time t and memory consumption m for the models
studied here on one NVIDIA GTX 1080 Ti GPU for batch
sizes of 1 and 100, denoted as (t1,m1) and (t100, m100),
respectively. The inference time is also evaluated on one
Intel Xeon E5-2650 CPU core (tCPU

10
) for a fixed batch size

S.R. Qasim et al.: Distance-weighted graph networks for irregular particle-detector geometries 7

(a) Mean (b) Variance

(c) Mean (d) Variance

Fig. 4: Mean (left) and variance (right) of the test shower response as a function of the test shower energy for full
shower (top) and for overlapping shower (bottom), computed summing the true deposited energy. Swapping of the
showers is allowed here.

model and the GarNet model is enhanced, while the dif-
ference between theGravNet andDGCNNmodel scales
similarly, likely because of their similar general structure.

As shown in Fig. 4, all models exhibit a bias toward
larger energy values for low-energy incoming particles.
Contributing to this bias are edge e↵ects from training the
models to predict fractions within the bounds of 0 and
1 with an adapted mean-squared error loss. This choice
is creating an expectation value larger than 0 at a peak
value of 0 (and vice-versa at a fraction of 1), and therefore
pushing the prediction away from predicting exactly 0 or
1, leading to an underestimation at high energies, and an
overestimation at low energies. Since we aim for a relative
comparison of the models, a study of other loss functions
is left for future study. In both metrics, mean and vari-
ance, the GravNet model outperforms the other models
in the full range, and the GarNet model shows the worst
performance, albeit in a comparable range. The resource-
intensive DGCNN model lies in between GravNet and
GarNet. For fractions between 0.2 and 0.8, the edge ef-

fects become negligible, and the Figures confirm that the
graph based models outperform the binning method at all
test shower energies, as well as that the GravNet and
the DGCNN model show similar performance.

8 Resource requirements

In addition to the clustering performance, it is impor-
tant to take into account the computational resources de-
manded by each model during inference. The inference
time can have a significant impact on the applicability of
the network for reconstruction tasks, in particular for the
kind of real-time processing performed by the trigger sys-
tems of typical collider experiments. We evaluate the in-
ference time t and memory consumption m for the models
studied here on one NVIDIA GTX 1080 Ti GPU for batch
sizes of 1 and 100, denoted as (t1,m1) and (t100, m100),
respectively. The inference time is also evaluated on one
Intel Xeon E5-2650 CPU core (tCPU

10
) for a fixed batch size

Physics and Deep Learning:
more thoughts from Lecture 1

With equations…
๏Your message at iteration t is some function M of
the sending and receiving features, plus some vertex
features (e.g., business relation vs friendship in
social media)

ht
w

ht
v

evw

Mt(ht
v, ht

w, evw)
๏The message carried to a vertex v is aggregated by
some function (typically sum, but also Max, Min,
etc.)

mt+1
v = ∑

w∈G(v)

Mt(ht
v, ht

w, evw)

52

With equations…
๏The state of vertex v is updated by some function U
of the current state and the gathered message

ht+1
v = Ut(ht

v, mt+1
v)

๏After T iterations, the last representations of the
graph vertices are used to derive the final output
answering the question asked (classification,
regression, etc.), typically through a NN

̂y = R(hT
v |v ∈ G)

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

ht+1
v

53

Big Data @LHC

54

Data from WIRED 2013

๏The amount of produced data
is too much to be stored

๏1,000 times the data
generated by google
searches+youtube+facebook
back in 2013

๏Reduced to 5x(google
searches+youtube+facebook)
after first filtering

๏Can only store 5% of those

(*) Only two big experiments
(ATLAS and CMS), only RAW data

https://www.wired.com/2013/04/bigdata/

Things will get worse

55

‣ ~200 collisions/event

‣ ~minute/event processing time

‣ (at best)Same computing resources
as today

This is when the R&D has to happen

‣ ~40 collisions/event

‣ ~10 sec/event processing time

‣ (at best)Same computing resources as
today

Today

5 interactions/beam cross 140 interactions/beam cross

๏To disentangle 200
collisions happening at
once, we will build new
detectors with more
(smaller) sensors

๏Event complexity grows non
linearly

๏To profit of that,
computing resources for
data processing will have
to increase

๏We are off by a factor ~10
if we project to 2027

More sensors, more RECO troubles

56

HGCal#PU140#QCD#events#

2VOctV2014,#TP#studies#mee/ng# Valery#Andreev# 4#)LJXUH �� 6LPXODWHG YLHZ RI RQH +*&DO HQGFDS� FRQWDLQLQJ SDUWLFOHV IURP WKH QRPLQDO ��� SLOHXS
LQWHUDFWLRQV H[SHFWHG DW WKH +/�/+&�

IXOO H[SORLWDWLRQ RI WKH FDORULPHWHU SHUIRUPDQFH LQ WKH /HYHO�� WULJJHU�

����� 8. LQYROYHPHQW

7KH 8. KDV D ORQJ KLVWRU\ RI LQYROYHPHQW LQ WKH &06 (&$/� PRWLYDWHG E\ RXU LQWHUHVW LQ LWV
H[SORLWDWLRQ IRU SK\VLFV ߞ LQ SDUWLFXODU WKH +LJJV VHFWRU� :H LQLWLDWHG WKH RULJLQDO LGHD RI XVLQJ
3E:24 FU\VWDOV >��@� DQG WKH H[FHOOHQW UHVROXWLRQ WKDW ZDV VXEVHTXHQWO\ DFKLHYHG OHG GLUHFWO\
WR WKH +LJJV GLVFRYHU\ LQ ���� >�@� 'HWDLOHG VWXGLHV RI WKH +LJJV ERVRQ DUH D FRUQHUVWRQH RI RXU
+/�/+& SK\VLFV SURJUDPPH�

7KH 8. OHG WKH GHVLJQ DQG FRQVWUXFWLRQ RI WKH FU\VWDO HQGFDS GHWHFWRUV RI WKH (&$/� DQG
GHVLJQHG WKH UHDGRXW $6,& WKDW LV XVHG IRU ERWK EDUUHO DQG HQGFDSV >��@� :H IROORZHG XS ZLWK
DOO QHFHVVDU\ VWHSV WR HQVXUH WKH RSWLPXP XVH RI WKH H[FHOOHQW (&$/ UHVROXWLRQ IRU SK\VLFV� LQ�
YROYLQJ FDUHIXO DWWHQWLRQ WR FDOLEUDWLRQ VWUDWHJ\� GHYHORSPHQW RI ILUVW OHYHO WULJJHU DOJRULWKPV IRU
HOHFWURQ DQG SKRWRQ LGHQWLILFDWLRQ� RSWLPLVDWLRQ RI DGYDQFHG FOXVWHULQJ DOJRULWKPV ERWK LQ WKH
KLJK OHYHO WULJJHU DQG RIIOLQH� DQG OHDGHUVKLS RI FUXFLDO SK\VLFV DQDO\VHV� 7KH 8. FXUUHQWO\ SUR�
YLGHV WKH 6\VWHP 0DQDJHU IRU WKH (&$/� DQG ZH VHHN WR PDLQWDLQ RXU OHDGHUVKLS LQ FDORULPHWU\
LQ WKH KLJK�OXPLQRVLW\ HUD�

:H KDYH VXEVHTXHQWO\ PDGHPDMRU FRQWULEXWLRQV WR WKH GHVLJQ DQG RSWLPLVDWLRQ RI WKH +*&DO�
7KH 8. HVWDEOLVKHG WKH +*&DO SURMHFW� 7KH FXUUHQW 3URMHFW 0DQDJHU LV IURP WKH 8. DQG ZH OHDG
ERWK WKH WULJJHU DQG SHUIRUPDQFH VLPXODWLRQ VXE�SURMHFWV�:H KDYH VR IDU FKRVHQ WR IRFXV RQ WKUHH
FHQWUDO DVSHFWV RI WKH +*&DO� QDPHO\ WKH IURQW�HQG HOHFWURQLFV� WKH WULJJHU� DQG WKH VLPXODWLRQ
SHUIRUPDQFH VWXGLHV� DOO RI ZKLFK DUH KLJKO\ V\QHUJHWLF ZLWK WKH Vߤ.8 RWKHU OHDGLQJ UROHV LQ WKH

��

More sensors, more SIM troubles

57

GEN SIM DIGI+RECO
xxx sec/evt
xxx MB/evt

xxx sec/evt
xxx MB/evt

xxx sec/evt
xxx MB/evt

CPUGEN
SIM
DIGI-RECO

DiskGEN
SIM
DIGI-RECO

GEN SIM DIGI+RECO+MINIAOD

CPU 1.1%
16.8%

57.6%

24.4%
0.1%

GEN
SIM
DIGI
RECO
MINIAOD

Disk
9%

81%

10%

GEN
SIM
MINIAOD

Figure 1: TOP: The event generation workflow of the CMS experiment. The proton-proton collision process is
simulated up to the production of stable (hence observable) particles (GEN). The simulation of the detector response is
modelled by the GEANT4 library (SIM). The resulting energy deposits are turned into digital signals (DIGI) that are then
reconstructed by the same software used to process real collision events (RECO). At this stage, high-level objects such
as jets are reconstructed. Starting from the RECO data format, a reduced analysis data format (MINIAOD) is derived.
BOTTOM: computing resource breakdown for the generation workflow of the CMS experiment, in terms of CPU (left)
and storage disk (right). See Appendix A for details.

are then seen by the detector. This step creates the so-called generator-level view of a collision event, corresponding
to what a perfect detector would see. The simulation of the detector response (SIM) translates this flow of particles
into a set of detector hits, taking into account detector imperfections and the limited experimental resolution. These
hits are converted to the same digital format (DIGI) produced by the detector electronics and then reconstructed by the
same software used to process real collision events (RECO). At this stage, high-level objects such as jets are created.
Starting from the RECO data format, a reduced analysis data format (MINIAOD) is derived [3]. Figure 1 also provides
a breakdown of CPU and disk resources for each of these steps. Details on the procedure followed to measure these
values are given in Appendix A.

Recently, generative algorithms based on Deep Learning (DL) techniques have been proposed as a possible solution to
speed up GEANT4. When following this approach, one typically focuses on an image representation of LHC collisions
(e.g., energy deposits in a calorimeter) and develops some kind of generative model [4–8] to by-pass GEANT4 when
simulating the detector response to individual particles [9–13] or to groups of particles, such as jets [14–16] or cosmic
rays [17]. Generative models were considered also for similar applications in HEP, such as amplitude [18] and full event
topology [19–21] generation. While these studies demonstrate the potential of generative models for HEP, more work
is needed to fully integrate this new methodology in the centralized computing system of a typical LHC experiment.
In particular, one needs to work beyond the collision-as-image paradigm so that the DL-based simulation accounts
for the irregular geometry of a typical detector while delivering a dataset in a format compatible with downstream
reconstruction software.

Other studies [22, 23] investigated a more extreme approach: rather than training models to perform generic generation
tasks in a broader software framework (e.g., a DL-based shower generator in GEANT), one could design analysis-
specific generators, with the limited scope of delivering arrays of values for physics quantities which are relevant
to a specific analysis. Reducing the event representation to a vector of meaningful quantities, one could obtain a
large amount of events in short time and with small storage requirements by skipping all the intermediate steps of
the data processing. The considered features could be the fundamental quantities used by a given analysis (e.g., the
four-momenta of the final-state reconstructed objects in a search for new particles). In this context, both generative

2

๏Simulation of LHC
collision is essential
for analyses

๏It is a very expensive
task, both in terms of
CPU & storage

๏Increasing precision
by collecting more
data works only if one
has more simulation

๏We are off by a factor
~10 if we project to
2027

Deep Learning at Rescue: Reco

58

DeepLearningforImagingCalorimetry

VitoriaBarinPacela,⇤Jean-RochVlimant,MaurizioPierini,andMariaSpiropulu
CaliforniaInstituteofTechnologyand

CMS

WeinvestigateparticlereconstructionusingDeepLearning,basedonadatasetconsistingofsingle-

particleenergyshowersinahighly-granularLinearColliderDetectorcalorimeterwitharegular3D

arrayofcells.Weperformenergyregressiononphotons,electrons,neutralandchargedpions,and

discusstheperformanceofourmodelineachparticledataset.

I.INTRODUCTION

OnethegreatestchallengesattheLHCat
CERNistocollectandanalysedatae�ciently.
Sophisticatedmachinelearningmethodshave
beenresearchedtotacklethisproblem,suchas
boosteddecisiontreesanddeeplearning.In
thisproject,weareusingdeepneuralnetworks
(DNN)[1][2]torecognizeimagesoriginatedby
thecollisionsintheLinearColliderDetector
(LCD)calorimeter[3][4],designedtooperate
attheCompactLinearCollider(CLIC).

Preliminarystudieshaveexploredthepossi-
bilityofreconstructingparticlesfromcalorimet-
ricdepositsusingimagerecognitiontechniques
basedonconvolutionalneuralnetworks,using
adatasetofsimulatedhitsofindividualpar-
ticlesontheLCDsurface.Thedatasetcon-
sistsofcalorimetricshowersproducedbysin-
gleparticles(pions,electronsorphotons)hit-
tingthesurfaceofanelectromagneticcalorime-
ter(ECAL)andeventuallyshoweringwithin
ahadroniccalorimeter(HCAL).Thisproject
aimedatreconstructingtheenergyofparticles
throughregression.

Thecodeusedfordefiningthemod-
elsandtrainingtheDNNsishostedat
https://github.com/vitoriapacela/NotebooksLCD,
andanalysistoolsarehostedat
https://github.com/vitoriapacela/RegressionLCD.

⇤vitoria.barinpacela@helsinki.fi

FIG.1.Visualizationofthedata.Chargedpion

eventdisplayedintheECALandHCAL.Everyhit

isshowninitsrespectivecellineachofthecalorime-

ters.Warmercolors(likeorangeandpink)repre-

senthigherenergies,as420GeV,whereascolder

colors,likeblue,representlowerenergies,as50

GeV.[5]

II.METHODS

Thedatasetsweresimulatedascloseaspos-
sibletorealcollisiondata,usingapreliminary
versionoftheCLICdetectordesign,imple-
mentedintheDDhepsoftwareframework[3].
Theyconsistof3Darraysrepresentingenergy
valuesinthecellsoftheECALandHCAL,and
thetrueenergyoftheparticle.TheECALdata
arrayshaveshape25x25x25,whereasthe
HCALdataarrayshaveshape4x4x60.Events
areofdiscrete,integer-valuedenergiesoverthe
range10-510GeV,andfixeddirection,sothat
theyimpactthecenterofthecalorimeterbar-
rel,withanimpactangleof90�.Thedatasets
foreachparticlearestoredintheHierarchical
DataFormat(HDF5)[6],whichisdesignedto
storeandorganizelargeamountsofdata.Each
HDF5filecontains10000events,andthereare

Which Particle?

Which Energy?

Which Direction?

๏We know how to get from the data the answers we want

๏physics + intuition + computing

๏But the process is slow

๏We can use DL solutions as a shortcut: we teach neural networks
how to give us the answer we want directly from the raw data

Deep Learning at Rescue: Sim

59

๏We know how to get from the
data the answers we want

๏physics + intuition +
computing

๏But the process is slow

๏We can use DL solutions
as a shortcut: we teach
neural networks how to
give us the answer we
want directly from the
raw data

GEN SIM DIGI+RECO
xxx sec/evt
xxx MB/evt

xxx sec/evt
xxx MB/evt

xxx sec/evt
xxx MB/evt

CPUGEN
SIM
DIGI-RECO

DiskGEN
SIM
DIGI-RECO

GEN SIM DIGI+RECO+MINIAOD

CPU 1.1%

GEN
SIM
DIGI
RECO
MINIAOD

Disk

GEN
SIM
MINIAOD

Figure 1: TOP: The event generation workflow of the CMS experiment. The proton-proton collision process is
simulated up to the production of stable (hence observable) particles (GEN). The simulation of the detector response is
modelled by the GEANT4 library (SIM). The resulting energy deposits are turned into digital signals (DIGI) that are then
reconstructed by the same software used to process real collision events (RECO). At this stage, high-level objects such
as jets are reconstructed. Starting from the RECO data format, a reduced analysis data format (MINIAOD) is derived.
BOTTOM: computing resource breakdown for the generation workflow of the CMS experiment, in terms of CPU (left)
and storage disk (right). See Appendix A for details.

are then seen by the detector. This step creates the so-called generator-level view of a collision event, corresponding
to what a perfect detector would see. The simulation of the detector response (SIM) translates this flow of particles
into a set of detector hits, taking into account detector imperfections and the limited experimental resolution. These
hits are converted to the same digital format (DIGI) produced by the detector electronics and then reconstructed by the
same software used to process real collision events (RECO). At this stage, high-level objects such as jets are created.
Starting from the RECO data format, a reduced analysis data format (MINIAOD) is derived [3]. Figure 1 also provides
a breakdown of CPU and disk resources for each of these steps. Details on the procedure followed to measure these
values are given in Appendix A.

Recently, generative algorithms based on Deep Learning (DL) techniques have been proposed as a possible solution to
speed up GEANT4. When following this approach, one typically focuses on an image representation of LHC collisions
(e.g., energy deposits in a calorimeter) and develops some kind of generative model [4–8] to by-pass GEANT4 when
simulating the detector response to individual particles [9–13] or to groups of particles, such as jets [14–16] or cosmic
rays [17]. Generative models were considered also for similar applications in HEP, such as amplitude [18] and full event
topology [19–21] generation. While these studies demonstrate the potential of generative models for HEP, more work
is needed to fully integrate this new methodology in the centralized computing system of a typical LHC experiment.
In particular, one needs to work beyond the collision-as-image paradigm so that the DL-based simulation accounts
for the irregular geometry of a typical detector while delivering a dataset in a format compatible with downstream
reconstruction software.

Other studies [22, 23] investigated a more extreme approach: rather than training models to perform generic generation
tasks in a broader software framework (e.g., a DL-based shower generator in GEANT), one could design analysis-
specific generators, with the limited scope of delivering arrays of values for physics quantities which are relevant
to a specific analysis. Reducing the event representation to a vector of meaningful quantities, one could obtain a
large amount of events in short time and with small storage requirements by skipping all the intermediate steps of
the data processing. The considered features could be the fundamental quantities used by a given analysis (e.g., the
four-momenta of the final-state reconstructed objects in a search for new particles). In this context, both generative

2

GEN SIM DIGI+RECO
xxx sec/evt
xxx MB/evt

xxx sec/evt
xxx MB/evt

xxx sec/evt
xxx MB/evt

CPUGEN
SIM
DIGI-RECO

DiskGEN
SIM
DIGI-RECO

GEN SIM DIGI+RECO+MINIAOD

CPU 0.1%

GEN
SIM
DIGI
RECO
MINIAOD

Disk

GEN
SIM
MINIAOD

Figure 1: TOP: The event generation workflow of the CMS experiment. The proton-proton collision process is
simulated up to the production of stable (hence observable) particles (GEN). The simulation of the detector response is
modelled by the GEANT4 library (SIM). The resulting energy deposits are turned into digital signals (DIGI) that are then
reconstructed by the same software used to process real collision events (RECO). At this stage, high-level objects such
as jets are reconstructed. Starting from the RECO data format, a reduced analysis data format (MINIAOD) is derived.
BOTTOM: computing resource breakdown for the generation workflow of the CMS experiment, in terms of CPU (left)
and storage disk (right). See Appendix A for details.

are then seen by the detector. This step creates the so-called generator-level view of a collision event, corresponding
to what a perfect detector would see. The simulation of the detector response (SIM) translates this flow of particles
into a set of detector hits, taking into account detector imperfections and the limited experimental resolution. These
hits are converted to the same digital format (DIGI) produced by the detector electronics and then reconstructed by the
same software used to process real collision events (RECO). At this stage, high-level objects such as jets are created.
Starting from the RECO data format, a reduced analysis data format (MINIAOD) is derived [3]. Figure 1 also provides
a breakdown of CPU and disk resources for each of these steps. Details on the procedure followed to measure these
values are given in Appendix A.

Recently, generative algorithms based on Deep Learning (DL) techniques have been proposed as a possible solution to
speed up GEANT4. When following this approach, one typically focuses on an image representation of LHC collisions
(e.g., energy deposits in a calorimeter) and develops some kind of generative model [4–8] to by-pass GEANT4 when
simulating the detector response to individual particles [9–13] or to groups of particles, such as jets [14–16] or cosmic
rays [17]. Generative models were considered also for similar applications in HEP, such as amplitude [18] and full event
topology [19–21] generation. While these studies demonstrate the potential of generative models for HEP, more work
is needed to fully integrate this new methodology in the centralized computing system of a typical LHC experiment.
In particular, one needs to work beyond the collision-as-image paradigm so that the DL-based simulation accounts
for the irregular geometry of a typical detector while delivering a dataset in a format compatible with downstream
reconstruction software.

Other studies [22, 23] investigated a more extreme approach: rather than training models to perform generic generation
tasks in a broader software framework (e.g., a DL-based shower generator in GEANT), one could design analysis-
specific generators, with the limited scope of delivering arrays of values for physics quantities which are relevant
to a specific analysis. Reducing the event representation to a vector of meaningful quantities, one could obtain a
large amount of events in short time and with small storage requirements by skipping all the intermediate steps of
the data processing. The considered features could be the fundamental quantities used by a given analysis (e.g., the
four-momenta of the final-state reconstructed objects in a search for new particles). In this context, both generative

2

GEN SIM DIGI+RECO
xxx sec/evt
xxx MB/evt

xxx sec/evt
xxx MB/evt

xxx sec/evt
xxx MB/evt

CPUGEN
SIM
DIGI-RECO

DiskGEN
SIM
DIGI-RECO

GEN SIM DIGI+RECO+MINIAOD

CPU

GEN
SIM
DIGI
RECO
MINIAOD

Disk

GEN
SIM
MINIAOD

Figure 1: TOP: The event generation workflow of the CMS experiment. The proton-proton collision process is
simulated up to the production of stable (hence observable) particles (GEN). The simulation of the detector response is
modelled by the GEANT4 library (SIM). The resulting energy deposits are turned into digital signals (DIGI) that are then
reconstructed by the same software used to process real collision events (RECO). At this stage, high-level objects such
as jets are reconstructed. Starting from the RECO data format, a reduced analysis data format (MINIAOD) is derived.
BOTTOM: computing resource breakdown for the generation workflow of the CMS experiment, in terms of CPU (left)
and storage disk (right). See Appendix A for details.

are then seen by the detector. This step creates the so-called generator-level view of a collision event, corresponding
to what a perfect detector would see. The simulation of the detector response (SIM) translates this flow of particles
into a set of detector hits, taking into account detector imperfections and the limited experimental resolution. These
hits are converted to the same digital format (DIGI) produced by the detector electronics and then reconstructed by the
same software used to process real collision events (RECO). At this stage, high-level objects such as jets are created.
Starting from the RECO data format, a reduced analysis data format (MINIAOD) is derived [3]. Figure 1 also provides
a breakdown of CPU and disk resources for each of these steps. Details on the procedure followed to measure these
values are given in Appendix A.

Recently, generative algorithms based on Deep Learning (DL) techniques have been proposed as a possible solution to
speed up GEANT4. When following this approach, one typically focuses on an image representation of LHC collisions
(e.g., energy deposits in a calorimeter) and develops some kind of generative model [4–8] to by-pass GEANT4 when
simulating the detector response to individual particles [9–13] or to groups of particles, such as jets [14–16] or cosmic
rays [17]. Generative models were considered also for similar applications in HEP, such as amplitude [18] and full event
topology [19–21] generation. While these studies demonstrate the potential of generative models for HEP, more work
is needed to fully integrate this new methodology in the centralized computing system of a typical LHC experiment.
In particular, one needs to work beyond the collision-as-image paradigm so that the DL-based simulation accounts
for the irregular geometry of a typical detector while delivering a dataset in a format compatible with downstream
reconstruction software.

Other studies [22, 23] investigated a more extreme approach: rather than training models to perform generic generation
tasks in a broader software framework (e.g., a DL-based shower generator in GEANT), one could design analysis-
specific generators, with the limited scope of delivering arrays of values for physics quantities which are relevant
to a specific analysis. Reducing the event representation to a vector of meaningful quantities, one could obtain a
large amount of events in short time and with small storage requirements by skipping all the intermediate steps of
the data processing. The considered features could be the fundamental quantities used by a given analysis (e.g., the
four-momenta of the final-state reconstructed objects in a search for new particles). In this context, both generative

2

