### Speaker

### Description

Calculations of baryon number fluctuations at finite temperature and density in Ref.[1] have been extended to regime of large baryon chemical potentials with 400 MeV $\leq \mu_B\leq 650$ MeV. A peak structure is found for the dependence of the kurtosis of baryon number distributions, i.e., $R^{B}_{42}=\chi^{B}_{4}/\chi^{B}_{2}$, on the collision energy in a range of 3 GeV $\leq\sqrt{s_{\mathrm{NN}}}\leq 7.7$ GeV [2]. The computation is done within the functional renormalization group approach with a critical end point located at around $(T,\,\mu_B)_{\mathrm{CEP}}\sim(100,\,640)$ MeV in the phase diagram, which is in agreement with recent estimates from first-principle QCD calculations. Errors of calculated results arising from, e.g., the chemical freeze-out curves, locations of CEP, effects of baryon number conservation at low collision energy etc., have been evaluated in detail.

Reference:

[1] Wei-jie Fu, Xiaofeng Luo, Jan M. Pawlowski, Fabian Rennecke, Rui Wen, Shi Yin, Phys. Rev. D 104, 094047, 2021, arXiv: 2101.06035 [hep-ph].

[2] Wei-jie Fu, Xiaofeng Luo, Jan M. Pawlowski, Fabian Rennecke, Rui Wen, Shi Yin, in preparation.