Characterising the hot and dense fireball via virtual photons in HADES

Niklas Schild for the HADES Collaboration

This work is supported by the State of Hesse within the Research Cluster ELEMENTS (Project ID 500/10.006)
Exploring the QCD matter phase diagram

LHC energies $\sqrt{s_{NN}} = 2$ TeV
parton+parton collisions
Early Universe in the laboratory

Energies $\sqrt{s_{NN}} \approx 2 \ast m_N$ GeV
nuclear stopping
NS merger matter in the laboratory

Exploring the QCD matter phase diagram

LHC energies $\sqrt{S_{NN}} = 2 \text{ TeV}$
parton+parton collisions
Early Universe in the laboratory

Energies $\sqrt{S_{NN}} \cong 2 \times m_N \text{ GeV}$
nuclear stopping
NS merger matter in the laboratory

Focus on virtual and real photons

LHC energies $\sqrt{S_{NN}} = 2 \text{ TeV}$
parton+parton collisions
Early Universe in the laboratory

Energies $\sqrt{S_{NN}} \cong 2 \times m_N \text{ GeV}$
nuclear stopping
NS merger matter in the laboratory

Focus on virtual and real photons

Exploring the QCD matter phase diagram

LHC energies $\sqrt{s_{NN}} = 2$ TeV
parton+parton collisions
Early Universe in the laboratory

Energies $\sqrt{s_{NN}} \approx 2 \ast m_N$ GeV
nuclear stopping
NS merger matter in the laboratory

Focus on virtual and real photons

- **Heavy ion collisions** at $\sqrt{s_{NN}} = 2 - 3$ GeV
 - Different collision dynamics compared to higher energies
- **Pion and nucleon beams**
 - E.g. for reference measurements

Explore region of QCD phase diagram with high net-baryon density and moderate temperatures
The High-Acceptance-Di-Electron-Spectrometer

- Almost full azimuth angle coverage and polar angles between 18°-85° (0.5°-7°)
- Accepted trigger rate 16 kHz for HIC, 50 kHz for elementary reactions
- **New installments and upgrades:**
 - RICH photon detection plane
 - ECal
 - Forward detector
- 15-fold segmented target

HADES performance for electron identification

- Reconstruction efficiency ~ 60%
- Ag+Ag $\sqrt{s_{NN}}=2.42$ GeV
- HADES Performance

Upgrades in RICH detector allow for high efficiency and high purity electron sample

- Purity above 90%
- Pion suppression of $\sim 10^{-5}$
Outline

1. Reconstruction of (invariant mass) spectra
2. Dilepton flow analysis
3. Prospects/Outlook
Reconstruction of the dilepton spectra
Reconstruction of e^+e^- signal

- Conversion rejection with RICH detector:
 - Pair opening angle $> 9^\circ$
 - Maximum number of photons per ring

![Graph 1](image1)

$1/N_{ee} \frac{dN_{\text{raw}}}{dM_{ee}}$ (GeV/c2)$^{-1}$

- Ag+Ag $\sqrt{s_{NN}}$=2.55 GeV 0-40%
- HADES work in progress
- $0.1 < p_e (\text{GeV/c})^{-1} < 1.2, \alpha_{e^+e^-} > 9^\circ$

![Graph 2](image2)

$1/N_{ee} \frac{dN_{\text{raw}}}{dM_{ee}}$ (GeV/c2)$^{-1}$

- Ag+Ag $\sqrt{s_{NN}}$=2.42 GeV 0-40%
- HADES work in progress
- $p_e (\text{GeV/c})^{-1} > 0.1$
- $\alpha_{e^+e^-} > 9^\circ$
Reconstruction of e^+e^- signal

- Conversion rejection with RICH detector:
 - Pair opening angle $> 9^\circ$
 - Maximum number of photons per ring

\[
\frac{dN_{CB}}{dM} = 2k \sqrt{\frac{dN_{++}}{dM} \frac{dN_{--}}{dM}}
\]
Extracting the in-medium contribution

- **Freeze-out cocktail:**
 - Simulated using Pluto event generator
 - Multiplicities to be measured from same dataset

- **Initial NN contribution:**
 - Reference measured for $\sqrt{s_{NN}} = 2.42$ GeV
 - For $\sqrt{s_{NN}} = 2.55$ GeV currently estimated using GiBUU 2021 release
Extracting the in-medium contribution

- **Freeze-out cocktail:**
 - Simulated using Pluto event generator
 - Multiplicities to be measured from same dataset

- **Initial NN contribution:**
 - Reference measured for $\sqrt{s_{NN}} = 2.42$ GeV
 - For $\sqrt{s_{NN}} = 2.55$ GeV currently estimated using GiBUU 2021 release

Clear excess is visible
Temperature determination

- Subtraction of freeze-out and initial contributions reveals **excess of thermal nature**
- Higher temperature for higher collision energy

\[
dN/dM \propto M_e^3 \exp\left(-\frac{M}{T}\right)
\]

\[
dN/dM \propto M_{ee}^{3/2} \exp(-M_{ee}/kT)
\]

\[
\chi^2/N = 1.4
\]

\[
kT = 77.9_{-1.3}_{-1.2_{\text{sys}}}^{+1.2}_{-2.3_{\text{sys}}}^{+3.0_{\text{stat}}}^{+0.6_{\text{NN}}} \text{ MeV}
\]

\[
k_bT = 73.4 \pm 2.3_{\text{stat}} \pm 2.6_{\text{sys}} \text{ MeV}
\]

Compare with*:

\[
kT_{Au+Au} \left(\sqrt{s_{NN}} = 2.42 \text{ GeV} \right) = 71.8 \pm 2.8 \text{ MeV}
\]

Differential analysis of dielectron spectra

- Large number of lepton pairs and high efficiency allows for multidifferential analysis, e.g.:
 - Centrality-dependent*
 - Angular distributions
 - Reconstruction of p_t and y spectra for varying mass bins

Analysis in bins of tranverse momentum p_t

- ω-peak clearly visible at high p_t
- Disappearance of ω-peak at small p_t
- Model comparison ongoing

https://indico.cern.ch/event/895086/contributions/4721205/
Flow analysis
Flow analysis procedure

\[\frac{dN}{d\Delta \varphi} \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos(n \Delta \varphi) \]

\[\Delta \varphi = \varphi_{ee} - \Psi_{RP} \]

- Event Plane \(\Psi_{EP} \) reconstructed from total transverse momentum in forward wall detector [1]
- Event plane resolution \(\mathcal{R}_n \) via Ollitrault method [2]
Flow analysis procedure

\[
\frac{dN}{d\Delta \varphi} \propto 1 + 2 \sum_{n=1}^{\infty} \nu_n \cos(n \Delta \varphi)
\]

\[
\Delta \varphi = \varphi_{ee} - \Psi_{RP}
\]

- Event Plane \(\Psi_{EP} \) reconstructed from total transverse momentum in forward wall detector [1]
- Event plane resolution \(R_n \) via Ollitrault method [2]

The HADES Collaboration, arXiv:2208.02740

Flow analysis procedure

\[
\frac{dN}{d\Delta \varphi} \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos(n \Delta \varphi)
\]
\[
\Delta \varphi = \varphi_{ee} - \Psi_{RP}
\]

- Event Plane Ψ_{EP} reconstructed from total transverse momentum in forward wall detector [1]
- Event plane resolution R_n via Ollitrault method [2]
Flow analysis procedure

\[\frac{dN}{d\Delta \phi} \propto 1 + 2 \sum_{n=1}^{\infty} \nu_n \cos(n \Delta \phi) \]

\[\Delta \phi = \varphi_{ee} - \Psi_{RP} \]

- Event Plane \(\Psi_{EP} \) reconstructed from total tranverse momentum in forward wall detector [1]
- Event plane resolution \(\mathcal{R}_n \) via Ollitrault method [2]

Flow analysis procedure

- Event Plane Ψ_{EP} reconstructed from total transverse momentum in forward wall detector [1]
- Event plane resolution \mathcal{R}_n via Ollitrault method [2]

\[
\frac{dN}{d\Delta \phi} \propto 1 + 2 \sum_{n=1}^{\infty} \nu_n \cos(n \Delta \phi)
\]

\[
\Delta \phi = \varphi_{ee} - \Psi_{RP}
\]

\[
\nu_n = \frac{\nu_n^{obs}}{\mathcal{R}_n}
\]

The HADES Collaboration, arXiv:2208.02740

Directed Flow ν_1
Rapidity dependence

- Focus on mass region beyond π^0 mass
- Point symmetry around v_1 at midrapidity within uncertainties

Otherwise π_0 signal dominant
Transverse momentum dependence

Larger v_1 found at higher p_t
Elliptic Flow ν_2
Elliptic flow over invariant mass

- Low masses dominated by π^0 Dalitz decay
- Negative v_2 consistent with pions
- Beyond π^0 mass v_2 consistently around zero for $120 < M_{ee} \text{ (GeV/c}^2\text{)} < 900$

The HADES Collaboration, arXiv:2208.02740
Multidifferential elliptic flow

v_2 consistently around zero for $120 < M_{ee} \text{ (GeV/c}^2\text{)} < 900$

Would agree with picture of dileptons as penetrating probes
Prospects

Isolate in-medium dilepton contribution

- Ongoing analyses to find v_n and multiplicities of freeze-out hadrons

- Analysis of p+p collisions at $\sqrt{s_{NN}} = 2.55$ GeV (taken Feb2022) will provide NN reference

Determine radial flow

- Reconstruction of dilepton p_t spectra as a function of invariant mass

Determine polarization of virtual photons

- First strides are taken in data analysis and preparation of theory predictions

\[
v_{n}^{\text{sig}} = v_{n}^{\text{tot}} + \frac{N_{bg}}{N_{sig}} (v_{n}^{\text{tot}} - v_{n}^{\text{bg}})
\]
Dilepton spectra are reconstructed for center-of-mass energies of 2.42 GeV and 2.55 GeV. Study of numerous fireball characteristics (e.g. temperature)

Collectivity is under investigation

Reconstruction of flow suggests no elliptic flow for thermal dileptons