
Metadata SIG Update
Rob Barnsley

Slide /

Context

• For most communities, metadata is a very important aspect of data
management
• Organise data meaningfully
• To aid findability (FAIR)

• Metadata handling within Rucio is a nascent development area
• Historically developed to meet the requirements of HEP but a lot of burgeoning

communities
• Metadata catalogues can be very bespoke, want to keep the interfaces largely agnostic
• Purpose of this group is to identify missing functionality and align requirements across

communities

• From an SKAO perspective
• Operator level: Rucio metadata commands CLI/API
• User level: Looking to leverage International Virtual Observatory Alliance (IVOA)

protocols/standards (Dave M. will talk more about this)
• Work done by the team has focused on enabling functionality and interfaces

2

Slide /

Rucio metadata refresher (1/2)

• Out of the box, Rucio has two distinct metadata stores:
• A “base” metadata store that uses columns from the dids table; these are fixed fields,

often HEP specific or related to file metadata
• A “custom” metadata store that stores key-value pairs in a JSON column in the

did_meta table

• When a user sets metadata, the server will call manages_key(key_name) for each
store in order until it evaluates true:
• As the base metadata store is always first in the list, and manages_key evaluates to

true if the requested key name == a column name (with some exceptions), it will
always be set in this store

• If the key is not set in this base metadata store, Rucio will insert it into the custom
metadata store (provided that the backend database implements JSON columns)

3

Slide /

Rucio metadata refresher (2/2)

• Rucio uses a plugin system for metadata stores

• Alternative custom metadata stores can be implemented using this system

• Able to write interfaces to different backends by (see stub class DidMetaPlugin:
did_meta_plugin_interface.py):
• Defining functions for how to get/set/delete metadata,
• Defining a function to handle listing dids (list-dids) with metadata filtering,
• Defining a function to specify which keys the plugin should handle, and
• Specifying this plugin to be used in the Rucio server configuration file

• Two functions for listing DIDs by metadata: list-dids and list-dids-extended
• The former only allows filtering from the base metadata store
• The latter allows filtering selecting the relevant metadata store using the plugin

system

4

https://github.com/rucio/rucio/blob/master/lib/rucio/core/did_meta_plugins/did_meta_plugin_interface.py

Slide /

Work done between 1.26 to 1.29 (Filtering engine)

• Up until 1.26, there was limited support for metadata filtering via the list-dids
and list-dids-extended functions:
• only the equality operator, and
• only the logical AND operator

• Following a request for inequality operators, Gabriele F. worked on creating a
prototype language / implementation => “Filter engine” created
• This engine supports an extended syntax including inequalities and wildcards, viz =,

!=, >=, <=, >, <, LIKE, NOT LIKE, as well as logical OR

• From 1.27 onwards, list-dids passed --filter input through to the filtering
engine
• But only applied to filtering on columns in the base metadata store

• From 1.28 onwards (Oracle support in 1.29), list-dids-extended also passed
the --filter input through to the filtering engine
• This meant you could now filter the custom (JSON) metadata store

5

https://github.com/rucio/rucio/issues/3750

Slide /

Work done between 1.26 to 1.29 (Filtering engine)

Set metadata (two files with a date and one with a string):

Query with date range and logical AND:

Same clauses but with logical OR:

Compound inequalities also supported (e.g. 2022-06-01 <= test_key_1 <= 2022-06-02)
6

Example 1: Date ranges and logical operators

Slide /

Work done between 1.26 to 1.29 (Filtering engine)

Set metadata (three files with string):

Query with equals and wildcarded value:

NOT LIKE also possible with != and * operators.

7

Example 2: Wildcard queries

Slide /

Work done between 1.26 to 1.29 (Plugins)

• From 1.28 onwards, a new metadata plugin to interface to an external mongodb
collection was made available, e.g. rucio.cfg

• From 1.29 onwards, another metadata plugin to interface to an (external)
postgres database is available, e.g. rucio.cfg

• Dumps everything into JSON column

• Stub for MixedMode (columnar and json)

8

Slide /

Future

• Currently only one issue open that directly touches on metadata work: #5448

I will be working on this for the next release, however

• Work done in this area by myself and the team is mostly driven by SKAO
requirements with timescales defined by our program roadmap

• Further substantial work has not been officially planned for this current
increment (-> mid Dec) but may happen in the next. Such work may include:
• To test how performant searching is (internal and external) and how this scales with

number of files, complexity of query and structure of metadata
• Enabling better integration with IVOA protocols/standards e.g.

• a “mixed mode” external postgres plugin,
• the ability to use more than 2 plugins

9

Slide /

Thanks!

• Welcome suggestions and contributions to this component

• #metadata on Rucio Slack

10

