

Towards locating the (real) critical endpoint

Friederike Ihssen

Based on arXiv:2207.10057 in collaboration with J. M. Pawlowski

・ロット (雪) (日) (日)

э

Introduction	Lee-Yang Zeroes	Results	Conclusion	Additional Slides
0	•000	000	00	00

・ロット (雪) (日) (日)

PhysRevD.101.054032: Fu, Pawlowski, Rennecke PhysLetB.2021.136584: Gao, Pawlowski PhysRevD.104.054022: Gunkel, Fischer

Introduction	Lee-Yang Zeroes	Results	Conclusion	Additional Slide
0	●000	000	00	00

Introduction	Lee-Yang Zeroes	Results	Conclusion	Additional Slide
0	•000	000	00	00

What is a LYZ?

• A zero-crossing of the generating functional/partition function \mathcal{Z}

Introduction	Lee-Yang Zeroes	Results	Conclusion	Additional Slide
0	•000	000	00	00

What is a LYZ?

- A zero-crossing of the generating functional/partition function \mathcal{Z}
- A divergence/ discontinuity in the free energy $F = -\beta^{-1} \log(\mathcal{Z})$.

Introduction	Lee-Yang Zeroes	Results	Conclusion	Additional Slide
0	•000	000	00	00

What is a LYZ?

- A zero-crossing of the generating functional/partition function \mathcal{Z}
- A divergence/ discontinuity in the free energy $F = -\beta^{-1} \log(\mathcal{Z})$.

 \Rightarrow How are complex LYZs connected to the (real) critical endpoint?

Lee-Yang Zeroes

Results

Conclusion 00 Additional Slides

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Complex phase transitions?

Partition function :

$$\mathcal{Z} = \sum_{i} \exp(-\beta E_i) \,.$$

Lee-Yang Zeroes

Results

Conclusion

Additional Slides

Complex phase transitions?

Partition function :

$$\mathcal{Z} = \sum_{i} \exp(-\beta E_i) \,.$$

Extend to complex energies E_i

Lee-Yang Zeroes

Results

Conclusion

Additional Slides

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Complex phase transitions?

Partition function :

$$\mathcal{Z} = \sum_{i} \exp(-\beta E_i) \,.$$

Extend to complex energies E_i

 Z has complex zeroes (LYZ), since

 $\exp(ix) = \cos(x) + i\sin(x) \,.$

Lee-Yang Zeroes

Results

Conclusion

Additional Slides

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Complex phase transitions?

Partition function :

$$\mathcal{Z} = \sum_{i} \exp(-\beta E_i) \,.$$

Extend to complex energies E_i

 Z has complex zeroes (LYZ), since

 $\exp(ix) = \cos(x) + i\sin(x) \,.$

• LYZs move to the real axis linked to external parameters N, T or m.

Lee-Yang Zeroes

Results

Conclusion

Additional Slides

Complex phase transitions?

Partition function :

$$\mathcal{Z} = \sum_{i} \exp(-\beta E_i) \,.$$

Extend to complex energies E_i

 Z has complex zeroes (LYZ), since

$$\exp(ix) = \cos(x) + i\sin(x) \,.$$

• LYZs move to the real axis linked to external parameters N, T or m.

 \Rightarrow Predict real phase transition!

Re q

Wikipedia MSCA-IF-No-892956

Introduction	Lee-Yang Zeroes	Results	Conclusion	Additional Slides
0	0000	000	00	00

Lee Yang edge singularities in QCD

Simple LEFT for meson interactions: O(4) theory

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

PhysRevLett.125.191602: Connelly, Johnson, Mukherjee, Skokov

Introduction	Lee-Yang Zeroes	Results	Conclusion	Additional Slides
0	0000	000	00	00

Lee Yang edge singularities in QCD

PhysRevLett.125.191602: Connelly, Johnson, Mukherjee, Skokov

- Simple LEFT for meson interactions: O(4) theory
- At $m_{\pi} \rightarrow 0$ we find a second order phase transition at high *T*.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.

Introduction	Lee-Yang Zeroes	Results	Conclusion	Additional Slides
0	0000	000	00	00

Lee Yang edge singularities in QCD

PhysRevLett.125.191602: Connelly, Johnson, Mukherjee, Skokov

- Simple LEFT for meson interactions: O(4) theory
- At $m_{\pi} \rightarrow 0$ we find a second order phase transition at high *T*.
- As we go to physical pion masses the LY travels through the complex plane for increasing Re μ.

PhysRevD.105.014026: Mukherjee, Rennecke,

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.

Skokov

Lee-Yang Zeroes

Results

Conclusion

Additional Slides

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

A Functional Approach

The path-integral / generating functional:

$$\mathcal{Z}[\boldsymbol{J}] = \int d\varphi \exp\left\{-S[\varphi] + \boldsymbol{J} \cdot \varphi\right\}$$

Lee-Yang Zeroes

Results

Conclusion

Additional Slides

A Functional Approach

The path-integral / generating functional:

$$\mathcal{Z}[\boldsymbol{J}] = \int d\varphi \exp\left\{-S[\varphi] + \boldsymbol{J} \cdot \varphi\right\}$$

• $S[\varphi]$ classical action of the theory.

Lee-Yang Zeroes

Results

Conclusion

Additional Slides

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A Functional Approach

The path-integral / generating functional:

$$\mathcal{Z}[\boldsymbol{J}] = \int d\varphi \exp\left\{-S[\varphi] + \boldsymbol{J} \cdot \varphi\right\}$$

- S[φ] classical action of the theory.
- Real function of a complex variable.

Lee-Yang Zeroes

Hesults

Conclusion

Additional Slides

A Functional Approach

The path-integral / generating functional:

$$\mathcal{Z}[\boldsymbol{J}] = \int d\varphi \exp\left\{-S[\varphi] + \boldsymbol{J} \cdot \varphi\right\}$$

- $S[\varphi]$ classical action of the theory.
- Real function of a complex variable.
- Sample from oscillatory integrand (Lattice).

PoS LATTICE2021 (2022) 223: Attanasio, Bauer, Kades, Pawlowski arXiv 2203.01243: Pawlowski, Urban

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lee-Yang Zeroes

Results

Conclusion

Additional Slides

The O(N) Model

$$S[\varphi] = \int_x \left\{ \frac{1}{2} \varphi(x) \Big[-\partial_\mu^2 + m^2 \Big] \varphi(x) + \frac{\lambda}{4!} \varphi(x)^4 \right\}$$

Test case:

- O(N) with d = 0, N = 1
- Classical input parameters m = 1, λ = 1

Direct evaluation of *Z*

Lee-Yang Zeroes

Results

Conclusion

Additional Slides

The ${\cal O}(N)$ Model

$$S[\varphi] = \int_x \left\{ \frac{1}{2} \varphi(x) \left[-\partial_\mu^2 + m^2 \right] \varphi(x) + \frac{\lambda}{4!} \varphi(x)^4 \right\}$$

LY-location for Im[H] = 0.994 and initial condition $m^2 = 1$ at Im[M] = 1.33 !

Introduction	Lee-Yang Zeroes	Results	Conclusion	Additional Slides
0	0000	000	00	00

Scaling behaviour:
$${m^2-m_c^2\over m_c^2}=const\, H^{1/\Delta}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Introduction	Lee-Yang Zeroes	Results	Conclusion	Additional Slides
0	0000	000	•0	00

Summary & Outlook

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Investigated the convergence of functional flows in the complex plane using DG-methods.
- Retrieved location of the Lee-Yang singularity in *d* = 0 and *d* = 4.
- We extracted the critical mass m_c^2 of the real phase transition in d = 4!

Introduction	Lee-Yang Zeroes	Results	Conclusion	Additional Slides
0	0000	000	•0	00

Summary & Outlook

- Investigated the convergence of functional flows in the complex plane using DG-methods.
- Retrieved location of the Lee-Yang singularity in d = 0 and d = 4.
- We extracted the critical mass m_c^2 of the real phase transition in d = 4!

 \Rightarrow Go towards QCD phase structure and complex μ !

Lee-Yang Zeroe

Results

Conclusion

Additional Slides

Thank you for your attention!

Friederike Ihssen ITP Heidelberg

Lee-Yang Zeroes

Results

Conclusion

Additional Slides

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A Functional Approach

The infrared regularized path-integral / generating functional:

$$\mathcal{Z}_{k}[\boldsymbol{J}] = \int [d\varphi]_{\mathrm{ren},p^{2} \ge k^{2}} \exp\left\{-S[\varphi] + \boldsymbol{J} \cdot \varphi\right\},$$
$$\int [d\varphi]_{\mathrm{ren},p^{2} \ge k^{2}} = \int [d\varphi]_{\mathrm{ren}} \exp\left\{-\frac{1}{2}\varphi \cdot R_{k} \cdot \varphi\right\}$$

Lee-Yang Zeroes

Results

Conclusion

Additional Slides

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A Functional Approach

The infrared regularized path-integral / generating functional:

$$\mathcal{Z}_{k}[\mathbf{J}] = \int [d\varphi]_{\mathrm{ren},p^{2} \ge k^{2}} \exp\left\{-S[\varphi] + \mathbf{J} \cdot \varphi\right\},$$
$$\int [d\varphi]_{\mathrm{ren},p^{2} \ge k^{2}} = \int [d\varphi]_{\mathrm{ren}} \exp\left\{-\frac{1}{2}\varphi \cdot R_{k} \cdot \varphi\right\}$$

• Suppression of IR momentum modes by *k*-dependent mass term.

Lee-Yang Zeroes

Results

Conclusion

Additional Slides

A Functional Approach

The infrared regularized path-integral / generating functional:

$$\mathcal{Z}_{k}[\boldsymbol{J}] = \int [d\varphi]_{\mathrm{ren},p^{2} \ge k^{2}} \exp\left\{-S[\varphi] + \boldsymbol{J} \cdot \varphi\right\},$$
$$\int [d\varphi]_{\mathrm{ren},p^{2} \ge k^{2}} = \int [d\varphi]_{\mathrm{ren}} \exp\left\{-\frac{1}{2}\varphi \cdot R_{k} \cdot \varphi\right\}$$

- Suppression of IR momentum modes by *k*-dependent mass term.
- Access to non-perturbative IR regime by stepwise integration of low energy momentum modes.

Introduction O	Lee-Yang Zeroes	Results 000	Conclusion 00	Additional Slides
	$M(\phi_y, H) = \phi_{\rm EoM} ,$	with $\partial_{\phi_x} w[J(\phi_x, \phi_y$	$(f)] - H _{\phi_x = \phi_{x, \text{EoM}}} = 0$	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Introdu O	tion Lee-Yang Zeroes		Results 000	Conclusion OO	Additional Slides
	$M(\phi_y, H) = \phi_{\rm EoM} ,$	with	$\partial_{\phi_x} w[J(\phi_x,\phi_y)] -$	$H _{\phi_x=\phi_{x,EoM}}=0$	

Scaling relations:

• Preserves symmetry:

$$\operatorname{Re}\left[M(\phi_y, H=0)\right] = B\left(\frac{\phi_y - \phi_c}{\phi_c}\right)^{\beta}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\begin{array}{l} \mbox{Mean Field: } \beta = 1/2 \\ \mbox{Fit: } 0.505(23) \end{array}$

Scaling relations:

• Preserves symmetry:

$$\operatorname{Re}\left[M(\phi_y, H=0)\right] = B\left(\frac{\phi_y - \phi_c}{\phi_c}\right)^{\beta}$$

· Breaks symmetry:

$$\operatorname{Re}\left[M(\phi_y = \phi_c, H)\right] = B_c H^{1/\delta}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Mean Field: $\delta = 3$ Fit: 2.992(18)

$$\operatorname{Re}\left[M(\phi_y, H=0)\right] = B\left(\frac{\phi_y - \phi_c}{\phi_c}\right)^{\beta}$$

Breaks symmetry:

$$\operatorname{Re}\left[M(\phi_y = \phi_c, H)\right] = B_c H^{1/\delta}$$

Mean Field:
$$|C_+| = 2|C_-|$$

 $C_+ = -0.4369(11), C_- = 0.2025(21)$

Imaginary field ϕ_v

Data: $\phi_v < \phi_c$

Data: $\phi_v > \phi_c$

Fit

Suscept. $1/\chi(\phi_y, H=0)$

1.5

1.0 0.5 0.0

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

$$R_{\chi} = \frac{C_+ B^{\delta - 1}}{B_c^{\delta}} = 1.010(57)$$

$$\chi(\phi_y, H=0) = C_{+/-} \left(\frac{\phi_y - \phi_c}{\phi_c} + \text{subl.}\right)^{-\gamma}$$

・ロット (雪) ・ (日) ・ (日)

э.