

The early universe

as a particle physics laboratory

Valerie Domcke CERN TH

From the smallest distances...

image credit : AAPT early universe cosmology

From the smallest distances...

مصمعاني																	
i i																2 4.000	
H	bewysan 1 1,008 - Marin Lancas na Addinatile ST (1987) Resempting - 4,801 2.0 - Desempting in states have												He				
Li	Be	Press Spece			-25#/-	10 - 10 20 - 10 1/1 - 10	inner / Kashina	-	a de la	ngsmalatie othanoide Seuide 1 Helatie		B	C	N	0	F	Ne
11 BLTH	12 HUNS				Vesserstof				Tang Long			13 DUM	14 DR.045	H R.FL	M MAR	17 HAL	No. 10. Au
Na	Mg											AL	Si	P	S	CL	Ar
1 212H	Stall .	ALL AND	H attait	B S S S S S S S S S S S S S S S S S S S	ALL DIAL	No. of Street, or other	AND DEAL	The state	and a state	AL ST	H.10	No. of Co.	H TAN	H NAT	N STATE	H THE	A REAL
K	Ca	Sc	TI	V COLOR	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Rutes	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	A STATEMENT	Xe
SIL TALIT	B4 UR D		H THAT	No. of Concession, Name	Personale Statistical distance international	TT THE J	The Inc. of	P PALE	Martin Martin	19 194,51 10 10	HE ZILLIP	En Diale	AL ST.J.	RE INCOM	BA JUL NA	15 71.P	Ba 100.0
Cs	Ba		Hf	Ta	W	Re	Os"	Ir mar	Pt "	Au	Hg	TL	Pb	Bi	Po	At	Rn
1 10.10 1 10.10 1 10.10	10.10 M		the BIUS	105 233.13 mileters	Stat 2713	107 347.13			158 281/16 marweite	811 286.16 Balances	112 386.17	113 204,10 Domente	114.201.10	Andrewsey		112 (24)	418 (2%) Advance
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FL	Uup	LV	Uus	Uuo
				11001500		-	-	PT BELLET	-	-	-		-	THETHE			CHER
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			14000000 10000 100	Ear 90 212,84 1000 10	Promise Planeter	Western TT 138.75	93 220.05	Nerverlant NE Disk, Dis Color 10	Hartalam HS 243,00	Relations	Printers	No. 212,14	No. 214,09	Total Mill, 1	Hollant Hit Jul, 10 1000 - 17	Northan 182 208,10	183 342,1 183
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

image credit : AAPT early universe cosmology

From the smallest distances...

-																1.2	
L L				_													2 LINA
2 434	1 1972	-		1	1,0	08			Abati	netalle netalle stimetalle		8	A STATE	7 14,007	Distant.	1	No 20,580
Li	Be	Sec.			-897/	40 - 10 40 - 10 11 - 10	inatio / Eastern			nthangide Sinuide 1 Helalie		B	C	N	0	F	Ne
11 ILTHE	12 H-305				Vesserstol				Tang Tang			D D'at	M DUNG	H R.F.	St 30.8s	17 Hat man in Natur	No. St. No.
Na	Mg											AL	Si	P	Saute	CL	Ar
al sta	Italia .	A STA	The second		ALL DIAL	H SLEA	R R.M.	Ellin I	H HAT	The state	7-	The state	H HAR	H NAT	Harry Colling	H 716	A COM
N HAR	La.	SC Landar	at 10.01	47. 12.101	Erren	MIN 141	He was	LO INC	NI 1964	47 107,00	2n # 10,0	6a	General INCH	H UON	5e	BL OF	NC STOR
Rb	Sr	Y	Zr	Nb	Mo	Tc	Rutes	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- TO	Xe
State State	14_UF.R		H THAT	No. 100,00	NA THEAT	71 74.21	The IM AL	19 193.32 (mail 193.32)	M. III.M	194,21 	BE TANK	St Diale	AL MEA	RE DER NO.	BA JUL NA	15. 71.P	86 3223,521
Cs	Ba		Hf	Ta	W	Re	Os"	In west	Pt "	Au	Hg	T	Pb "	Bi	Po	At	Rn
an and a state	a land		Ma 201/2	Net 2007	No. PUB	NU ALLA		101.251.15 0.0740	110 20110	ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:	112 JHL17	TO DUTY			IN PLE	117 [24]	
Fr	Ra		Rf	DD	Sg	Bh	HS	MI	DS	Rg	Cn	Uut	FL	Uup	LV	Uus	Uuo
			IT CAN	-	-			12 110.04	40 10.04	84 117,31		-	17 54.51	111112	14 Int. 12	an mai	TO DECT
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			BP 221.60	NU 212,84	PT 201,54	TE DATE	93 120,05 1200 12 8,0047	NE DALDA	PS Julian	NA DIALS	97 20138 0107 10	N 212,14	No. 214,10	No. BALL	HI MAN	No. 216,18 Coll States	103 362,11 113 100,11
		- 4	Ac	Th	Pa	U	Np	Pu	Am	Cm "	Bk	Cf	Es	Fm	Md	No	Lr '

Standard-Modell der Elementarteilchen

... to the highest energies ...

- At "normal" temperatures, quarks are confined into protons and neutrons, protons are stable
- At high-energy collisions, free quarks become "free" for a short time period
- More massive virtual (short-lived) elementary particles can be formed

$$10^{-20} \text{ m} = \hbar c/10 \text{ TeV} \rightarrow \frac{L}{10^{-20} \text{ m}} \stackrel{\circ}{=} \frac{10 \text{ TeV}}{E}$$

universe today

- cold: -270 °C (2.7 K)
- largely empty
- inhomogeneous
- matter consists of atoms, molecules, ...
- expanding

Velocity-Distance Relation among Extra-Galactic Nebulae.

universe today

- cold: -270 °C (2.7 K)
- largely empty
- inhomogeneous
- matter consists of atoms, molecules, ...
- expanding

Standard Model (SM) or Particle Physics

$$\begin{aligned} \chi &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{D} \mathcal{F} + h.c. \\ &+ \mathcal{F} \mathcal{G}_{ij} \mathcal{F}_{j} \mathcal{P} + h.c. \\ &+ |\mathcal{D}_{\mu} \mathcal{P}|^{2} - V(\mathcal{P}) \end{aligned}$$

Elementary "building blocks" in the framework of quantum field theory

Standard Model (SM) or Particle Physics

$\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i \mathcal{F} \mathcal{B} \mathcal{F} + h.c. \\ &+ \mathcal{F} \mathcal{G}_{ij} \mathcal{F}_{j} \mathcal{P} + h.c. \\ &+ |\mathcal{D}_{\mu} \mathcal{P}|^{2} - V(\mathcal{P}) \end{aligned}$

Elementary "building blocks" in the framework of quantum field theory

High Energy Frontier:

- Other elementary particles?
- Are the SM particles truly elementary?

Early Universe Frontier:

- Can the SM explain all observations to date?
- Possible relics from earlier times/ higher energies?

US East Coast, 1960s ...

Arno Penzias, Robert Wilson 1964

Project Echo, 1960

- Bell Lab's Horn Antenna: a 6m radio telescope promising unprecedented sensitivity
- But a background noise is disrupting the measurements ...

New York?

The sun?

A bold theory

At the same time in Princeton, 60 km away

• Theoretical physicists are discussing the very nature of the universe:

"Steady State" or "Big Bang"?

• Robert Dicke, Jim Peebles and David Wilkinson'

Big Bang Theory ----- cosmic background radiation as relic of the primordial universe

the cosmic microwave background

- many free charged particles (electrons & protons)
- photons scatter multiple times, universe not transparent

electrically neutral hydrogen atoms

the cosmic microwave background

CMB black body radiation

COBE satellite, 1989-93

400 COBE data 🛏 Black body spectrum 350 300 ntensity [MJy/sr] 250 200 10 12 14 16 18 20 22 Frequency [1/cm]

Cosmic microwave background spectrum (from COBE)

 cosmic microwave background well measured today

 black body radiation with T = 2.7 K (-270 C) (microwaves)

> confirms key prediction of `big bang' theory

2019 nobel prize Peebles for his contributions to theoretical cosmology

Penzias, Wilson (nobel prize 1978)

CMB black body radiation

COBE satellite, 1989-93

400 COBE data 🛏 Black body spectrum 350 300 ntensity [MJy/sr] 250 first ,snapshot' of the early 200 Universe, but better resolution needed... 12 16 18 20 22 10 14 Frequency [1/cm]

Cosmic microwave background spectrum (from COBE)

- cosmic microwave background well measured today
- black body radiation with T = 2.7 K (-270 C) (microwaves)

confirms key prediction of `big bang' theory

2019 nobel prize Peebles for his contributions to theoretical cosmology

Penzias, Wilson (nobel prize 1978)

anisotropies in the CMB

completely homogeneous plasma — homogeneous universe after cooling

- small pertubations needed as seeds for galaxies to form through gravitational collapse
- anisotropies in the CMB, deviation from black body radiation 1:10⁴

PLANCK satellite, 2009 - 2013

anisotropies in the CMB

CMB as relic thermal radiation from the early universe, decoupled in neutral universe

early universe cosmology

CMB as relic thermal radiation from the early universe, decoupled in neutral universe

CMB anisotropies as sees for galaxy formation

CMB as relic thermal radiation from the early universe, decoupled in neutral universe

CMB anisotropies as sees for galaxy formation

gravitational waves as new window to the early universe

CMB as relic thermal radiation from the early universe, decoupled in neutral universe

CMB anisotropies as sees for galaxy formation

gravitational waves as new window to the early universe

gravitational waves

2015: first direct observation of GWs, collision of two black holes a billion years ago

gravitational waves

2015: first direct observation of GWs, collision of two black holes a billion years ago

next challenge: stochastic gravitational wave background

pulsar timing arrays

early universe cosmology

pulsar timing arrays

- search for delays in pulse arrivals
- 2020: evidence for common stochastic noise component across all pulsars
- 2023: evidence for Hellings-Down correlation (i.e. gravitational waves)

pulsar timing arrays

- search for delays in pulse arrivals
- 2020: evidence for common stochastic noise component across all pulsars
- 2023: evidence for Hellings-Down correlation (i.e. gravitational waves)

pulsar timing arrays

- search for delays in pulse arrivals
- 2020: evidence for common stochastic noise component across all pulsars
- 2023: evidence for Hellings-Down correlation (i.e. gravitational waves)

- likely origin: supermassive BH binaries
- SGWB or individual source?
 - \rightarrow frequency dependence, anisotropy
- cosmological or astrophysical?
 → anisotropy

example : first order phase transition

Electroweak symmetry breaking: Cross-over in the SM, new physics in the Higgs sector can make it 1st order

.. and beyond: extended symmetry groups (eg GUTs) spontaneously broken in cooling Universe

example : first order phase transition

Electroweak symmetry breaking: Cross-over in the SM, new physics in the Higgs sector can make it 1st order

.. and beyond: extended symmetry groups (eg GUTs) spontaneously broken in cooling Universe

1st order PT sources GWs

topological defects formed during PT radiate GWs

example : first order phase transition

Electroweak symmetry breaking: Cross-over in the SM, new physics in the Higgs sector can make it 1st order

.. and beyond: extended symmetry groups (eg GUTs) spontaneously broken in cooling Universe

field value

1st order PT sources GWs

topological defects formed during PT radiate GWs

conclusions and outlook

the discovery of the CMB revolutionarized our understanding of the universe

what surprises do gravitational waves reserve for us?

conclusions and outlook

the discovery of the CMB revolutionarized our understanding of the universe

what surprises do gravitational waves reserve for us?

Thank you for your attention !