

Introduction to Computer Vision & Traditional ML

Marwa Mahmoud

Assistant Professor/ Lecturer in Socially Intelligent Technologies, School of Computing Science, University of Glasgow, UK

Visiting Fellow, University of Cambridge, UK

What is Computer Vision?

Deeplab Image Semantic Segmentation Network

(Source: https://sthalles.github.io/deep_segmentation_network/)

What is Computer Vision?

Microsoft Face API

What is Computer Vision?

[Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. 'Realtime Multi-Person 2D Human Pose Estimation', CVPR 2017]

Basic Components

An image

- Image is an array of pixels
- Video is a sequence of images

CS 101 - web.stanford.edu

WHAT HUMANS SEE

Can we copy human vision?

- Better precision
- Better processing power
- Optical illusions

Examples

The Kanizsa Triangle Illusion

Wikimedia Comms

Machine learning for computer vision

Machine Learning

Deep Learning

Machine learning for computer vision

RGB representation

Colour features

Colour features

Histograms – Colour histograms (how to create histogram of RGB values?)

Sample application: Search by image!!

Edge features

Edge features

-1	0	+1
-2	0	+2
-1	0	+1

0	+1	-1	-2	1
0	+2	0	0	

x filter

y filter

+2

+1

+1

	0					
-2	0		+2			
-1	0		+1			
		•				

	0			
-2	0	+2		
-1	0	+1		

	-1	0	+1		
	-2	0	+2		
	-1	0	+1		
			•		

						_	
	-1	0	+1				
	-2	0	+2	And	so o	n	>
	-1	0	+1				

-1		 			
-2	0	+2			
-1	0	+1			

Edge features explained

-1	0	+1
-2	0	+2
-1	0	+1

)	+2	0	0	0
)	+1	-1	-2	-1

x filter

y filter

+2

+1

Other filters & features

Input image

Histogram of Oriented Gradients

Example of Histograms of Oriented gradients

ig. 3. Histogram of oriented gradient extraction from face.

Latifa Greche, Najia Es-Sbai. "Automatic system for facial expression recognition based histogram of oriented gradient and normalised cross correlation", 2016

Other filters & features

SIFT: Scale-invariant feature transform

Temporal features

Optical flow

Optical flow

Magnitude (length of arrow) and orientation (direction)

 Simple, efficient but time consuming

Different implantation for faster computation time

Machine learning for computer vision

Machine Learning

Deep Learning

Machine learning for Computer vision

What is the output of machine learning?

Machine Learning

Deep Learning

Machine learning

1- Rule based

2- Traditional machine learning

3- Artificial neural networks/ Deep learning

Types of machine learning algorithms

1- Supervised learning (labelled data):

ex. Classification, regression, ... etc

2- Unsupervised learning:

ex. Clustering, k-means, .. etc

[dimensionality reduction (PCA)]

ex. MarKov decision process

Regression vs. Classification

Unsupervised learning

Ex: K- means and KNN (nearest neighbour)

The goal of K Means algorithm is to minimize the Within Cluster Variation and maximize the Between Cluster Variation. K in K means clustering corresponds to the number of clusters needed.

Unsupervised learning

Ex: Dimensionality reduction for features : popular method PCA – Principal Component Analysis

- Compress the information in the data keeping its variance

statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.

Support Vector Machines

- Popular, simple and easy.
- Powerful when we don't have enough data

Logistic Regression

Logistic regression is a statistical analysis method to predict a binary outcome.

Decision trees & random forests

Each leaf node corresponds to a class label and attributes are represented on the internal node of the tree.

Machine learning for computer vision

Machine Learning

Deep Learning

