Searching for the QCD critical point using Lee-Yang edge singularities

D. Clarke, F. Di Renzo, P. Dimopoulos, J. Goswami, C. Schmidt, S. Singh, K. Zambello

University of Utah

CPOD, 29 Nov 2022

The challenge faced by lattice QCD (LQCD)

LQCD at $\mu_B=0$: Straightforward, successful.

The sign problem: Introduction of $\mu_B \in \mathbb{R}$ makes Boltzmann factor complex; can no longer be interpreted as a probability.

Trick: μ_B pure imaginary avoids sign problem; can analytically continue to $\mu_B \in \mathbb{R}^{1,2}$.

Trick: Expand pressure P/T^4 in $\mu_B/T^{3,4}$.

...there are others.

¹P. de Forcrand and O. Philipsen, Nuclear Physics B, 642.1-2, 290–306 (2002).

²M. D'Elia and M.-P. Lombardo, Phys. Rev. D, 67.1, 014505 (2003).

³C. R. Allton et al., Phys. Rev. D, 66.7, 074507 (2002).

⁴R. V. Gavai and S. Gupta, Phys. Rev. D, 68.3, 034506 (2003).

Where do the tricks work?

Tricks work where $\log \mathcal{Z}_{\rm QCD}$ is free of singularities/branch cuts.

Lee-Yang theorem 5 : Zeroes of the partition function that approach the real axis as $V \to \infty$ correspond to phase transitions.

Intuition: Indications of non-analyticities in P

- may hint at phase transitions
- lacktriangle or singularities in ${\mathbb C}$
- constrain validity of Taylor series

⁵C. N. Yang and T. D. Lee, Phys. Rev. 87.3, 404–409 (1952).

Lee-Yang edges and extended analyticity

Ising: Generically have branch cuts on imaginary axis. (Pinch real axis at T_c .)

Lee-Yang edge (LYE): The singularities closest to real axis.

Extended analyticity conjecture⁶: LYE is the nearest singularity to the origin.

LYE position fixed at

$$z_c = |z_c| e^{\pm i\pi/2\beta\delta}$$

with $z \equiv t h^{-1/\beta \delta}$ and critical exponents β , δ .

⁶P Fonseca and A Zamolodchikov, J. Stat. Phys. 110, 527–590 (2003).

Padé approximants

Want detailed information about singularities ⇒ rational functions,

$$R_n^m(x) \equiv \frac{\sum_{i=0}^m a_i x^i}{1 + \sum_{j=1}^n b_j x^j}.$$

- Singularities captured or mimicked by zeros in denominator
- ▶ Useful for resummation (see e.g. Jishnu's talk)

Let f have a formal Taylor series

$$f(x) = \sum_{k=0}^{\infty} c_k x^k.$$

Padé approximant of order [m, n]: R_n^m with coefficients so that it equals the Taylor series up to order m + n. Gives relationship between coefficients a_i , b_j , c_k .

Padé approximants

Things to think about with Padé:

- ► Theorem: Unique when it exists
- ▶ Theorem: [m,n] converges to f exactly as $m \to \infty$ when f has pole of order n
- ▶ Other properties deduced from numerical experiments
- Limited by number of known Taylor coefficients
- lacktriangle Only have up to $8^{
 m th}$ order for $\log \mathcal{Z}_{
 m QCD}$; difficultly increases drastically for higher orders 7

D. A. Clarke

⁷Computational requirements of HotQCD EoS exceed 2000 GPU-years and 2.4 PB.

Multi-point Padé approximants

Padé approximants you get by demanding⁸

$$R_n^m(x) = f^{m+n}(x) \equiv \sum_{i=0}^{m+n} c_k x^k.$$

Multi-point Padé: The R_n^m satisfying

$$R_n^m(x_1) = f^{m+n}(x_1), \quad R_n^m(x_2) = f^{m+n}(x_2), \quad \dots, \quad R_n^m(x_N) = f^{m+n}(x_N)$$

for N known points x_{ℓ} . Some pros/cons:

- ► Need fewer Taylor coefficients!
- Less seems to be known about them...

D. A. Clarke

 $^{^{8}}$ One expects corresponding relationships among derivatives of R and f.

Extracting a LYE9

⁹P. Dimopoulos et al., Phys. Rev. D, 105.3, 034513 (2022).

The strategy

Roughly follow this procedure:

- 1. What transition are you interested in?
- 2. How should the singularities scale?
- 3. Find singularities with multi-point Padé.
- 4. Does scaling match expectation?
- 5. Analytically continue results to real μ_B .

But first: Is it trustworthy?

Test: 1-d Thirring model 10,11

Number density $N(\mu)$ can be worked out exactly.

Multi-point captures the exact $N(\mu)$ well, outperforms single point.

¹⁰P. Dimopoulos et al., Phys. Rev. D, 105.3, 034513 (2022).

¹¹F. Di Renzo, S. Singh, and K. Zambello, Phys. Rev. D, 103.3, 034513 (2021).

Test: 2-d Ising model 12,13

Reproduces correct scaling and critical exponents extremely well.

¹²A. Deger and C. Flindt, Phys. Rev. Research, 1.2, 023004 (2019).

¹³F. Di Renzo and S. Singh Lattice2022 proceedings.

Test: The Roberge-Weiss transition 15

 $\mathcal{Z}_{\mathrm{QCD}}$ at $\hat{\mu}_f = i\hat{\mu}_I$ has \mathbb{Z}_3 periodicity

$$\hat{\mu}_I \rightarrow \hat{\mu}_I + 2\pi n/3$$

with $\hat{\mu} \equiv \mu/T.$ First order lines separate phases distinguished by Polyakov loop

$$P \sim \sum_{\vec{x}} \operatorname{tr} \prod_{\tau} U_4(\vec{x}, \tau).$$

Endpoint in 3-d, \mathbb{Z}_2 universality class. Critical exponents¹⁴:

$$\beta = 0.3264, \quad \delta = 4.7898$$

¹⁴S. El-Showk et al., J Stat Phys, 157.4-5, 869–914 (2014).

¹⁵F. Cuteri et al., Phys. Rev. D, 106.1, 014510 (2022).

Test: The Roberge-Weiss transition 16,17

Lattice setup:

- ▶ 2+1 dynamical HISQ quarks
- $ightharpoonup m_s/m_l$ fixed to physical value
- $ightharpoonup N_{ au}=4$, 6 with $N_s/N_{ au}=6$

$$h \sim \hat{\mu}_B - i\pi$$
 $t \sim T - T_{\rm RW}$ $z_c = |z_c| e^{\pm i\pi/2\beta\delta}$

$$\operatorname{Re} \hat{\mu}_{\mathsf{LY}} = \pm \pi \left(\frac{z_0}{|z_c|} \right)^{\beta \delta} \left(\frac{T_{\mathsf{RW}} - T}{T_{\mathsf{RW}}} \right)^{\beta \delta}$$
$$\operatorname{Im} \hat{\mu}_{\mathsf{LY}} = \pm \pi$$

Taking
$$|z_c| = 2.032$$
 yields $z_0 \in [9.2, 9.5]$.

Taking $T_{\rm RW}^{N_{\tau}=4}=201.4$ MeV yields $\beta\delta\approx 1.5635$, compare 1.563495(15).

Cont. est. $T_{\rm RW} = 207.1(2.4) \; {\rm MeV},$ compare 208(5) MeV.

¹⁶C. Bonati et al., Phys. Rev. D, 93.7, 074504 (2016).

¹⁷A. Connelly et al., Phys. Rev. Lett. 125.19, 191602 (2020).

Toward the CEP

Assuming multi-point Padé reliable, turn attention to CEP. Also in 3-d, \mathbb{Z}_2 universality class, so $\beta\delta\approx 1.5$. Exact mapping to Ising not yet known. Linear ansatz:

$$t = \alpha_t \Delta T + \beta_t \Delta \mu_B$$

$$h = \alpha_h \Delta T + \beta_h \Delta \mu_B,$$

where $\Delta T \equiv T - T^{\sf CEP}$ and $\Delta \mu_B \equiv \mu_B - \mu_B^{\sf CEP}$, which leads to 18

$$\mu_{LY} = \mu_B^{CEP} - c_1 \Delta T + i c_2 |z_c|^{-\beta \delta} \Delta T^{\beta \delta} + \mathcal{O}(\Delta T^2).$$

Expectation from lattice¹⁹: $\mu_B^{\text{CEP}}/T^{\text{CEP}} \gtrsim 3$. Norbert's talk: $\mu_B \gtrsim 400$ MeV.

D. A. Clarke

¹⁸M. A. Stephanov, Phys. Rev. D, 73.9, 094508 (2006).

¹⁹D. Bollweg et al., Phys. Rev. D, 105.7, 074511 (2022).

Toward the CEP

Some comments:

- ightharpoonup Orange data smaller $N_s/N_ au$
- ightharpoonup Orange data $\mu_S=0$
- ▶ Orange data $N_{\tau} = 8$
- lacksquare Blue data $\mu_s=\mu_\ell$
- ightharpoonup Blue data $N_{ au}=6$
- ▶ Need lower T to control $\operatorname{Re} \mu_B$
- Not contradicting other estimates

Suggestion of CEP $T\sim 80$ MeV.

Summary and Outlook

- Tested on Thirring and Ising models
- ightharpoonup Consistent with $T_{\rm RW}$ on coarse lattices
- ▶ Possible indication of CEP around $T \approx 80 \text{ MeV}$
- ▶ In progress: Detailed analysis of finite size effects (smaller N_s simulations)
- ▶ In progress: Examination of chiral transition $(m_s/m_l = 80 \text{ simulations})$
- In progress: Continuum limit extrapolations ($N_{\tau} = 8$ simulations)
- ightharpoonup Really need results at lower T

Thanks for your attention.