Probing the hadronic phase via the measurement of resonances in Au+Au collisions at 19.6 GeV from STAR BES-II

Aswini Kumar Sahoo (For the STAR Collaboration)
Indian Institute of Science Education and Research, Berhampur

In part supported by

CPOD2022 - Workshop on Critical Point and Onset of Deconfinement
Nov 28- Dec 2, 2022
Outline

• Motivation
• The STAR detector
• Signal reconstruction
• Results
 ➢ Transverse momentum spectra
 ➢ p_T integrated yield (dN/dy)
 ➢ K^{0}/K ratio
 ➢ Hadronic phase lifetime
• Summary
Why K^0 Resonance

- Lifetime comparable to that of the hadron gas phase.
- Modification of resonance yields due to interplay of rescattering and regeneration

K^0/K ratio can be used to probe these effects in heavy ion collisions

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Quark content</th>
<th>Decay Channel</th>
<th>t (fm/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K^*0 (896)</td>
<td>$d\bar{s}$</td>
<td>$\pi^- K^+$ (B.R= 0.66)</td>
<td>4.16</td>
</tr>
</tbody>
</table>

The STAR Detector and Data Set

Data Set:
System: Au+Au 19.6 GeV (BES-II)
of events: ~710 M

Tracking:
TPC

Particle Identification:
TPC & TOF
Particle Identification

Au+Au 19.6 GeV

(Using TPC)

(Using TOF)
Signal Reconstruction

- Signals are extracted using invariant mass method. Invariant mass: $m^2_{inv} = E^2 - p^2$ where, $E^2 = (E_\pi + E_K)^2$ and $p^2 = (p_\pi + p_K)^2$

- Combinatorial background is estimated using pair rotation method.

- Fitting function: $\frac{Y}{2\pi} \times \left[\frac{\Gamma_0}{(M - M_0)^2 + \frac{\Gamma_0^2}{4}} \right] + 1^{st}$ order polynomial (residual background)

<table>
<thead>
<tr>
<th>0-10% centrality, 1.0 < p_T (GeV/c) < 1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.6 GeV</td>
</tr>
<tr>
<td>BES-I</td>
</tr>
<tr>
<td>BES-II</td>
</tr>
</tbody>
</table>
• K^0 reconstruction efficiency is estimated based on single particle efficiency
Levy Tsallis function is used to extrapolate yield at low and high p_T regions.

p_T Integrated Yield

\[\frac{dN}{dy} \text{ increases with centrality and collision energy} \]

BES-I result: arXiv:2210.02909

The statistical errors are reduced by a factor of 3 in BES-II compared to BES-I.
K*⁰/K Ratio

H. Albrecht et al., Z. Phys. C, 61:1–18,1994 (e+e)

K^{*0}/K Ratio

- $(K^{*0}/K)_{\text{central}} < (K^{*0}/K)_{\text{peripheral}}$
- $(K^{*0}/K)_{\text{central}} < (K^{*0}/K)_{\text{pp/ee-reference}}$
- (ϕ/K): independent of centrality
- Thermal model explains the ϕ/K, but overpredicts the K^{*0}/K in central collision

Favors dominant hadronic rescattering in central collisions
Lower Limit of Hadronic Phase Lifetime

\[\Delta t = \tau^{-1}_{\text{chem}} \]

Here, \(\Delta t \) = lower limit of hadronic phase lifetime (\(t_{\text{kin}} - t_{\text{chem}} \))

\[\tau = \text{Lifetime of } K^* \]

- Errors are the quadratic sum of statistical and systematic errors
- Here, \((K^0/K)_{pp} = 0.34 \pm 0.01 \)
- No clear energy dependence within the current uncertainties at RHIC
Summary

- K^*0 resonance production in BES-II Au+Au collisions at 19.6 GeV is presented

- K^*0/K ratio indicates dominance of hadronic rescattering over regeneration in central Au+Au collisions

- The lower limit of hadronic phase lifetime increases with centrality, and no clear energy dependance is observed within current uncertainties for RHIC measurements.
Outlook

- K^{*0} resonance measurement using high statistics data collected in STAR BES-II program
- Constraints on the hadronic phase lifetime
- Explore more differential measurements (e.g. rapidity dependence)
Outlook

- K^0 resonance measurement using high statistics data collected in STAR BES-II program
- Constraints on the hadronic phase lifetime
- Explore more differential measurements (e.g. rapidity dependence)

Thank You
• Thermal model parameters: $T_{ch} = 153.9$ MeV, $\mu_s = 43.2$ MeV, $\mu_B = 187.9$ MeV