Light Hypernuclei Measurements in Au+Au Collisions from STAR

Xiujun Li
(for the STAR collaboration)
University of Science and Technology of China

Supported in part by the

CPOD2022 - Workshop on Critical Point and Onset of Deconfinement
Outline

- Introduction
- Hypernuclei measurements in STAR BES-II
 - Internal structure
 - Branching ratios, lifetimes
 - Production mechanism
 - Yields, particle ratios, directed flow
- Summary and outlook
Introduction: what and why

- What are hypernuclei?
 - Bound nuclear systems of non-strange and strange baryons

- Why hypernuclei?
 - Probe hyperon-nucleon (Y-N) interaction
 - Strangeness in high density nuclear matter
 - Equation-of-State (EoS) of neutron star

Marian Danysz (right) and Jerzy Pniewski (left) discovered hypernuclei in 1952.
Introduction: how

• Experimentally, we can make measurements related to:

1. Internal structure
 • Lifetime, binding energy, branching ratios etc.

 Understanding hypernuclei structure can provide insights to the Y-N interaction

2. Production mechanism
 • Spectra, collectivity etc.

 The formation of hypernuclei in violent heavy-ion collisions is not well understood
Introduction: RHIC BES program

- During the BES-II program, STAR utilized the fixed-target (FXT) setup, which extends the energy reach below $\sqrt{s_{NN}} = 7.7$ GeV, down to 3.0 GeV.
Introduction: hypernuclei and STAR BES-II

- Hypernuclei measurements are scarce in heavy-ion collision experiments

- At low beam energies, hypernuclei production is expected to be enhanced due to high baryon density

- Datasets with large statistics taken during BES-II

→ BES-II is a great opportunity to study hypernuclei production

List of BES-II datasets:

<table>
<thead>
<tr>
<th>Year</th>
<th>√sNN [GeV]</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>2.7</td>
<td>555 M</td>
</tr>
<tr>
<td>2018</td>
<td>3.0</td>
<td>258 M</td>
</tr>
<tr>
<td>2018</td>
<td>7.2</td>
<td>155 M</td>
</tr>
<tr>
<td>2019</td>
<td>19.6</td>
<td>478 M</td>
</tr>
<tr>
<td>2019</td>
<td>14.6</td>
<td>324 M</td>
</tr>
<tr>
<td>2019</td>
<td>3.9</td>
<td>53 M</td>
</tr>
<tr>
<td>2019</td>
<td>3.2</td>
<td>201 M</td>
</tr>
<tr>
<td>2019</td>
<td>7.7</td>
<td>51 M</td>
</tr>
<tr>
<td>2019</td>
<td>11.5</td>
<td>235 M</td>
</tr>
<tr>
<td>2020</td>
<td>7.7</td>
<td>113 M</td>
</tr>
<tr>
<td>2020</td>
<td>4.5</td>
<td>108 M</td>
</tr>
<tr>
<td>2020</td>
<td>6.2</td>
<td>118 M</td>
</tr>
<tr>
<td>2020</td>
<td>5.2</td>
<td>103 M</td>
</tr>
<tr>
<td>2020</td>
<td>3.9</td>
<td>117 M</td>
</tr>
<tr>
<td>2020</td>
<td>3.5</td>
<td>116 M</td>
</tr>
<tr>
<td>2020</td>
<td>9.2</td>
<td>162 M</td>
</tr>
<tr>
<td>2020</td>
<td>7.2</td>
<td>317 M</td>
</tr>
<tr>
<td>2021</td>
<td>7.7</td>
<td>101 M</td>
</tr>
<tr>
<td>2021</td>
<td>3.0</td>
<td>2103 M</td>
</tr>
<tr>
<td>2021</td>
<td>9.2</td>
<td>54 M</td>
</tr>
<tr>
<td>2021</td>
<td>11.5</td>
<td>52 M</td>
</tr>
<tr>
<td>2021</td>
<td>13.7</td>
<td>51 M</td>
</tr>
<tr>
<td>2021</td>
<td>17.3</td>
<td>256 M</td>
</tr>
<tr>
<td>2021</td>
<td>7.2</td>
<td>89 M</td>
</tr>
</tbody>
</table>

A. Andronic et al. PLB (2011) 697:203–207
Particle identification and hypernuclei reconstruction

- Particle identification from energy loss measurement using TPC
- KF particle package\[^1\] is used for signal reconstruction
- Hypernuclei reconstructed via their weak decay channels:
 \[\Lambda^3_\text{H} \rightarrow ^3\text{He} + \pi^- \]
 \[^4\Lambda_\text{He} \rightarrow ^3\text{He} + p + \pi^- \]
 \[^3\Lambda_\text{He} \rightarrow ^3\text{He} + p + \pi^- \]

Hypernuclei signal reconstruction

2-body decay channels: STAR, PRL 128, 202301(2022)

- Combinatorial background estimated via:
 - Rotating pion tracks for 2-body decay channels
 - Event mixing for 3-body decay channels

![Graphs showing 2-body decay channels and 3-body decay channels]
3ΛH branching ratio R_3

Relative branching ratio: $R_3 = \frac{B \cdot R \cdot (3ΛH \rightarrow 3He\pi^-)}{B \cdot R \cdot (3ΛH \rightarrow 3He\pi^-) + B \cdot R \cdot (3ΛH \rightarrow dp\pi^-)}$

- Improved precision on R_3
- Stronger constraints on absolute B.R.s and hypertriton internal structure models

- Using $\sqrt{s_{NN}} = 3.0$ GeV data:
 - $R_3 = 0.272 \pm 0.030$(stat.) ± 0.042(syst.)
 - Updated world average R_3 (0.32 \pm 0.03) is consistent with theoretical models assuming $B_Λ \sim 0.1$ MeV

- Recent calculation shows that R_3 may be sensitive to the binding energy ($B_Λ$) of $3ΛH$
 - $B_Λ \rightarrow$ provide constraints to Y-N interaction

F. Hildenbrand et al. PRC 102, 064002 (2020)
Lifetime [ps]

- Lifetimes of light hypernuclei $^3\Lambda H$, $^4\Lambda H$ and $^4\Lambda He$ are shorter than that of free Λ (with 1.8σ, 3.0σ, 1.1σ respectively).
- Consistent with former measurements (within 2.5σ for $^3\Lambda H$, $^4\Lambda H$).
- $\tau_{^3\Lambda H}$: consistent with calculation including pion FSI\(^{[1]}\) and calculation with Λd 2-body picture\(^{[2]}\) within 1σ.
- $\tau_{^4\Lambda H}$ and $\tau_{^4\Lambda He}$: consistent with expectations from isospin rule.

Using $\sqrt{s_{NN}} = 3.0$ GeV and 7.2 GeV datasets:

- $^3\Lambda H$: $\tau = 221 \pm 15$ (stat.) ± 19 (syst.) [ps]
- $^4\Lambda H$: $\tau = 218 \pm 6$ (stat.) ± 13 (syst.) [ps]
- $^4\Lambda He$: $\tau = 229 \pm 23$ (stat.) ± 20 (syst.) [ps]

$^3\Lambda H$, $^4\Lambda H$ and $^4\Lambda He$ results with improved precision

→ Provide tighter constraints on models.

\([1]\) A. Gal and H. Garcilazo, PLB 791, 48 (2019)
Hypernuclei production at 3 GeV

• Different trends in the $^4\Lambda$H rapidity distribution in central (0-10%) and mid-central (10-50%) collisions at $\sqrt{s_{NN}} = 3.0$ GeV

• Transport model (JAM) with coalescence approximately reproduces trends of $^4\Lambda$H rapidity distributions seen in data
$^3\Lambda H$ and $^4\Lambda H$ directed flow at 3 GeV

- First measurements of $^3\Lambda H$ and $^4\Lambda H$ directed flow (v_1) in 5-40% central Au+Au collisions at 3 GeV
- v_1 slopes of $^3\Lambda H$ and $^4\Lambda H$ follow mass number scaling.

→ Imply coalescence process to be the dominant formation mechanism for hypernuclei in heavy-ion collisions

To be submitted to arXiv soon
Energy dependence of hypernuclei production in heavy-ion collisions

- $^3\Lambda^3H$ yield at mid-rapidity increases from 2.76 TeV to 3 GeV
- Driven by increase in baryon density at low energies
- Thermal(GSI), Coalescence(UrQMD), Thermal-FIST and PHQMD reproduce the trend

For Au+Au @ 3 GeV
- Coalescence(JAM) with tuned coalescence parameters can describe data
- PHQMD describes $^4\Lambda^4H$, but slightly overestimates $^3\Lambda^3H$

Provide first constraints for hypernuclei production models in the high-baryon-density region

Y. Nara et al, PRC 61 (1999) 024901 (JAM)
S. Gläßel et al, arXiv: 2106.14839 (PHQMD)
A. Andronic et al, PLB 697 (2011) 203 (Thermal (GSI))

STAR, PRL 128 (2022) 202301
ALICE, PLB 754 (2016) 360
• Suppression of $^{3}_\Lambda H/^{3}He$ yield ratios compared to that of Λ/p
 • Observed at both 0-10% and 10-40% centrality in Au+Au collisions at 3 GeV.

• The $^{4}_\Lambda H/^{4}He$ yield ratios are comparable to that of Λ/p

• Thermal model calculations including excited $^{4}_\Lambda H^*$ feed-down show a similar trend
 • Feed-down from excited state enhances $^{4}_\Lambda H$ production

• Support creation of excited A=4 hypernuclei in heavy-ion collisions
Strangeness population factor S_A

- Relative suppression of hypernuclei production compared to light nuclei production

$$S_A = \frac{\frac{\Lambda H}{^3\text{He}}}{\frac{\Lambda}{p}} = \frac{B_A(\Lambda H)(p_T)}{B_A(^3\text{He})(p_T)}$$

 - B_A: Coalescence parameters
 - Expect ~1 if no suppression

$S_3 < 1 \rightarrow$ relative suppression of $^3\Lambda$H to 3He

$S_4 > S_3 \rightarrow$ enhanced $^4\Lambda$H production due to feed-down from excited state

No obvious kinematic and centrality dependence of S_A is observed at 3 GeV.

\rightarrow Coalescence parameter B_A of $^4\Lambda$H and 4He follows similar tendency versus p_T, rapidity and centrality.
Energy dependence of S_3

- Data shows a hint of an increasing trend from $\sqrt{s_{NN}} = 3.0$ GeV to 2.76 TeV.
- For coalescence models, the energy dependence is sensitive to the source radius (Δr).
- Thermal-FIST describes the S_3 data reasonably well.

References:

- STAR, Science 328 (2010) 58
- ALICE, PLB 754 (2016) 360
- E864, PRC 70 (2004) 024902
- A. Andronic et al, PLB 697 (2011) 203 (Thermal (GSI))
- S. Zhang, PLB 684(2010)224 (Coal.+AMPT)
Summary

Presented measurements on hypernuclei production in the high-baryon-density region with high statistical precision using STAR data

- **Hypernuclei structure**
 - $^3\Lambda H$, $^4\Lambda H$ lifetimes and R_3 of $^3\Lambda H$ measured with improved precision
 - Strong constraints on hyperon-nucleon interaction models

- **Hypernuclei production in heavy-ion collisions**
 - $^3\Lambda H$, $^4\Lambda H$ production yields at 3.0, 19.6 and 27 GeV
 - Coalescence models approximately describe the trends of $^4\Lambda H$ rapidity distribution
 - S_3 and S_4 show weak centrality/kinematic dependence
 - Energy dependence of $^3\Lambda H$, $^4\Lambda H$ yields and S_3 compared with models are shown
 - Provide constraints to hypernuclei production models
 - $^3\Lambda H$ and $^4\Lambda H$ collectivity v_1
 - v_1 slopes follow mass number scaling -> Support coalescence picture
Outlook

1. ITPC and eToF fully installed in 2019 → improve η acceptance and PID at large η
2. High statistics data in STAR BES-II $\sqrt{s_{NN}} = 3.0 - 54.4$ GeV, especially the 2 billion events collected at 3 GeV in 2021 → larger statistics, higher precision

- Precision measurements on hypernuclei properties
- Energy dependence study of hypernuclei yields
- Search for double Λ hypernuclei
 - e.g. $^4\Lambda\Lambda$He$\rightarrow^4\Lambda$Heπ, $^5\Lambda\Lambda$He$\rightarrow^5\Lambda$Heπ

STAR, PRL 128, 202301(2022)
Outlook

1. ITPC and eToF fully installed in 2019 → improve η acceptance and PID at large η
2. High statistics data in STAR BES-II $\sqrt{s_{NN}} = 3.0$ - 54.4 GeV, especially the **2 billion** events collected at 3 GeV in 2021 → larger statistics, higher precision

- Precision measurements on hypernuclei properties
- Energy dependence study of hypernuclei yields
- Search for double Λ hypernuclei
 - e.g. $^4_{\Lambda\Lambda}\text{He} \rightarrow ^4_{\Lambda}\text{He}\pi$, $^5_{\Lambda\Lambda}\text{He} \rightarrow ^5_{\Lambda}\text{He}\pi$

Thank you!
Backup slides
Analysis Details: Reconstruction via 3-body Decay

- **Counts**
 - 0.002
 - 0.004
 - 0.006
 - 0.008
 - 0.012

Background, estimated via kinematically correlated SE-ME signals contains real signal and contamination correlated backgrounds.

1. Subtract uncorrelated 0.01

2. Excess around hypertriton peak contains real signal: lower contamination correlated backgrounds.

3. Correct for efficiency of real signal:

 \(f_{\Lambda d} \) and \(f_{3^1\Lambda H} \), and reconstructed signal \(f_{Data} \)

Methodology

- **Signal Reconstruction**
 - Particle packaged is used to improve significance.

- **Purity** estimated via template fit to secondary vertex fit.

- **Star Preliminary**
 - Purity: the fraction of real \(\Lambda + d \) in \(\Lambda \rightarrow p\pi^- \)

Data

- **Counts**
 - 0.002
 - 0.004
 - 0.006
 - 0.008
 - 0.012

Data/Fit

- Estimation of \(^3\Lambda H \) purity in signals

- Normalized \(\chi^2_{NDF} \) distribution of \(\Lambda + d \) and \(^3\Lambda H \) template from MC
 - \(f_{\Lambda d} \) and \(f_{3^1\Lambda H} \), and reconstructed signal \(f_{Data} \)

- Purity: the fraction of real \(^3\Lambda H \) signals \(f_{3^1\Lambda H} \) in signals \(f_{Data} \) from fitting

\[
 f_{Data} = p_0 f_{\Lambda d} + p_1 f_{3^1\Lambda H}
\]
• Lifetime τ extracted via $N(t) = N_0 e^{-L/\beta \gamma c \tau}$

• Λ lifetime cross check: 267±4 ps, consistent with PDG value (263±2 ps)

• $^3\Lambda H$ and $^4\Lambda H$ lifetimes from 3.0 GeV consistent with 7.2 GeV results
Hyper-to-light nuclei ratios

- Thermal/coalescence models predict approx. exponential dependence of yields/(2J+1) vs A
- $^{4}_\Lambda$H lies a factor of 6 above exponential fit to (Λ, $^{3}_\Lambda$H, $^{4}_\Lambda$H)
- Non-monotonic behavior in light-to-hyper-nuclei ratio vs A observed
 - Thermal model calculations including excited $^{4}_\Lambda$H* feed-down shows a similar trend

A. Andronic et al, PLB 697 (2011) 203 (Thermal model)

- Non-existence of bound $^{3}_\Lambda$H* (J$^+$=3/2)
- Data support creation of unstable A =4 hypernuclei from heavy-ion collisions