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Hydrodynamics

Perturbing a thermal equilibrium state:
 When ¢_.. <« L, only conserved quantities are relevant

« Hydrodynamic cell: lie < b€ L

densities are averaged over b: ) = (¢))

» Hydro equations: evolution of densities. 0,0 4(t,q) = —Muspyp(t,q) (¢~ L")

/)
Y, \
'@‘ [An, Basar, Stephanov, Yee 1902.09517]
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What about 2pt correlators?

Indeed, (p4(t,xz1)é5(t, z2)) must be considered as well! (0= — )
Why are they usually absent in our hydro computations?

« In complete equilibrium ~ e~ lz1—22[/& with &~ fmic Kb

4

(do(r1) Bo(r2)) = T (8o/0P)r b(r1—r2), (88.2)
<6P (l‘ 1) 6P (l‘z)) = QT(a.P / Bg)s 6(1'1 _— l‘z)

= Tu?d(r1—r32), (88.3)
(s(r1) s(re)) = (cp/0) O(r1—r2), (88.4)

[Landau Lifshitz Vol9]
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Hydro 2pt correlators

Let us define: (pa(t,x+y/2)¢p(t,x—1y/2)) = Gaplz,y)
[An, Basar, Stephanov, Yee 1902.09517]

» In complete equilibrium: Gas(y) ~ & (y)

L
+ In partial equilibrium: /WO\J

. . . /1 \

o L determines time scale of evolution 7., ~ L/c, ;o

o Local equilibrium scale  feq~ VL/T < L ;o

o Gas(z,y) receives a finite width: ¢ = |y @

o The separation of scales /., <K bK< (K L

or equivalently << Q<AL Al (A=b7")

Suggest to work with |G () = /Q Gz y)e— @
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Hydro fluctuations in static fluid

* Gg(t,z) does not depend on .

Gq(t) obeys: 8,Go(t) = —Tq(Go(t) — Gq), Ig=17Q?

Rew
Breakdown of hydro -~
* Near a critical point, decreases;
* When b < ¢, hydro breaks down earlier: ¢~
* However it occurs even earlier: Xt Qg 5 P

Near a CP, hydro breaks down at ¢ ~ ¢ =,
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* Relaxation time of the slow mode diverges: “critical slowing down”
[Berdnikov, Rajagopal 992274]

Imw

. —
1 7,,
v 3,

\ S
A ’
A %
I~ 7’
‘O T=X-- \
1 -~ \
/ S

-Rew

“mic




(Critical) Slowing down & Hydro+

Near the critical point : R DRl = fgeg
* Relaxation time of the slow mode diverges: “critical slowing down”
[Berdnikov, Rajagopal 992274]

Imw

sound

\ . Rew
¢ ?4,’ :"
S , /
7

|
Y A 1
\

\

» To extend the hydro regime back to the expected range :
We must include them in the hydro picture
This is the philosophy of the Hydro+.  [stephanov, Yin 1712.10305]
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Hydro+

The simplest setup:
“single-mode hydro+”

there is only one single slow mode with decay rate ~ ¢ : ¢
[Stephanov, Yin 1712.10305]

Hydro+ eqgs. = hydro egs. + relaxation eq. of the slow mode

De = —71)(+)9 - a(ﬂu,,) H‘uy,

Dn = —nf—-0-AJ,
wDu’ = —8p— 87, 0,I1",

D¢ = —vym—Ag0+---

(+) indicates that thermo functions are now functions of €, 1 and ¢

d.S(+) — fj(_*_) de — Q(4) dn — 7Td(lb



Enhancement in c?

 Linearizing equations gives:

: ‘ s 3p?
F(w,qz):wz—q2<c§—}— ~ AI”):O

w+1I'; orw

2 2
Due to the slow mode: AP — W B
w4172 grw




Enhancement in c?

 Linearizing equations gives:

‘ : w  Pp:

2 2
Due to the slow mode: AP — Y P
Towr+ T2 grw

: : . 3 A
* In terms of dimensionless quantities w= Fi q= "Fq/ a= (;ffc)
2 - @'t
F(w,q°) = 0* — q* =0

1+ 1o
[NA, Kaminski 2112.14747]



Spectrum of excitations

° . B i 27/3(—1+3(1+a)q2) 92/3
There are three modes:  w,(q=- - <4+ 30 . T”‘”) |

4/3(_; — a)g? 2/:
<4+2 ( +x/§>é(;)+3<1+ >q>_22/3(¢+\f3>2>(q>>

i 4/3 = _ % 2 ;
m;;(q):—ﬁ<4+2 i VBl als >q)—22/3<1+w§>7><q>>
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« There are three modes:  w,(q - - <4+ 214301+ )g?) &“D@) ,

12 3D(q) 3
i 4/3 —i _ a 2 o

wa(a) = — <4+2 i —22/3<i+xf3>2><q>>
i 43(—4 — — a)g?

wy(a) = — = (4+ P S0EA) _peng +N§>D<q>)

Interestingly:
gly D(q) = (22' 1 9i(2 — a)q® + 3V3/—4 — 44 (1 + a®) + ¢*(—8 + 20a + a?)) 1/3
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Spectrum of excitations

« There are three modes:  w,(q - - <4+ 214301+ )g?) ﬁ@(q)) ,

12 3D(q) 3
i 4/3 —i _ a 2 o

wa(a) = — <4+2 i —22/3<i+xf3>2><q>>
i 43(—4 — — a)g?

wy(a) = — = (4+ P S0EA) _peng +N§>D<q>)

Interestingly: |
aly D(q) = (22' +9i(2 — @)g® + 3V3y/—4 — 4g4(1 + a3) + q2(—8 + 20a + a?)) 1/3

* 4 branch points:
a2+ 20a — 8+ ya—8(a¥2 —8all?)

*\2
(ql) 8(1 —|—(1)3
()? a4+ 200 — 8 — va—8(a*? - 8al/?)
2= 8(1+ a)?

[NA, Kaminski 2112.14747]

The story begins...
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q
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Characteristic momentum of Hydro+

a=12
—_— 1 1.0
1 1de
q

1

_~ 1+
0.0 """ q
01 a4 42 0.2 0.3 0.4

At ¢ < ¢1 the slowest modes are the two sound modes
At ¢> ¢ the slow mode is the slowest mode



Characteristic momentum of Hydro+

2 Im to
1.5

— sound; 1.0-

slow mode

— sound, 0.5 Z(l—la)

- 1+ o
/
01 4 9 02 0.3 0.4

-

0.0 ——mmm—=

At ¢ < ¢1 the slowest modes are the two sound modes

At ¢> ¢ the slow mode is the slowest mode

We referto  q. = min{|qj|, |q5|} as the
characteristic momentum of Hydro+

beyond which, the standard hydrodynamics breaks down.
INA, Kaminski 2112.14747]
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Hydro+ near the QCD critical point

« The slowest mode is the Gg(z) corresponding to order parameter field.

The slow mode of Hydro+,
itis called ¢g(t,x) : Dog = —Tq (dg — ¢o)

* |n our calculations we choose to work with:
D() = 01, 0.5fm

’—Q_ﬁ - CJWgQ
271+ (Qe)

[Rajagopal, Ridgway, Weller, Yin 1908.08539]

2D
- 00

K(Q¢)

3
g [Kawasaki 1970]



Hydro+ near the QCD critical point

« The slowest mode is the Gg(z) corresponding to order parameter field.

The slow mode of Hydro+, s o &2
it is called (,bQ(t 213) : Dog = —T'g ((DQ — (;Q) d)Q ~ 1+ (Qf)Q
- [Rajagopal, Ridgway, Weller, Yin 1908.08539]
2Do&o
—I'q=—F"K(QF)
. . § [Kawasaki 1970]
 In our calculations we choose to work with:
Dy = 0.1, 0.5fm
. & = 0.5fm
« We also parametrlze 67 as 6
[Rajagopal, Ridgway, Weller, Yin 1908.08539] 5|

(£)"- Jtmﬁ () (1— (§?§X>4> () 2 k

AT = 0.27T. 0. 0.1 0.2 0.3 0.4

T(GeV)
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Question that we want to address:

“enhancement in the sound velocity near CP”

enhancement in the value of bulk viscosity near CP [martinez, Schafer, Skokov 1906.11306]

| 4 [ PO AN N
One flndS AC?((,U): %/ (27T)3 [f2(Q£)]2 (g) (Ta_T (5_()) ) w2_|_F2Q

[Rajagopal, Ridgway, Weller, Yin 1908.08539][NA, Kaminski 2112.14747]

What we need to know:

1. The equation of state near the CP. . [Rajagopal, Ridgway, Weller, Yin 1908.08539]
2. The range of integration.

Here is the idea:

the characteristic momentum of single-mode Hydro+
puts constrain on the limits of the above integral.



Question that we want to address:

“enhancement in the sound velocity near CP”

enhancement in the value of bulk viscosity near CP [martinez, Schafer, Skokov 1906.11306]

. ) A [ dQ L (N (0 ()
onetinds s = 3 [ ieor (§) (177 (8) ) =g

[Rajagopal, Ridgway, Weller, Yin 1908.08539][NA, Kaminski 2112.14747]

What we need to know:

1. The equation of state near the CP. . [Rajagopal, Ridgway, Weller, Yin 1908.08539]
2. The range of integration.

The purpose is to illustrate the effect of qc,
not a precise quantitative analysis
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Connection to single mode Hydro+

The contribution of any mode is given by
Acz g(o0) ¢ Q*AQ

, s (EN (2 (6)7)
Cg _25 22 [fQ(Qf)] (‘f()> (TaT (50> )

» @q is the Q-dependent version of « = A{g@ in the single-mode Hydro+.

aQ(w>T'q) =
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Connection to single mode Hydro+

The contribution of any mode is given by

A,g C‘f 2A , - 4 9 » _9\ 2
o> - 225 28200007 (£)'(r2(£))

» @q is the Q-dependent version of « = A{g@ in the single-mode Hydro+.

« We define a Q-dependent characteristic momentum ¢, = ¢.(Q)

« Then the above picture can be applied to any point (i, 7) near the critical
point (in the phase space): ¢, = ¢.(Q, i1, T)

« We limit our study to small /1 region; q. = q.(Q,T)

« Only ¢qg modes satisfying ¢.(Q.7) < ) contribute.



Characteristic momentum near CP

Emax = 1fmand Dy = 0.1 fm

{max = 11m and Dy = 0.5fm Emax = 3fm and Dy = 0.5 fm



Ac?

Contributing modes
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c; hear the critical point

Emax = 1fm, Dy = 0.1fm Emax = 3fm, Dy = 0.1fm
034 HEE 0.34!
[
I I
0.3+ . 0.3L
I I
I I
0.26 Lo 0.26}
1 ===
e 0.22 : ! : _____ no CP ° 0.221
Lo
0.18} o —_ crit 0.18
I I I
I I I
0.14/ R Hydro+ 0.14}
R
0.14 R . 0.1}
0 0.1 0.2 0.3 0.4
T(GeV)

[NA, Kaminski 2112.14747]
 The larger {max,: the more enhancement in the speed of sound.

« The enhancement of the speed of sound in any case.

(similar to bulk viscosity enhancement [vartinez, Schafer, Skokov 1906.11306])
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« Turning to the subleasing order:
In a (1+1)d SYK chain, [nA2112.12751]
the spectrum of excitations
in the presence of longtime tails:

w=w(g’) — t=rw(q)

The series is convergent.



Where does this idea come from?

* Holography:
Branch point* singularities of spectral function of linear excitations

= Radius of convergence of the hydrodynamic derivative expansion
[Withers 1803.08058] [Grozdanov, Kovtun, Starinets, Tadi¢ 1904.01018] [NA, Tahery 2007.10024]

* Holographic theories are large-N: N > 1
The fluctuations and longtime tails are less important

1
r':2. s =250

* Turning to the subleasing order:
In a (1+1)d SYK chain, [nA2112.12751] o T
the spectrum of excitations e
in the presence of longtime tails: -
v=w(@) — w=m() e

The series is convergent.



Outlook

In an upcoming work:  [NA Kaminski Tavkol To Appear]
We show that:

Im 1o

Collison between (modified)hydro and
non-hydro mode in the complex momentum plane.

Equivalently, due to some BP singularity.
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In an Upcoming WOrk:  [NA Kaminski Tavkol To Appear] Z'zf' ]
We show that: ol '

2 04 AN
Collison between (modified)hydro and *z: e N
non-hydro mode in the complex momentum plane. ., ,
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* It would be interesting to go beyond assumptions in this work and extract a

modified dispersion relation near the critical point.
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