
Igor Mandrichenko
Rucio Workshop, 11/10/2022

MetaCat - metadata catalog for 
Rucio-based data management systems



MetaCat = Metadata Catalog 
for data management systems 
where Rucio can be used as 
the Replica Manager

What is MetaCat ?

2



3

MetaCat Target Users

● Primary: DUNE
● Other FNAL experiments migrating from SAM

○ SAM is DM system used at FNAL, combining all 3 functions
● HEP experiments
● Rucio users



• Store and make available metadata associated with objects 
(files) and object collections (datasets)

• Provide efficient query mechanism to select objects (files) 
matching the user criteria

• Provide flexible, efficient, integrated access to external 
metadata sources

Functions

4



Rucio:
• Scope                                             
• Scope:Name (DID)                          
• Container
• Dataset                          

Conceptual Compatibility with Rucio

MetaCat:
• Namespace                                             
• Namespace:Name                       
• Dataset                          

– In MetaCat, there is no 
distinction, a dataset can contain 
files and/or other datasets

Being conceptually compatible, MetaCat does not depend on Rucio, 
nor does it communicate with Rucio directly, therefore can be used with 
other replica management systems 



MetaCat unit of operation: file or object - abstract entity with 
the following properties
• Fixed attributes - every file has them

– Unique text ID (assigned by user or auto generated)
• Immutable

– Unique name within a namespace (Rucio: scope, name)
• Can be renamed
• Name can be auto-generated

– Creator username, timestamp
– File Provenance

• Parents, children (file A was created from files B, C, D)
• Rest of metadata - arbitrary JSON dictionary

Files or Objects

6



Non-relational, fluid schema
• Add new attributes at any time
• Arbitrarily complex structure

File Metadata

Very few attributes are in relational schema
• Common attributes
• Attributes used by MetaCat itself
• Better indexing, fast lookup, table joins (datasets, namespaces, provenance, …)

Rest of metadata:
• Application-defined
• Non-relational, fluid
• JSON dictionary - arbitrarily 

complex
• Restrictions can be defined 

via categories and/or 
dataset restrictions

• Implementation: Postgres 
jsonb type, GIN-indexed



• Dataset has a name within a namespace
• Contains files

– Many-to-many (a file can belong to many datasets)
– Explicitly added/removed

• Combines Rucio dataset and container functionality
– Datasets may contain other datasets, recursively (Rucio: container)

• Standard attributes:
– Creator username, timestamp
– Dataset flags

• Frozen - files can not be added or removed
• Monotonic - files can only be added

• Rest of metadata - arbitrary JSON dictionary

Datasets

8



• Querying is the fundamental function of MetaCat
– Find all files matching a set of criteria expressed in terms of 

their metadata, provenance, external metadata

• Written in Metadata Query Language (MQL)

• A query can be named, saved and reused inside another 
query or as is
– Conceptually similar to a relational database view

Queries

9



Dataset - explicit collection of files
• Recorded in the database
• Files added/removed explicitly
• Has a name within a namespace

Datasets vs Queries

Query - instructions how to select files 
from a dataset or datasets

• Recalculated every time it runs
• Results can change at any time
• Can be saved under a name within 

a namespace and reused by name

Bridge:
Query results can be saved as a new dataset or 

added to an existing dataset

Relational DB: table Relational DB: SQL “select”



Metadata Query Language (MQL)
files from dune:raw

where DUNE.reco_version = “v1.2”
limit 1000

● Keyword - files query
● Dataset to select files from (DID)
● Metadata filtering
● Limit results to first 1000 files

11

files from dune:raw_2019 where 
DUNE.reco_version in (“v1.2”,”v1.3”)
  and core.file_type = “root”
or DUNE.reco_version = “v1.0”

● Parameter category
● Boolean algebra

union (
files from dune:raw_2019

where DUNE.reco_version = “v1.2”
,
files from dune:raw_2020

where DUNE.detector = “near” and
DUNE.reco_version >= “v1.3”

) where data.format in (“root”, “hdf5”)

● Queries can be combined using 
“union”,”join”, “-” (subtraction)

● Metadata filters can be applied 
again to the combined query



• MQL query is compiled into SQL query and executed by the 
database engine
– Exception: external metadata access - executed by the MetaCat 

application server

• Resulting SQL query complexity in terms of number of table joins 
does not depend on the complexity of the original MQL query

• MQL metadata expressions are compiled into JSON/JSON Path 
expressions interpreted by Postgres 

MQL Compiler



A mechanism to restrict the fluidity of the metadata schema in application-specific 
way

MetaCat parameter name:
<category>.<parameter name>

Category owner can restrict areas of the metadata namespace
• Parameter types

– Int, float, string, boolean, list of ints, floats, … dict, …
• Accepted values

– Range, enumeration, pattern
• Restricted category: only known parameter names are allowed

Enforced at the time of the file declaration

Parameter Categories



Data Model

14



Use case:
• Run conditions are stored in 

the Runs database by run 
number

• Files need to be selected 
based on some run 
conditions values

• We do not want to duplicate 
run conditions data in 
MetaCat as file metadata

• Implemented for 
ProtoDUNE

External Metadata Sources

15



External Filter in MQL

# real life DUNE example

filter rucio_replicas() (
    files from dc4:dc4 

limit 100
) where "DUNE_CERN_EOS" in rucio.rses

16

● Filter name - collaboration defined
● Filter is applied to the results of the Intermediate query
● This filter contacts Rucio and gets replica information for the given files
● Injects the replica information as new metadata making it available for querying 

and as the query output
● Makes the replica location information appear as if it is stored in MetaCat, but it is 

not



MetaCat Architecture

17

Software Stack
● PostgreSQL v12 - the database
● Python3 (both client and server)
● psycopg2 - Python/PostrgeSQL



• Uses HTTP/HTTPS, requests Python library
• Datasets - create, get, list, add files, remove files, update metadata, …
• Namespaces - create, get, list, …
• Files - declare, get, update metadata, provenance, ...
• Query - run, run asynchronously, save results as dataset, add results to 

dataset
• Parameter categories, validation
• Authentication

– JWT tokens

Client API (Python)



• Client authentication
– Log in (obtain JWT token, save it in local FS, similar to Rucio)

• Datasets
– Create, list, show, update

• Namespaces
– Create, list, show

• Files
– Declare, show, add, update

• Metadata validation
• Parameter categories
• Queries

Command Line Interface Functions



https://metacat.fnal.gov:9443/dune_meta_prod/app/gui/index

MetaCat GUI



• DUNE/ProtoDUNE
– 16.7 M files
– ~480 M name-value metadata pairs
– 21 GB “files” table + 6 GB metadata index over non-relational JSON data
– Total database size: ~40 GB

• ~ 2.5 KB/file
– Passed the data challenge, plan is to make it official production soon

• NOvA - not used, but imported to test scalability
– 191.2 M files
– ~5.3 B name-value metadata pairs
– 221 GB “files” table + 35 GB metadata index over non-relational JSON data
– Total database size: ~326 GB

• ~ 1.7 KB/file

Existing Databases



Documentation: https://metacat.readthedocs.io

vCHEP 2021 paper: 
https://cdcvs.fnal.gov/redmine/attachments/download/64700/MetaCat
%20CHEP%202021%20paper%20v5.pdf

DUNE MetaCat GUI: 
https://metacat.fnal.gov:9443/dune_meta_prod/app/gui/index

References

https://metacat.readthedocs.io
https://cdcvs.fnal.gov/redmine/attachments/download/64700/MetaCat%20CHEP%202021%20paper%20v5.pdf
https://cdcvs.fnal.gov/redmine/attachments/download/64700/MetaCat%20CHEP%202021%20paper%20v5.pdf
https://metacat.fnal.gov:9443/dune_meta_prod/app/gui/index


Backup

Igor Mandrichenko, MetaCat Project Status9/22/202023



<file query>: files [from [dataset|datasets] <dataset selector list> [,...]]
                | <file query> [where <metadata expression>]
                | <file query> [skip <integer>]
                | <file query> [limit <integer>]
                | query <saved query namespace>:<saved query name>
                | filter <filter name>( <parameter> [,...] ) ( <file query> [,...] )
                | union ( <file query> [,...] )
                | join ( <file query> [,...] )
                | <file query> - <file query>
                | children ( <file query> )            # file provenance
                | parents ( <file query> )
                | ( <file query> )

MQL syntax: file queries



 <metadata expression>: <scalar> <cmp op> <constant>
   | <attribute> [[not] present] # file has this attr
   | <constant> [not] in <attribute> # in list or dict
   | <scalar> [not] in <constant> : <constant> # range
   | <scalar> [not] in ( <constant> [,...] )          # enumeration     
   | ( <metadata expression > )
   | ! <metadata expression>
   | <metadata expression> and <metadata expression>               
   | <metadata expression> or <metadata expression>

<cmp op>: = == != < <= > >= ~ ~* !~ !~*                                                           

MQL syntax: metadata expressions



A query could be created, 
debugged and saved to be 
reused  by name

Named Queries

query DUNE:supernova_production_latest_version
where len(core.events) > 10
limit 100

join (
 query DUNE:supernova_production_latest_version,
 query joe:my_favorite_files,
 files from dune:all 

where 
run.quality > 10

       and core.runs[any] in 7375:7380
)



Datasets and Subsets in MQL

files 
    from dune:raw_2019 
        with children 
        recursively

where 
        created_timestamp > ‘2019-05-01’ 
        and reco_version = “v1.2”

27

Include files from the top 
dataset 

● and its subsets
● recursively



Other ways to use filters

filter random_mix(0.4, 0.6) 
(   
    files from dune:raw_2019 # file set 1

where reco_version = “v1.2”,

files from dune:raw_2020 # file set 2
where detector = “near” and

reco_version >= “v1.3”
)

28

A filter does not actually have to access any external data.

This “random_mix” filter mixes two file sets into one according to target ratios



File provenance supported by MetaCat
• A file can have zero or more parent files and zero or more 

child files
• Which files were used to create which files

File Provenance

29



File Provenance in MQL

children ( file scope:file.data ) # children of a single file

parents ( # parents of all files 
    files from dune:raw_2019 # in the file set

    where reco_version = “v1.2”
)

files from dune:raw - parents( # unprocessed files
    files from dune:processed
)

files from dune:raw - # files without any children
    parents(
        children(files from dune:raw)
    )

30



• A filter takes a file set 
(one or more) - results of 
a query (or queries)

• Produces new file set
– Optionally: accesses 

the external data
– removing or even 

adding files
– modifying metadata
– injecting new 

metadata

External Filter

Filter is a python class provided by the collaboration 
and plugged into MetaCat server instance. 
Not every user can add a filter - security



Arrays and Dictionaries

bit_mask[2] = 1

config[“version”] > “2.3”

runs[any] = 1234

1234 in runs

runs[all] < 1234

config[any] != “raw”

len(core.events) > 10

Array element by index

Dictionary access by key

Any array element

Array contains element

All elements

Any dictionary element

Array length



Ranges and Enumerations

x in 1234:1332

x in (1234,1235,2345)

run_type in (“calibration”,”test”)

file_type not in (“mc”,”test”)

Range of values

Enumerated set of values

- Can be strings too



Dataset can have restrictions on metadata for its files
• Parameter types, allowed values

– Similar to categories
• Required parameters

When declaring a file or adding a file to a dataset, both dataset 
and parameter category restrictions apply

Dataset Restrictions on File Metadata



A filter can take multiple file sets as input 
and combine them into a single output file set

External Filter with Multiple Inputs


