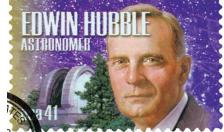
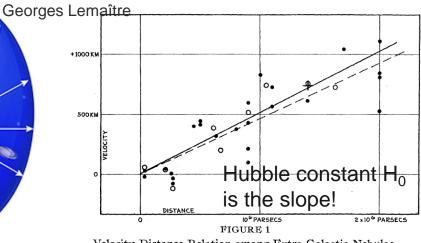
Cosmology

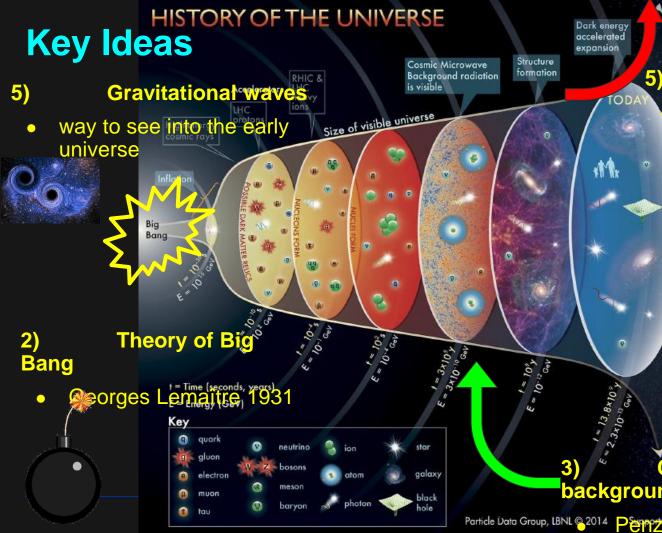
Curriculum & Classroom Connections



Key Ideas


- 1) Expansion of the universe
 - Hubble (-Lemaître) law 1929 (1927)
 - velocity = H_0 distance

redshift



Velocity-Distance Relation among Extra-Galactic Nebulae.

age of the Universe ~ H_0^{-1} ~ 14.10⁹ y

Dark energy

leads to a repulsive force accelerating the expansion of the universe

Dark matter

galaxies rotating at speeds too big for its observable mass to hold them together

Cosmic microwave background

4)

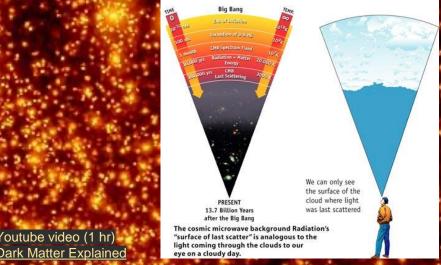
0

Particle Data Group, LBNL 2014 Psymptotics Wilson 1965

Potential Students' Conceptions & Challenges

How do my students think?

Spatial


- Three dimensional view?
- Four dimensional?

Time

- Real time view of the sky?
- Everything in the sky is dead
- A window to the past
- Nature of Science
 - Scientists know the truth
 - No one knows anything
 - Religious/Cultural views
 - Evidence/Theory developments

Background image Activity: Exploring the Cosmos with Supercomputers What are my challenges?

Language Cultural References Prior knowledge "Knowledge voids" Scientific Skills

Helpful Material & Resources

Educational Resources:

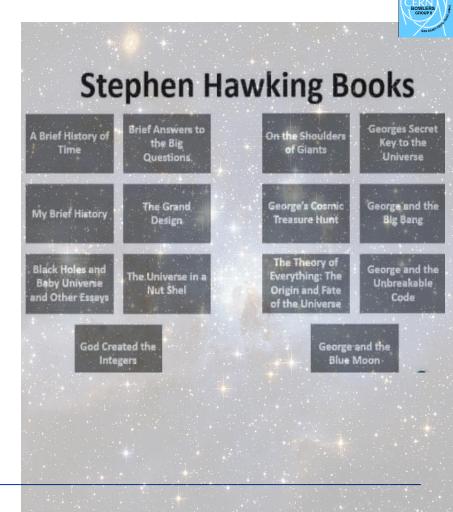
Books:

1. THE COSMIC CODE-A Journey to the Origin of the Universe- by Sophie Domingues-Montanari

2. Cosmic Evolution: The Rise of Complexity in Nature by Eric J. Chaisson 3. Cosmology by V. A. Rubakov, https://arxiv.org/pdf/1804.11230

4.Introduction to Cosmology-A. D. Dolgov https://www.e-booksdirectory.com/details.php?ebook=4114

5.Advances in Modern Cosmology- by Adnan Ghribi https://www.e-booksdirectory.com/details.php?ebook=6400


Online Courses:

https://www.coursera.org/courses?query=astronomy

University of Cambridge https://www.ice.cam.ac.uk/course/cosmology-birthpresent-and-fate-our-universe https://www.classcentral.com/course/youtube-astronomy-and-space-for-children-179123

https://www.edx.org/learn/astronomy

Tutorials and Guides: <u>NASA WMAP Activities</u> <u>Esa Cloud Chamber Activity</u> <u>National Geographic 5 min Video Origin of Universe</u>

•

Best Practice Example

1. Online Lab: Hubble's Law and the Expansion of the Universe

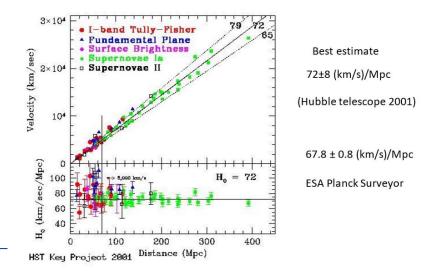
Objective: Students will use real astronomical data to calculate the Hubble constant and estimate the age of the universe.

Procedure:

- 1. Access an online database of galactic distances and recession velocities
- 2. Plot the data on a graph (distance vs. velocity)
- 3. Calculate the slope of the best-fit line to determine the Hubble constant
- 4. Use the Hubble constant to estimate the age of the universe

Analysis:

М


- Discuss the relationship between distance and velocity
- Compare the calculated Hubble constant with current accepted values
- Explore the uncertainties in the data and calculations

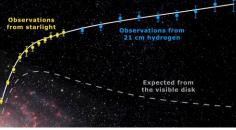
<u>https://www.golabz.eu/lab/hubble-s-law</u>

(the Go-Lab simulator is an interactive tool that can help students grasp the fundamental principles of Hubble's Law)

<u>https://www.merlot.org/merlot/viewMaterial.htm</u>
<u>?id=75282</u>

(for a more comprehensive lab experience, this resource provides a structured lab activity that guides students through the process of understanding and applying Hubble's Law)

Best Practice Example


2. Galactic Rotation Curves Activity

Use this activity to demonstrate evidence for dark matter:

- Show students rotation curves of galaxies
- Explain how the observed rotation speeds of outer stars don't match predictions based on visible matter
- Discuss how dark matter explains this discrepancy

Critical Thinking Exercise: Dark Matter Candidates

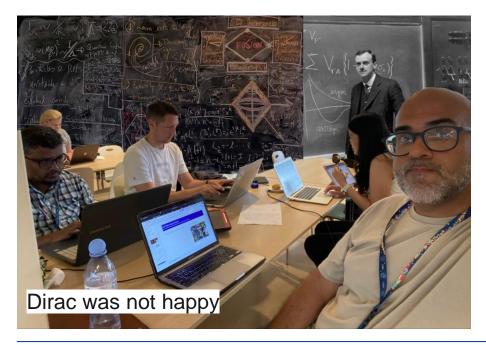
Engage students in a discussion about potential dark matter particles eg WIMPs (Weakly Interacting Massive Particles) and MACHOs (Massive (

Research Project: Current Dark Matter Experiments

Assign students to research and present on current experiments searching for dark matter, such as: Xenon Dark matter experiment

https://xenonexperiment.org/

LUX-ZEPLIN (LZ) experiment


https://lz.lbl.gov/

What we'll tell our students we did in CERN

What we actually did!

