Azimuthal anisotropic flow of identified hadrons in Au + Au collisions at BES-II energies at STAR

Prabhupada Dixit
(For the STAR Collaboration)
Indian Institute of Science Education and Research (IISER) Berhampur

Critical Point and Onset of Deconfinement (CPOD), 2022

Supported in part by the

[Logos for U.S. Department of Energy, Office of Science, IISER Berhampur, STAR]
Outline

❖ Introduction & motivation
❖ STAR detectors
❖ Analysis details
❖ Results
 ★ p_T dependence of v_n
 ★ Centrality dependence
 ★ NCQ Scaling
 ★ $v_3/v_2^{3/2}$ ratio
❖ Summary
Elliptic flow coefficient (v_2): Initial spatial anisotropy (dominant source) + Event-by-event fluctuations
Triangular flow coefficient (v_3): Event-by-event fluctuations in the overlap region

\[
\frac{dN}{d(\phi - \Psi_n)} = N_0 \left[1 + \sum_{n=1}^{\infty} 2v_n \cos(\phi - \Psi_n) \right]
\]

\[v_n = \langle \langle \cos n(\phi - \Psi_n) \rangle \rangle\]

Importance of v_2 and v_3

- Sensitive to the initial state and transport properties of the medium.
- Measurements of v_2 and v_3 are important to constrain the models.

C. Shen et al/ JPG 38 (2011) 124045
Results from RHIC BES-I

\[\phi \] mesons seem to deviate from the NCQ scaling at \(\sqrt{s_{NN}} < 19.6 \) GeV.

\(\Phi \) But statistics is not significant to draw any conclusion.

\(\text{★ High Statistics data from BES-II enable us to measure } v_2 \text{ and } v_3 \text{ of multi-strange hadrons and } \phi \text{ mesons with high precession specifically at low energy regime.} \)

Prabhupada Dixit, CPOD-2022
STAR detectors and particle identification

- Full azimuthal coverage
- Excellent particle identification capability

BES-II upgrades

- iTPC upgrade: Larger pseudorapidity coverage (-1.5 < \(\eta\) < 1.5)
- Better dE/dx and momentum resolution.
- Better track quality.

Time Projection Chamber (TPC)

Time of Flight (ToF)

Reconstruction of (multi-)strange hadrons and \(\phi\) mesons

Data set information for this analysis:

- System: Au+Au
- Year: 2019 (BES-II data)
- Collision energy: 19.6 and 14.6 GeV
- #Events: ~380M (19.6 GeV) & ~400M (14.6 GeV)
- Source of systematic uncertainty: Variation of analysis cuts e.g. collision vertex selection cuts, particle identification cuts, quality track selection cuts etc.

Prabhupada Dixit, CPOD-2022
Analysis details

The n^{th} order flow coefficient is given by

$$v_n = \langle \cos n(\phi - \Psi_n) \rangle$$

- The reaction plane of the collision can not be determined directly from the experiment.
- The event plane is used as a proxy for the reaction plane.

Event plane determination

$$\Psi_n = \frac{1}{n} \tan^{-1}\left(\frac{Q_y}{Q_x}\right)$$

$$Q_x = \sum_i w_i \cos(n\phi_i)$$

$$Q_y = \sum_i w_i \sin(n\phi_i)$$

The weight factor $w_i = p_T \times \phi$-weight.

ϕ-weight: accounts for the azimuthal acceptance correction of the detectors.

Event plane resolution

$$R_n = \langle \cos n(\Psi_n - \Psi_R) \rangle$$

Experimentally, $R_n(sub) = \sqrt{\langle \cos n(\Psi_A - \Psi_B) \rangle}$

★ Sub-event plane method is used to calculate v_n.
★ η gap of 0.1 is taken between two sub-event planes Ψ_A (-1.5 < η < -0.05) and Ψ_B (0.05 < η < 1.5).
★ To calculate v_n of a particle in a negative η region, event plane from positive η side is used and vice versa.

To minimize non-flow correlation

TPC + iTPC $|\eta| < 1.5$

Prabhupada Dixit, CPOD-2022
\[v_n^{S+B}(M_{inv}) = \langle \cos [n(\phi - \psi_n)] \rangle = v_n^S \frac{S}{S+B}(M_{inv}) + v_n^B \frac{B}{S+B}(M_{inv}) \]

\[v_n^B(M_{inv}) = p_0 + p_1 M_{inv} \]

Prabhupada Dixit, CPOD-2022
Results: p_T dependence of $v_2 \oplus 19.6$ GeV

\
\begin{align*}
\text{Mass ordering observed in the low } p_T \text{ region } (p_T < 1.5 \text{ GeV/c}) & : \text{Radial flow} \\
\text{Baryon to meson separation observed in the high } p_T \text{ region} & : \text{Quark coalescence}
\end{align*}

$\text{The statistical errors are reduced by a factor of } \sim 3 \text{ compared to BES-I.}$

Prabhupada Dixit, CPOD-2022
Results: Centrality dependence of v_2 @ 19.6 GeV

Strong centrality dependence of v_2 → Spatial anisotropy is a dominant cause for v_2
Results: Centrality dependence of v_2 @14.6 GeV

Strong centrality dependence of v_2 → Spatial anisotropy is a dominant cause for v_2
Results: Centrality dependence of v_3 @19.6 GeV

Weak centrality dependence of v_3 → Event-by-event fluctuation is a dominant cause for v_3
Results: NCQ scaling in v_2 @ 19.6 GeV

The scaling for v_2 holds within 20% for particles and within 10% for anti-particles (except at low p_T for Λ and \bar{p})

Partonic collectivity in the initial stage of the system and hadronization via coalescence.

Prabhupada Dixit, CPOD-2022
Results: NCQ scaling in v_3 @19.6 GeV

The modified scaling for v_3 holds within 30% for particles and within 15% for anti-particles.
Results: NCQ scaling in $v_2 @ 14.6$ GeV

- The scaling for v_2 holds within 15% for the (multi-)strange hadrons except low p_T Λ.
- ϕ mesons are following the NCQ scaling at 14.6 GeV.
- The rising trend in the K_S^0 v_2 at $(m_T - m_0)/n_q > 1$ GeV/c^2 may arise due to the non-flow contribution. Non-flow estimation is underway.

\star See S. Zhou’s talk for light hadrons v_2 at 14.6 GeV

Prabhupada Dixit, CPOD-2022
Results: \(v_3/v_2^{3/2} \) ratio @ 19.6 GeV

The ratio \(v_3/v_2^{3/2} \) shows non-trivial \(p_T \) dependence.

\(v_3/v_2^{3/2} \) ratios are sensitive to the initial state fluctuations and transport properties of the medium.

Prabhupada Dixit, CPOD-2022
Summary

Using high statistics BES-II data, precise measurements of v_2 of identified hadrons in 19.6 and 14.6 GeV Au+Au collisions have been presented, with improved statistical significance by a factor of 3 compared to BES-I.

New results of v_2 and v_3 of (multi-)strange hadrons and ϕ mesons are presented.

p_T dependence of v_2

Confirmation of usual trend of mass ordering in v_2 at low p_T and baryon-meson separation at high p_T in low energies at 19.6 GeV using strange and multi-strange hadrons.

Centrality dependence of v_n

Strong centrality dependence of v_2 : initial spatial anisotropy is a dominant cause for v_2.

Weak centrality dependence of v_3: event-by-event fluctuation is a dominant cause for v_3.

NCQ scaling

The NCQ scaling holds for both particles and anti-particles.

The scaling holds for ϕ mesons at 14.6 GeV.

The scaling suggests the collectivity in the partonic phase of the system and hadronization via quark coalescence.

$v_3/v_2^{3/2}$ ratio

The ratio shows weak dependence of p_T above $p_T > 1.0$ GeV/c.

Can be used to constrain the initial state fluctuations and η/s of the medium.

Prabhupada Dixit, CPOD-2022
Thank you ...