

International High School Teacher Programme

Particles for Health

Medical Applications of Particle Physics

AU	Antonio Tarquinio, Ryde Secondary College
ES	Francisco Garcia, European School Luxeml
NO	Shaima Sheet, Telemark Toppridrett Gymna
PH	Jethromel Meneses, Tzu Chi School - Secon 中尼島清學校
NP	Mazina Rajopadhyaya, Deerwalk Sifal School

Curriculum & Classroom Connections

Curriculum Mapped	Theme	Key Concepts	Classroom Connections	
GOVERNMENT	Fundamentals of Particle Physics	Structure of the Atom	Experiments on atomic structure, Rutherford scattering simulations	
		Quantum Physics	Discussions on medical isotopes, PET scans	lı
		Radioactive Decay	Calculations of half-life, simulating decay chains	'
		Nuclear Reactions	Simulating fission and fusion processes	L
Diploma Programme		Types of Radiation	Identifying alpha, beta, gamma radiation with Geiger-Muller tubes	
	Medical Imaging Technologies	Photoelectric Effect	Demonstrations with photoelectric devices, observing electron emission	
		X-rays	Producing and detecting X-rays, using X-ray tubes and detectors	
नेपाल सरकार		Wave-Particle Duality	Labs on wave-particle behavior, double-slit experiment	
		Wave Phenomena	Experiments on interference, diffraction patterns	L
SCHOLA CUROPACA		Doppler Effect	Using ultrasound machines, measuring blood flow, observing Doppler shifts	
ERGO Fysikk 2	Applications in Medical	Medical Uses of Radiation	Case studies on radiotherapy, planning, safety measures, practical sessions	
		Production & Detection of Radiation	Simulations, producing radioactive isotopes, using detection devices like cloud chambers	
	Treatment	Radiation Safety	Safety protocols, role-playing exercises on handling radioactive materials	

Interaction

Detection

Application

Key Ideas

- History of radioactivity
 (fascinating advancement since 1896)
- Radiotherapy in cancer treatment

Current radiotherapy method

- A) x-ray
- B) **Particles:** Proton and Heavy ions

Hope is there in....CERN!

New state of the art : Very High Energy Electrons (VHEE) radiotherapy

- Radiation therapy is a key tool for treatment for 50-60% patients (more in the future?)
- We need technology to reach as many places as possible all over the globe,
 especially in countries with limited resources and access to cancer treatment.

Potential Students' Conceptions & Challenges

- Radiation as hazards but it also offers potential benefits
- Particle physics in only high energy physics research
- Integrating particle physics concept with biology and medical science
- Data analysis from imaging

Useful Material & Resources

- Dosanjh, M. (2017) From Particle Physics to Medical Applications. ResearchGate.
 DOI: 10.1088/978-0-7503-1444-2ch1
- Accelerator Technology in Medicine https://videos.cern.ch/record/1541891
- FLASH overview: https://videos.cern.ch/record/2762058
- Prof. Manjit Dosanjh
 - Citizen of the World

MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, ALL RIGHTS RESERVED.

Best Practice Example

First 3D colour x-ray human image

HST2024 Study Group 2

Mazina (Nepal), Jethromel (Philippines), Shaima (Norway), Francisco (Spain), Antonio (Australia)

How has our thinking changed?

- Spin off of accelerator technology
- Variety of applications from particle physics research (CT, PET, Combination, FLASH)
- Diagnostic tools and treatments for cancer and other diseases
- Unequal distribution of these machines per capita
- The power of teaching to inspire future generations
- The more you learn, the less you realize you know!

Goodbye Message:

It is not goodbye; the magnet of nature could gather us one day again. Then, don't forget to greet me with a CERN greeting. :-)

