
Token capabilities and HTC-CE
configuration

by S. Dal Pra

AuthZ/IAM WS, 2022, Oct. 11

Email: dalpra@infn.it

Foreword

The following considerations are from the point of view of a HTCondor-CE on top of a
HTCondor Batch system administrator in a WLCG Site (INFN-T1).

The �What If� motivation

Given current status of things, assuming that VOMS proxy support is removed from
HTCondor-CE and only tokens are accepted:

� can all of our current use cases still be handled with WLCG Tokens?

� Can new or foreseeable future use cases also be handled?

If yes: how?

Bonus question

Can/should JWT extend / integrate / enrich capablilities provided by HTCondor itself?

New or Foreseeable scenarios

Computing resources becoming more heterogenous

� CPUs: x86_64, ppc64le, aarch64

� GPUs: several models, fast evolution

Different QoS tipologies

� High/Low priority queues (hierarchical fairshare)

� pledged/opportunistic resources

� High/Low power devices

Note: These can potentially cohexist (example: High priority access to opportunistic low
power resources)

HTCondor-CE and Tokens

Once the client token is validated ("scope" inspection included), two more steps are
following:

1. Map token credentials to a local authorized batch user

� Only "iss" and "sub" claim are considered

Note1 with X509 proxy the FQAN would also be considered, i.e. the "wlcg.groups"
claim. This is available at the second steps, when the job owner has been set already.

Note2 OSG tokens use to set the VOName in the �path� part of the "iss" claim, ex:
"iss": "https://scicomp.jlab.org/scitokens/clas12"

Note3 extending the above idea "iss" could also specify a user group, such as:
"iss": "https://some.issuer.org/somevo/sgm"

2. Apply Job Transform rules

The JobRouter is where further classad attributes for the incoming job can be set

� This is where capabilities/requirements for the routed job are to be set

� This is where how the token brings information can make a significant difference.

Examples: �I'm entitled to run on high priority queue�, �I have access to GPU resources�,...

The following claims are currently available, as classad attributes
"jti", "iss", "sub", "scope", "wlcg.groups"

Examples

Note The following are proposed for discussion: none of these are currently adopted in
production environments, and they assume a specific way to bring needed information
within the token.

Hierarchical Fairshare (with X509)

This is a use case currently handled with X509. The commonly adopted strategy to
configure H.F. is:

1. The FQAN specify the H.F. group (i.e. /virgo/virgo vs /virgo/ligo)

2. An external service (i.e. Argus, LCMAPS) maps to local users in corresponding
unix groups (i.e. Unix Group $ H.F. Group)

3. a text file defines the map username ! H.F. Group (AcctGroup in HTCondor
terms). The actual mapping is performed by the UserMap classad function.

Hierarchical Fairshare (with tokens)

The previous method cannot work with tokens because

� the username is set before evaluating groups.

� We need to support individual submission (i.e. no pilot factory)

In such a scenario we need to allow different jobs from the same user to belong to different
subshares of its main group (VO).

Two strategies can be devised here, depending on the subshare group name being spec-
ified in the wlcg.groups claim, or in the scope claim.

Hierarchical Fairshare (with tokens)/2

Using wlcg.groups The strategy in this case would be:

1. The first element of the wlcg.groups list specify the H.F. Group (i.e.
/virgo/virgo or /virgo/ligo)

2. A JobRouter clause join the values (Owner,HFgroup) in a string and invokes the
UserMap classad function to set the appropriate AcctGroup.

3. A text file defines the mapping (Owner,HFgroup) ! AcctGroup

� Complete example is detailed in the CERN wiki.

� Main idea: get a value from a known position in a list, and use that value as a search
key in a lookup table.

� This method can be used to set different attributes as well.

https://twiki.cern.ch/twiki/bin/view/LCG/HTCondorCEtokenConfigTips#Experimental_configurations
https://twiki.cern.ch/twiki/bin/view/LCG/HTCondorCEtokenConfigTips#Experimental_configurations

Hierarchical Fairshare (with tokens)/3

Using scope The strategy in this case would be:

1. One random element of the scope claim specify the H.F. Group (i.e.
hfgroup:/virgo/virgo or hgroup:/virgo/ligo)

2. A JobRouter clause check the scope for presence of each known HFgroup and set
the AcctGroup classad attribute trough a chain of IF THEN ELSE clauses

Comments

� If two or more H.F.Group are present, the first (unpredictable) match will be con-
sidered. Group names are hardcoded in the JobRouter conf; the IF ELSE chain can
complicate the rules; each change requires editing rules instead of

� values from the scope claim are being used at �different stages�: auth*zn at Grid
side, Job routing at Batch side. Using different claims for the two might be good.

Other use cases:

The following have been tested by direct manual submission to a HTC-CE

Non x86

Test 1.1: Job aarch64 / ppc64le

JOB_ROUTER_ROUTE_cms_arm @=jrt
REQUIREMENTS (WantRoute =?= "cms_arm" &&\

(AuthTokenIssuer =?= "https://cms-auth.web.cern.ch/"))
UNIVERSE VANILLA
SET Requirements (TARGET.Arch =?= "aarch64")\

@jrt

JOB_ROUTER_ROUTE_cms_m100ITB @=jrt
REQUIREMENTS (WantRoute =?= "cms_m100ITB") && (AuthTokenIssuer =?= "https://cms-

auth.web.cern.ch/" && StringListMember(AuthTokenSubject ?: "", "78f275d5-bb1a-4b2d-9956-
f82316a8482e:9662c0b5-31a1-4478-963e-bdf3783232ed",":"))

UNIVERSE VANILLA
SET Requirements (TARGET.Arch =?= "ppc64le")

@jrt

GPU

JOB_ROUTER_ROUTE_virgo_gpu_v100 @=jrt

REQUIREMENTS (WantRoute =?= "gems_V100") && (((x509UserProxyVoName =?= "virgo")\
&& RegExp("John Smith|Mario Rossi",x509userproxysubject)) ||
StringListMember(AuthTokenSubject,"9662c0b5-31a1-4478-963e-bdf3783232ed",":"))
UNIVERSE VANILLA
SET Requirements (TARGET.CUDACapability >= 6) &&\

(TARGET.CUDADeviceName =?= "Tesla V100-SXM2-32GB")
SET WantGPU True

@jrt

Comments

The above examples expect a Custom Attribute (WantRoute) to be present in the submit
file. This could be passed by the pilot factory (Pandas can do that). In that case a
generic user could reach the resource by direct submission. Passing that information in
the token would enforce proper access.

Expressing capabilities

� In The Hierarchical Fairshare use case, retrieving the share group name from
wlcg.groups looks like a natural choice, as this claim act much like FQAN in the
VOMS proxy.

� The method adopted is quite general and just assumes that a value is present in a
list at a known position

Example

"wlcg.groups": [
"/virgo/ligo", # the fairshare subgroup
"QoS/opportunistic", # can run on opportunistic resources
"WantRoute/ppc64le" # payload for specific CPU arch.

],

� using wlcg.groups in such a way might look inappropriate or not even possible

� A dedicated claim could be introduced, similar to scope but respecting elements
order. In this case HTCondor-CE should provide its value in a classad attribute.

	Foreword
	The “What If” motivation
	Bonus question
	New or Foreseeable scenarios
	HTCondor-CE and Tokens
	1. Map token credentials to a local authorized batch user
	Note1
	Note2
	Note3
	2. Apply Job Transform rules
	Examples
	Note
	Hierarchical Fairshare \(with X509\)
	Hierarchical Fairshare \(with tokens\)
	Hierarchical Fairshare \(with tokens\)/2
	Using wlcg.groups
	Hierarchical Fairshare \(with tokens\)/3
	Using scope
	Comments
	Other use cases:
	Non x86
	GPU
	Comments
	Expressing capabilities
	Example

