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Plan for this week

Introduction Hands-on session

Deep Learning for

. Hands-on session
Discovery

Applications at the LHC
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UJhat LHC data look like

® We saw yesterday how 1mages are
processed y Convolutional
Networks

® Problem: LHC data are not 1mages:

@ difficult to fit an i1rregular
array of sensors (unordered set
of dots 1n some feature space)
1n a regular array of pixels

® One can deal with this problem
loosing some i1nformation

@ pixelate the data with a
coarser binning (as we did for
jets)

@® Or using some network that works
better with sparse and i1rregular
arrays

CMS Experiment at the LHC, CERN| (s 4<
Mon 2010-Nov-08 11:22:07 CET| '
Run 150431 Event 541464
C.OM Energy 7Z TeV¥




® Many scientific problems have this
1ssue:

® Galaxies or star populations 1n sky
® Sensors from HEP detector

® Molecules 1n chemistry

® These data can all be seen as sparse
sets 1n some abstract space
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® each element of the set being
specified by some array of features

® Some of these features (or function
of) could be seen as coordinates 1n
some random space
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Generalising CMM to pouint clouds

How Graph Convolutions work
CNN on image

Al - Image
class label

%

Graph convolution

_OH
: OH
HO™ ™ ~
-
\N/\
H

Convolution “kernel” depends on Graph structure

Chemical
property
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Bullding a Graph

® The 1nput 1s a set of vertices V
connected by edges E

® Edges can be directional
® Graphs can be fully connected (N2)

@ Or you could use some criterion
(e.g., nearest k neighbours i1n some
space) to reduce number of
connections

@ 1T more than one kind of vertex, you
could connect only Vs of same kind,
of different kind, etc

® The (V,E) construction 1s your graph.
Building 1t, you could enforce some
structure 1n your data

European
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@ If you have no prior, then go for a
directional fully connected graph
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Graph MNetworks

@® Once you have a graph, you want to
learn from 1t

® Each 1tem 1n a dataset 1s
represented as a set of vertices
(l11ke pixels 1n an image)

® Each vertex 1s represented by a
vector of features (like RGB
indices for 1mages

@ Vertices are connected through 11nks

® Messages are passed through 11nks
and aggregated on the vertices

®A new representation of each node 1s
created, based on the 1nformation Vo = (fas for oo S5

gathered across the graph https://arxiv.org/pdf/1704.01212.pdf gy ©|
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https://arxiv.org/pdf/1704.01212.pdf

Graph Metworks

@® Once you have a graph, you want to
learn from 1t

@ Each 1tem 1n a dataset 1s
represented as a set of vertices
(l1ke pixels 1n an 1mage)

® Each vertex 1s represented by a
vector of features (l1ke RGB
1ndices for i1mages

® Vertices are connected through I1nks

https://arxiv.org/pdf/1704.01212.pdf er Cle

. .o:.



https://arxiv.org/pdf/1704.01212.pdf

Graph Metworks

@® Once you have a graph, you want to
learn from 1t

@ Each item in a dataset 1is Myr = 8(f3./2)
represented as a set of vertices
(l1ke pixels 1n an 1mage) o

my_, = 8(f42)

® Each vertex 1s represented by a
vector of features (l1ke RGB
1ndices for i1mages

my_, = 8(]?3aJ?2)

Ms_,p = 8(?5»]?2)

@ Vertices are connected through 11nks L
Mg_» = 8(fe J2)

@ Messages are passed through I1nks
and aggregated on the vertices

European
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https://arxiv.org/pdf/1704.01212.pdf

Graph MNetworks

@® Once you have a graph, you want to q

learn from it V3 =S50, le3) Q
@ Each 1tem 1n a dataset 1s O
represented as a set of vertices
(l1ke p'lXG]S n an 7mage) Vi=fi(m2_>1 ..... Me_,1) Vz’1=];21(m1—>4 ----- Me_,4)
® Each vertex 1s represented by a Q Q
vector of features (l1ke RGB V= 5y s 1)

1ndices for i1mages
@ Vertices are connected through 11nks

® Messages are passed through I1nks Q
and aggregated on the vertices Vs = fs(my s, ... Mg_5)

@A new representation of each node 1is
created, based on the 1nformation Vo= fo(M g s Ms_g) | Euopenn

gathered across the graph https://arxiv.org/pdf/1704.01212.pdf gy ©|
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...oNd repeat

® Take the case of a locally-
connected graph

@ At first step, only near
neighbours are considered

@ The first message passing
creates a new representation

® Then you could connect to more
far-away vertices

@® And obtain a new representation
of the vertices

@ etc etc.

® Th1s new representation emerges
collectively from the graph, not
just from the vertex 1t refers to

12
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...oNd repeat

® Take the case of a locally-
connected graph

@At first step, only near
neighbours are considered

® The first message passing
creates a new representation

® Then you could connect to more
far-away vertices

@® And obtain a new representation
of the vertices

@ etc etc.

® Th1s new representation emerges
collectively from the graph, not
just from the vertex 1t refers to
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...oNd repeat

® Take the case of a locally-
connected graph

@At first step, only near
neighbours are considered

@ The first message passing
creates a new representation

® Then you could connect to more O

far-away vertices

@® And obtain a new representation
of the vertices

@ etc etc.

® Th1s new representation emerges
collectively from the graph, not
just from the vertex 1t refers to
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...oNd repeat

® Take the case of a locally-
connected graph

@At first step, only near
neighbours are considered

@ The first message passing
creates a new representation

® Then you could connect to more
far-away vertices

@ And obtain a new representation
of the vertices

@ etc etc.

® Th1s new representation emerges
collectively from the graph, not
just from the vertex 1t refers to
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...oNd repeat

® Take the case of a locally-
connected graph

@At first step, only near
neighbours are considered

@ The first message passing

creates a new representation O
® Then you could connect to more o ‘

far-away vertices

O

@® And obtain a new representation

of the vertices

O

® etc etc.. \\
O
@ Th1s new representation emerges
collectively from the graph, not R | curopenn
just from the vertex it refers to HOTC| comer

Seee Council
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True positive rate (gluon)
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It works!

—— JEDI-net: AUC = 0.9523 + 0.0001
DNN: AUC = 0.9384 = 0.0004
GRU: AUC = 0.9040 * 0.0043
CNN: AUC = 0.8945 + 0.0027

102 10-1
False positive rate (gluon)

103

10°

—— JEDI-net: AUC = 0.9747 = 0.0001
—— DNN: AUC = 0.9537 = 0.0003
—— GRU: AUC = 0.9192 = 0.0100
| —— CNN: AUC = 0.9102 = 0.0011

102 10-1
False positive rate (W boson)

1073

Your hands-on exercise,
with Graph NNs (and more

data)

100

True positive rate (light quarks)

True positive rate (Z boson)

12l T JEDI-net: AUC = 0.9300 = 0.0001

' —— DNN: AUC = 0.9026 = 0.0004

—— GRU: AUC = 0.8962 = 0.0052
104 — CNN: AUC = 0.9007 = 0.0011
0.81
0.6
0.4 1
0.2
0.0 ; . .
1073 1072 101 100
False positive rate (light quarks)

L) —— JEDI-net: AUC = 0.9697 = 0.0001

' —— DNN: AUC = 0.9459 + 0.0005

—— GRU: AUC = 0.9042 = 0.0104
104 — CNN: AUC = 0.8994 = 0.0014
0.8
0.6
0.4+
0.2
0.0 : ; .
1073 1072 1071 100

False positive rate (Z boson)

True positive rate (top quark)
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0.0

—— JEDI-net: AUC = 0.9679 = 0.0001

DNN: AUC = 0.9620 = 0.0003

—— GRU: AUC = 0.9350 = 0.0032
—— CNN: AUC = 0.9494 + 0.0004

10-2 10-1
False positive rate (top quark)

10-3
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B 12p x N
'R1;?[NEXN0]
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) rows O [Dox Noj
O g t 1 -
fo & [Dex Noj
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No: # of constituents
P: # of features
Ne = No(No-1): # of edges
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) L19
0 a12 A1n 21 X22 X23 L2 f Wi EEE Wl
, W21 W22 W2c
a91 0 a2
AXW = 8 -
An1 0anp2 0 wf We2 ... Wee
%ﬁ . \—v—/
nXn adjacency : Ln2 fxc (feature weightXxchannels)

—#
nX f (nodesX features)

® The 1nputs X

® The weights W

® The Adjacency matrix

i | European
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The lInputs

L12
21 L22 L23 ... L2f

. L'n?2 . . .
—_
nX f (nodesX features)

@ Same as all other networks

® Each vertex (row) 1s represented as an array of
features (columns)

G| ewop
AL Res
e ..‘:.g.rc Counci
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w11 Wi2 Wiec
W21 W22 W2
wf Wr2 ... Wefe

fxc (feature weightXchannels)

® The weight matrix W 1s used on each vertex to create new
function of the 1nputs x (encoding)

@ If wij=1, the Tnput representations 1s used directly 1n
the message passing

=0



The Rdiscency [Matrix

0 ai12 oo A1n
a 0O ... a
AXW = 21 on
ani Gpo ... 0
S ——

nXn adjacency

® Embeds graph structure: says which vertex 1s connected to which.
® The value could be 1 (0 for no connection) or 1t could be a weight

® Could be used with attention mechanism: the fixed weights are replaced
by learnable parameters. In training, the graph decides which
connections are relevant

=1



Bl The Message Passing

L12
0 a2 ... Qin 21 T22 T23 ... T2f W11 Wi2 Wic
W21 W22 W2c
a1 0 a9
AXW = n |

An1 0anp2 0 wf We2 ... Wee
* \—v—/
nXn adjacency : Ln2 fXxc (feature weightXchannels)

|
nX f (nodesX features)

® By performing a standard matrix product, one builds the
message

@ This 1s for one filter. One can have multiple filters, as
for CNNs

2



EdgeConv

® Dynamic Graph CNN (DGCNN) 1s one S—
kind of message-passing neural
network

@ It uses EdgeConv layers to perform
point-cloud segmentation

® Segmentation 1s the process of
clustering pixels 1n an 1mage i1nto
objects

® EdgeConv was capable of extending
semantic segmentation beyond
nearby-pixel clustering

@ the two wings of the airplane
are associated to the same
cluster, since they are found to
be similar

European
Research
Council
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https://arxiv.org/abs/1801.07829

EdgeConv

® The actual model 1s much more complicated than that

. spatial
. transform

point cloud
nx 3
nx3

— ¢ mip{64,64} i

mip {64} _’

EdgeConv

..................................

n x 64

_’ mip {64}

n x 64

EdgeConv
mlp {64}

n x 64

EdgeConv
— mip{128}

n x 64

EdgeConv

----------------------------------

| —

| mip {64, 64}

n x 64

EdgeConv
mlip {64}

n x 64

Y mip {1024}
_.@ -
Max
pooling

1024

c v
oo
(0 0) v "5 o)
Y mip {1024} | < | mip {512, 265, c} S o
g —>€B > g »lO | = @
x Max - g 5
= pooling © ..g-
(&)
o
categorical
vector
mip {64} S
= mip =
repeating | 5 (256, 256, 128,p) | & | ©
— T2 D 15| 8
X A = =
- o
wn

output scores

@® Each EdgeConv layer runs a message passing and creates an
updated representation of the graph of points

@ Similar to a CNN, but capable of processing unordered sets

of points
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https://arxiv.org/abs/1801.07829

EageConv for Particle Physics

® DGCNN fits very well particle
reconstruction 1n High Energy
Physics e

Mon 2010-Nov-08 11:22:07 CET|
Run 150431 Event 541464

C.OM Energy 7Z TeV¥ |

® Particles seen as energy
showers 1n calorimeters

® DGCNN can be trained to
distinguish overlapping
showers from different
particles

® Success comes at some
computational cost:

@ 15 sec/event on a CPU

® Lowered to 5 sec/event on GPU s | e
when using a batch of 100 HAre e

eee Council
25

R

SR TL N
= o -

s ™ = s




EageConv for Particle Physics

® DGCNN fits very well particle
reconstruction 1n High Energy

Physics , I
i e o L
@ Particles seen as energy BEHAL 13 Lt T Jas T ;80§
. . L/ ed00/ "o 0.000:..:.ss'~ °® :
showers in calorimeters ST A PR E S
J Ve 20 0 ."3,: :°:b° .;;. o . b
- 'h’fé;:f{ . —50
® DGCNN can be trained to .;: :.;" .f - 100
. . . . ’ > o —°
distinguish ove_r7app7ng el 0% Vg
showers from different 7 ¢ !; :‘E‘o . 00
particles / *o/ 0
o 2. %%
4 ) 50
® Success comes at some ¢ To il , &
computational cost: P oo/ ;§
: ~50
@ 15 sec/event on a CPU
00 ~100
Z(mm 1250
) 1500
® Lowered to 5 sec/event on Gl 1750 L | saeoen
when using a batch of 100 iare| e
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EageConv for Particle Physics

® DGCNN fits very well particle
reconstruction in High Energy v Mean Reco/True
Phys -i CS © Energy Ratio
£1.01-
g
® Particles seen as energy 2 100
showers 1n calorimeters %
0.99-
@® DGCNN can be trained to | | | | | | |
. . . . 10 20 30 40 50 60 70
distinguish overlapping Test shower energy (GeV)
showers from different 0.13-
particles 0.12- Variance Reco/True

Energy Ratio

©
=
[

® Success comes at some
computational cost:

Response (variance)
o
=
o

0.091
® 15 sec/event on a CPU
0.081
® Lowered to 5 sec/event on GPU . . . . . . |
. 10 20 30 40 50 60 70 LRSS European
when using a batch of 100 Test shower energy (GeV) are e
28 25




Bl GrophNets for Calorimetry

® Good performance  .a - EGCNNZ _012 - EGCNNZ
achieved, 5 —— GarNet Soas + GarNet
comparable to 8 o
more traditional & Foos
approaches 0.99 0.08-
02 e neray e O oweranergy e
® Us 7ng a pPo tential (¢) Mean (d) Variance
(V(d) ) to weight
up the near T
neighbours allows N E EN“
to keep memory £ a”t "g
footprint under i n
control (with
respect to other o 5 o
graph approaches) L N N i | e;rc o
== R
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Collision Simulation

with generative models,.:=




@) LUhy we use simulation

® The capab777ty of simulating LHC |
collisions 1s crucial for data ,.vu{g"d¢g'

analysis i - TLTE o i
: .. / \ Yo
..'. e I‘I . . |-, .; .

® So that we can study what a ...* \: N P

given new phenomenon (e.g., ==t @ ", =
dark matter produced i1n the oA =
coll1sion) would look I1ke S AT L

. . @
*iee et T 597fb (13TeV)
5% o3% 4 > T l LA B Y N B B B L L B B
(5 10°E CMS Preliminary +°a‘a .Z< e

® So that we can have an 1i1dea of Sl Mo oo [Jomezv

e 2018

the background we have to 8, s [Jooo

H(inv), BR = 25%

fight from known physics 10° — et
phenomena

@ This 1s done with a set of rule- 10

based algorithms B
‘%"32 :,mlml:::li::]i:i
® Very accurate, but very oy = T | wopeen
compu t1n 0] demandin g B 400 600 800 1000 p ﬁiggc[)Ge:;oo :erc Research
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UJN

this 1s 3

roblem

@ Large part of computing resources
goes 1nto simulating the detector
response (SIM)

@ In addition, once simulated,
these data are processed as 1f
they were real data (more CPU and
D1sk)

® Generating simulations for the
whole experiment takes ~ 1 year

@A tot of CPU “burned”
@ Disk occupied for a lot of time

® Because of this, we ended up
taking less data than what we
could (because we would not know
how to process the extra data)

32
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L

D€

.

be CPUomm g Disk o,
16.8% —24.4%
GEN () GEN
SIM © sIm
© DIGI @ MINIAOD
©® RECO
@ MINIAOD

5/7.6%
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Speeding up Generation with DL

GEN

® We have a working
algorithm, accurate but
slow (tens of seconds/
colli1s1on)

@®A neural network could
run 1n 0(100 usec)

@ Potential gain of a few DIGI+RECO+MINIAOD

orders of magnitude

@ We can use data from
slow algorithm to train
a network to do better

353



Ol Generative Adversarial Training

® ITwo networks trained against
each other

@ A generator aims at
creating realistic data ok
(e.g., 1mages similar to —
those 1n the training

dataset) - ~
. G |

@A discriminator aims at - & R
identifying which data 1n S

a dataset are real and —
which come from the —
generator

Noise

@ The total loss 1s written as the difference between the generator and the
discriminator 10ss:

@ If the discriminator improves, the loss 1ncreases

@ If the generator improves, the loss decreases

Lalerdele European
A e

@ The training continues until the generator fools the discriminator i§§§§t>£ﬁ$
=4 TR



Ol Generative Adversarial Training

Real

® Two networks trained against Sl

each other Eﬁgi
{ -

®A generator aims at -
creating realistic data

(e.g., images similar to ) d 3 N
. . . ; Is D
those 1n the training __%*j»._+ D > Comect?
da taset) e . Discriminator]
__
@A discriminator aims at Generatad
identifying which data 1in Samples

a dataset are real and
which come from the
generator

@ The total loss 1s written as the difference between the generator and the
discriminator 10ss:

@ If the discriminator improves, the loss 1ncreases

@ If the generator improves, the loss decreases

.- o.:o.‘:’.o‘:.
. .'.....‘........._ European

@ The training continues until the generator fools the discriminator i§§§§t>£ﬁ$
35 IR



Ol Generative Adversarial Training

® ITwo networks trained against
each other

@®A generator aims at
creating realistic data ek
(e.g., 1mages similar to —
those 1n the training
dataset)

@A discriminator aims at -
identifying which data 1n
a dataset are real and -

which come from the —
generator

discriminator loss:

36

Real
Samples

@ If the generator 1mproves, the loss decreases

4 B ¥ S
— e i D
; >, Correct?
4 ™ 2] Discriminator]
\e W
G ,
Generated
Generator Fake
- A / Samples

Fine Tune Training

.................................................................................

@ The total loss 1s written as the difference between the generator and the

@ If the discriminator improves, the loss increases

.- o.:o.‘:’.o‘:.
. .'.....‘........._ European

® The training continues until the generator fools the discriminator erc Counsh



CERN

YMGenerative Adversarial training in action

f
f y }
'
v {

PROGRESSIVE GROWING OF GANS FOR IMPROVED' y
QUALITY, STABILITY, AND VARIATIOé |

Submitted to ICLR 2018




Ol Generating detector response

Shower longitudinal section

® Start from random noise

5 ;_ Geant4 :|:=|=:'::|:
0.07 ;_ GAN generated +i j:i
— —+
® Works very well with images o a3 -
0.045— +_|_ ++
® Applied to electron showers in digital calorimetersasa ™= = -
0.02— N ——
replacement of GEANT L _—
. o= gy,
: ... . : ;gil?ln;enero’r . T Shower TrOnbVUI_DU SSC U o
° _ :=__= __“: B _::I: :*Ii:
4 » ’ — -
o - Geant4 - gilcilngrenero’r d -
= . ¥ 3 GAN genera ted
[ ~ - o
[ 4 —
’ 2 3
o1 - 0‘1;_ :— —___ .._..::-..: European
e ) e e HEYO S
See contribution to NIPS workshop 38



https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf

® Start from random noise
® VWorks very well with images

® Applied to electron showers in digital
as a replacement of GEANT

o
o
w

Units normalized to unit area

0.02

0.01

0.00

Figure 6: The distributions of image mass m([), transverse momentum pr(/), and n-subjettiness

0.045

1 LAGAN (signal)

[ LAGAN (bkg)

= ~1 HEPjet2D (signal) |

o
o
w
o

|
|
: _ Z1 HEPjet2D (bkg)
|

UIHILWS TIVITTIdllZ€U LU Ullit aled

©
o
=
o

0.000

50 60 70 80 90 100 110
Discretized m of Jet Image

120 200

T91([). See the text for definitions.

(VAL RER RN

calorimeters

AR REEEN DR R/
AN

0.040 |

0.030

0.025}

0.020 |

0.015F

0.005 |

T T T T T 4.0 T T

1 generated (W' — WZ2) ) LAGAN (signal)

P - - . , 35 L — 1 HEPjet2D (signal)

' Pythia (W' —W2Z2) 1 LAGAN (background)

— i | .~ 1 HEPjet2D (back d) - ==

gj:hﬁ;a(tg‘é éQdCijzt‘;';et” Hemezp acaondf - e Qlivera, Paganini, and Nachman

https://arxiv.org/pdf/1701.05927.pdf

N
S,
T

N
o
T

=
S,
T

Units normalized to unit area

=
o
T

Hadrons are

. . | | . rl clustered
220 240 260 280 300 320 340 0.0

Discretized pr of Jet Image

0.4 0.6 0.8 1.0
Discretized 7,; of Jet Image

together to
make jets
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Pl Same praoblems, same solution

@ As for reconstruction, the ultimate challenge of DL for simulation 1s the
sparse nature of the data

@ As for reconstruction, a solution 1s adopting Graph Architectures
® Graph GANs have been successfully trained (e.g., to reconstruct jets)

® Work ongoing to scale up the models, so that graphs of 0(1000) could ge
generated

x10% 7 x10°% 10*
g [ ‘ 1 Real 8 = Real aof’ ‘ = g [ 3 Real
-— eal -— eal U -] o
gter f 1 wp 2 e 3 = AL e
r - 1 - u— T - u— r.! -
S I ! L7 Fo 1§ L7 Fo q Sasfp I L Fo 41 9° [k L7 Fo
«— 1.0+ | 171 GraphCNN _| — 171 GraphCNN ] g o 71 GraphCNN 8 1404 171 GraphCNN ]
° TreeGAN {1 O TreeGAN | E 3.0F H TreeGAN | € [ TreeGAN
Number of particles randomly & r h 1 8 12 1 ']E 2 1.2r ]
samples from real distribution € 0.8 L] ] € ] 25F I 1 1 [t
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Same problems, same solutlon

@ As for reconstruction, the ultimate challenge of DL for simulation 1s the
sparse nature of the data

@ As for reconstruction, a solution 1s adopting Graph Architectures
® Graph GANs have been successfully trained (e.g., to reconstruct jets)

® Work ongoing to scale up the models, so that graphs of 0(1000) could ge
generated

y [cells]
y [cells]

European

21 Buhmann et al. https://arxiv.org/pdf/2005. 05354 gél? o



Summary of Lecture 2

® We looked 1nto two applications of Neural Networks

® Reconstruction of particles 1n LHC detector from the
“"hits” left by particles generated 1n the collision

@ Simulation of the hits left by the particles generated
1n the collision

@ Both problems require ones to deal with the sparse and
1rregular nature of the data

® Particle physics data are point clouds
@ Graph neural networks can effectively solve problems

with point-cloud data

A =




Further Reading & Coding

@A few recent reviews that could guide you through the
many applications and networks

@A nice BLOG article on GNNs

@® Another nice BLOG article on GNNs

@A generic review

@A particle-physics specific one

® And the study from which our hands-on session comes

@ JEDI-net Interaction Networks for jet tagging on these
data

43


https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
https://arxiv.org/abs/1812.08434
https://arxiv.org/pdf/2007.13681.pdf
https://github.com/jmduarte/JEDInet-code
https://zenodo.org/record/3602260#.X6ysrS9h2L8
https://zenodo.org/record/3602260#.X6ysrS9h2L8
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Reducing memory consumption

2

® When building a graph of N vertices,
number of edges (and number of
computing operations) scale with N?

@® Thi1is might clash with computing
resource limitations (both for training
and 1nference)

@ Certainly, this 1s the case at the LHC

@ real-time event selection runs 1n
short time

@ most of the selection runs as

electronic circuilt on electronic
board
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@ Gravnet & Garnet: resource friendly

graph architectures htps:/arxiv.org/abs/1902.07987
45
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https://arxiv.org/abs/1902.07987

(bravi let
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OO0 O

5
10
15 5q > N

1) Start with a 2) Each Fiv 1s

graph 1n geometric processed by a linear
space. Each vertex network, returning
feature vector Fiv two outputs: a

1s characterized coordinate vector s &
by coordinates and a learned
features representation Fir
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https://arxiv.org/abs/1902.07987
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3) With s and
Fir we build the
new graph 1n
the learned
space
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https://arxiv.org/abs/1902.07987

G r a V I l E t https://arxiv.org/abs/1902.07987
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https://arxiv.org/abs/1902.07987
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iy e L1 T 10
0 5

1 2) Each Fiy 1s
1) Start th |
giapha;n géomeiric processed by a Ili1near 3) s are the

' distances
space. Each vertex network, returning two

OO0 O

feature vector Fn,  outputs: a vector of from Ns

is characterized distances s & a aggregators

by coordinates and learned representation

features https://arxiv.org/abs/1902.07987 eTC Research
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https://arxiv.org/pdf/2008.03601.pdf
https://arxiv.org/abs/1902.07987

4) Fwd distance-
weighted messages
from vertices are
gathered at
aggregators (weight
W,=e % where d 1s
Euclidean distance
1n learned space)

O OO0

6) Final
representation
1s learned from
the engineered
features and
the original
ones

5) Bkw distance-
weighted messages
from aggregators
are gathered at
vertices (weight
Wab =e ab)

https://arxiv.org/abs/1902.07987 Research
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https://arxiv.org/pdf/2008.03601.pdf
https://arxiv.org/abs/1902.07987
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® Good performance
achieved,
comparable to DGCNN
and traditional
approaches

@ Us1ing a potential
(V(d) ) to weight
up the near
neighbours allows
to keep memory
footprint under
control (with
respect to other
graph approaches)
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LJith equations...

® Your message at i1teration t 1s some function M of
the sending and receiving features, plus some vertex

features (e.g., business relation vs friendship 1n h‘f
social media) O
o<,
[
hw

M(hy, h,,, e,

® The message carried to a vertex V 1s aggregated by

some function (typically sum, but also Max, Min,
etc.)

mit =Y MR Re,,
weG(v)
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® The state of vertex V 1s updated by some function U
of the current state and the gathered message

h‘€+l — Ut(h\ia mt+1)

Vv

@After T 1terations, the last representations of the
graph vertices are used to derive the final output
answering the question asked (classification,
regression, etc.), typically through a NN

=R |veG
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Bl Data BL.HC

N Business email
® The amount of produced data S Pacebook
1s too much to be stored W counbe
LHC st‘;red data (*)
. B LHC Li-filtered (*)
@ 1,000 times the data B LHC produced (*)
generated by google I
searches+youtube+facebook I
back 1n 2013 s Data from WIRED 2013
® Reduced to 5x(google
searches+youtube+facebook) I
after first filtering T
1 100 10000
@ Can only store 5% of those PB/year

(*) Only two bilg experiments :-er C
— (ATLAS and CMS), only RAW data



https://www.wired.com/2013/04/bigdata/

@l T hings wil get worse

5 iInteractions/beam cross 140 interactions/beam cross

LLEMS Expstiment athHG -CERN
} Datarecorded: Erb@et 26:08:06 57 2018 CESY
Run/Event=32530924451\8

Rimtsectent
OrRiErass ing A1 520. 4650

o Poor Pavo Povo P Paver Boveo T Boooor oo 111 ] Lo
This 1s when the R&D has to happen

LHC Today

» ~40 collisions/event | | ~~>_~200 collisions/event
> ~10 sec/event processing time » ~minute/event processing time
> (at best)Same computing resources as , (at best)Same computing resources

today 55 as today




More sensors, more RECO troubles

@ To disentangle 200
coll1sions happening at
once, we will build new
detectors with more
(smaller) sensors

® Event complexity grows non
l1nearly

® To profit of that,
computing resources for
data processing will have
to 1ncrease

@© We are off by a factor ~10

LR
.........
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More sensors, more SIM troubles

@ Simulation of LHC
colli1sion 1s essential
for analyses

@It 1s a very expensive
task, both 1n terms of
CPU & storage

® Increasing precision
by collecting more
data works only 1f one
has more simulation

® We are off by a factor ~10

if we project to 2027

GEN

AL o »
b
L
4t ”%q‘ ’!

DIGI+RECO+MINIAOD

1.1% CPU 01% Disk
° 9% | | 10%

16.8% —24.4%

GEN () GEN

SIM © sIm
O DIGI @ MINIAOD
©® RECO
@ MINIAOD

5/7.6% | 81%
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Which Particle?
Which Energy?
Which Direction?

® We know how to get from the data the answers we want
® physics + 1ntuition + computing
@ But the process 1s slow
@ We can use DL solutions as a shortcut: we teach neural networks L | e

how to give us the answer we want directly from the raw data e;rc —
=g oo,




Deep Learning at Rescue: Sim

GEN SIM
® We know how to get from the

. i
data the answers we want ‘ ‘
>/ € @

@ physics + 1ntuition +
computing \
\

@ But the process 1s slow

@ We can use DL solutions DIGI+RECO+MINIAOD

as a shortcut: we teach
neural networks how to
give us the answer we

want directly from the
raw data i




