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all known results on screening masses are fully consis-
tent with such an intermediate temperature range be-
tween broken chiral symmetry and a partonic quark gluon
plasma. Using quark hadron duality of screening masses
to identify the onset of the plasma regime, we derive how
the upper boundary of the chiral spin symmetric band
curves away from the T -axis in Sec. V. In Sec. VI we
identify parity doubled baryon matter as a candidate for
a chiral spin symmetric regime of cold and dense QCD,
which can be naturally embedded into quarkyonic mat-
ter. Finally, we discuss the prospects and limitations of
dilepton spectra to probe matter in the chiral spin sym-
metric regime, Sec. VII.

II. CHIRAL SPIN SYMMETRY OF THE COLOR
CHARGE AND ITS IMPLICATIONS

The Banks-Casher relation [18] connects the quark
condensate of the QCD vacuum with the density of the
near-zero modes of the Dirac operator,

h ̄ i = ⇡ lim
�!0

lim
m!0

lim
V!1

⇢(�,m) . (1)

An artificial truncation of the near-zero modes on the
lattice at T = 0 may then be expected to restore
the SU(NF )L ⇥ SU(NF )R and possibly the U(1)A chi-
ral symmetry of the QCD Lagrangian. For example,
the instanton liquid model [19, 20] suggests that both
SU(NF )L ⇥ SU(NF )R and U(1)A breakings are due to
the ’t Hooft determinant induced by the instanton fluc-
tuations of the QCD vacuum at sufficiently strong cou-
pling [21].

A spectrum calculation based on such truncated Dirac
operators has revealed a larger degeneracy pattern than
expected, both for mesons [22–24] and baryons [25].
From the quantum numbers of the degenerate states
the symmetry groups responsible for this large degen-
eracy, the chiral spin SU(2)CS and SU(2NF ), were re-
constructed in refs. [26, 27]. An SU(2)CS chiral spin
transformation acting on Dirac spinors can be defined as
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where the generators ⌃n/2 of the four-dimensional re-
ducible representation are

⌃n = {�0,�i�5�0, �5} (3)

and satisfy the su(2) algebra. This transformation ro-
tates in the space of right- and left-handed Weyl spinors
R,L, and an equivalent representation of Eq. (2) is
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In Euclidean spacetime with its O(4) symmetry, all
four directions are equivalent and one can use any Eu-
clidean hermitian �-matrix �k, k = 1, 2, 3, 4 to replace

the Minkowskian �0,

⌃n = {�k,�i�5�k, �5}, (5)

�i�j + �j�i = 2�ij ; �5 = �1�2�3�4. (6)

The su(2) algebra is satisfied for any k = 1, 2, 3, 4, so
any choice is permitted that does not mix operators with
different spatial O(3) spins. Note that SU(2)CS contains
U(1)A as a subgroup. The direct product of the SU(2)CS

group with the flavor group SU(NF ) can be embedded
into a SU(2NF ) group, which includes the chiral symme-
try as a subgroup,

SU(2NF ) � SU(NF )L ⇥ SU(NF )R ⇥ U(1)A . (7)

The SU(2)CS and SU(2NF ) groups are not symme-
tries of the Dirac Lagrangian. In a fixed Lorentz frame
we can split the latter in color-electric (temporal) and
color-magnetic (spatial) parts,

 ̄�µDµ =  ̄�0D0 +  ̄�iDi , (8)

where the first term is invarant under SU(2)CS and
SU(2NF ), while the second term is not. At the same
time these are symmetries of the Lorentz-invariant color
charge

Qa =

Z
d3x  †(x)T a (x) , (9)

with T a the SU(3) color generators. This feature allows
for the SU(2)CS and SU(2NF ) symmetries to distin-
guish between the chromoelectric and chromomagnetic
interactions in a given reference frame. The chromoelec-
tric gauge field couples to the color charge, consequently
the chromoelectric interaction of quarks and gauge fields
is SU(2)CS and SU(2NF ) symmetric. The chromo-
magnetic gauge fields couple to a current, which is not
SU(2)CS and SU(2NF ) symmetric. Thus, the symmetry
of the electric part of the QCD Lagrangian is larger than
the symmetry of the QCD Lagrangian as a whole.

The observation of the SU(2)CS , SU(2NF ) symmetries
in the hadron spectrum upon truncation of the near-zero
modes of the Dirac operator then implies that the mag-
netic interaction at zero temperature is located mostly in
those near-zero modes, whereas a confining electric inter-
action is distributed among all Dirac modes. Hence, con-
finement and chiral symmetry breaking in QCD are not
directly related phenomena. Based on this observation it
was predicted that, for finite temperature QCD without
any truncations, the chiral spin and SU(2NF ) symme-
tries should emerge above the chiral symmetry restoring
crossover [28].

III. CHIRAL SPIN SYMMETRY AT FINITE
TEMPERATURE

Above the pseudocritical temperature for chiral sym-
metry restoration in NF = 2 + 1 QCD, Tpc ⇠ 155 MeV
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the same symmetries [15], so one can expect that the symmetries observed in the lattice

calculations at zero chemical potential will persist at µ > 0 as well.

At T > 0 correlators in time and spatial directions have di↵erent physical content; tem-

poral correlators are connected to the spectral density in Minkowski space via an integral

transformation. Observation of the SU(2)CS and SU(4) symmetries in t-correlators would

imply that the spectra of the corresponding color-singlet states in Minkowski space have

the same symmetry. The symmetries of the z-correlators do suggest the same symmetries

in the spectra, albeit indirectly. A direct observation of these symmetries in t-correlators

in practice is a priori not obvious since on the lattice one has only a few lattice sites along

the time direction at high T and large discretization errors as well as a small evolution time

can easily spoil the real picture. Here we use Nt = 12 ensembles at T = 1.2Tc and observe

clear SU(2)CS and SU(4) symmetries in t-correlators. This implies that the corresponding

spectral functions in Minkowski space are also SU(2)CS and SU(4) symmetric.

II. CHIRAL-SPIN SYMMETRY

The SU(2)CS chiral-spin transformations for quarks are defined by [5, 6]

 (x) ! exp

✓
i

2
⌃ ✏

◆
 (x) ,  ̄(x) !  ̄(x)�4 exp

✓
�
i

2
⌃ ✏

◆
�4 , (1)

where ✏ 2 R3 are the rotation parameters. For the generators ⌃,

⌃ = {�k,�i�5�k, �5}, (2)

one has four di↵erent choices ⌃ = ⌃k with k = 1, 2, 3, 4. Here �k, k = 1, 2, 3, 4, are hermitian

Euclidean gamma-matrices, obeying the anticommutation relations

�i�j + �j�i = 2�ij; �5 = �1�2�3�4 . (3)

The su(2) algebra

[⌃a
,⌃b] = 2i✏abc⌃c (4)

is satisfied for any k.

The choice of k is fixed by the requirement that the SU(2)CS transformation does not

mix operators with di↵erent spin, i.e., respects the rotational O(3) symmetry in Minkowski

space. For propagators in time direction, defined below, this implies k = 4.

3

2

all known results on screening masses are fully consis-
tent with such an intermediate temperature range be-
tween broken chiral symmetry and a partonic quark gluon
plasma. Using quark hadron duality of screening masses
to identify the onset of the plasma regime, we derive how
the upper boundary of the chiral spin symmetric band
curves away from the T -axis in Sec. V. In Sec. VI we
identify parity doubled baryon matter as a candidate for
a chiral spin symmetric regime of cold and dense QCD,
which can be naturally embedded into quarkyonic mat-
ter. Finally, we discuss the prospects and limitations of
dilepton spectra to probe matter in the chiral spin sym-
metric regime, Sec. VII.

II. CHIRAL SPIN SYMMETRY OF THE COLOR
CHARGE AND ITS IMPLICATIONS

The Banks-Casher relation [18] connects the quark
condensate of the QCD vacuum with the density of the
near-zero modes of the Dirac operator,

h ̄ i = ⇡ lim
�!0

lim
m!0

lim
V!1

⇢(�,m) . (1)

An artificial truncation of the near-zero modes on the
lattice at T = 0 may then be expected to restore
the SU(NF )L ⇥ SU(NF )R and possibly the U(1)A chi-
ral symmetry of the QCD Lagrangian. For example,
the instanton liquid model [19, 20] suggests that both
SU(NF )L ⇥ SU(NF )R and U(1)A breakings are due to
the ’t Hooft determinant induced by the instanton fluc-
tuations of the QCD vacuum at sufficiently strong cou-
pling [21].

A spectrum calculation based on such truncated Dirac
operators has revealed a larger degeneracy pattern than
expected, both for mesons [22–24] and baryons [25].
From the quantum numbers of the degenerate states
the symmetry groups responsible for this large degen-
eracy, the chiral spin SU(2)CS and SU(2NF ), were re-
constructed in refs. [26, 27]. An SU(2)CS chiral spin
transformation acting on Dirac spinors can be defined as

 !  0 = exp

✓
i
"n⌃n

2

◆
 , (2)

where the generators ⌃n/2 of the four-dimensional re-
ducible representation are

⌃n = {�0,�i�5�0, �5} (3)

and satisfy the su(2) algebra. This transformation ro-
tates in the space of right- and left-handed Weyl spinors
R,L, and an equivalent representation of Eq. (2) is

✓
R
L

◆
!

✓
R0

L0

◆
= exp

✓
i
"n�n

2

◆✓
R
L

◆
. (4)

In Euclidean spacetime with its O(4) symmetry, all
four directions are equivalent and one can use any Eu-
clidean hermitian �-matrix �k, k = 1, 2, 3, 4 to replace

the Minkowskian �0,

⌃n = {�k,�i�5�k, �5}, (5)

�i�j + �j�i = 2�ij ; �5 = �1�2�3�4. (6)

The su(2) algebra is satisfied for any k = 1, 2, 3, 4, so
any choice is permitted that does not mix operators with
different spatial O(3) spins. Note that SU(2)CS contains
U(1)A as a subgroup. The direct product of the SU(2)CS

group with the flavor group SU(NF ) can be embedded
into a SU(2NF ) group, which includes the chiral symme-
try as a subgroup,

SU(2NF ) � SU(NF )L ⇥ SU(NF )R ⇥ U(1)A . (7)

The SU(2)CS and SU(2NF ) groups are not symme-
tries of the Dirac Lagrangian. In a fixed Lorentz frame
we can split the latter in color-electric (temporal) and
color-magnetic (spatial) parts,

 ̄�µDµ =  ̄�0D0 +  ̄�iDi , (8)

where the first term is invarant under SU(2)CS and
SU(2NF ), while the second term is not. At the same
time these are symmetries of the Lorentz-invariant color
charge

Qa =

Z
d3x  †(x)T a (x) , (9)

with T a the SU(3) color generators. This feature allows
for the SU(2)CS and SU(2NF ) symmetries to distin-
guish between the chromoelectric and chromomagnetic
interactions in a given reference frame. The chromoelec-
tric gauge field couples to the color charge, consequently
the chromoelectric interaction of quarks and gauge fields
is SU(2)CS and SU(2NF ) symmetric. The chromo-
magnetic gauge fields couple to a current, which is not
SU(2)CS and SU(2NF ) symmetric. Thus, the symmetry
of the electric part of the QCD Lagrangian is larger than
the symmetry of the QCD Lagrangian as a whole.

The observation of the SU(2)CS , SU(2NF ) symmetries
in the hadron spectrum upon truncation of the near-zero
modes of the Dirac operator then implies that the mag-
netic interaction at zero temperature is located mostly in
those near-zero modes, whereas a confining electric inter-
action is distributed among all Dirac modes. Hence, con-
finement and chiral symmetry breaking in QCD are not
directly related phenomena. Based on this observation it
was predicted that, for finite temperature QCD without
any truncations, the chiral spin and SU(2NF ) symme-
tries should emerge above the chiral symmetry restoring
crossover [28].

III. CHIRAL SPIN SYMMETRY AT FINITE
TEMPERATURE

Above the pseudocritical temperature for chiral sym-
metry restoration in NF = 2 + 1 QCD, Tpc ⇠ 155 MeV

2

all known results on screening masses are fully consis-
tent with such an intermediate temperature range be-
tween broken chiral symmetry and a partonic quark gluon
plasma. Using quark hadron duality of screening masses
to identify the onset of the plasma regime, we derive how
the upper boundary of the chiral spin symmetric band
curves away from the T -axis in Sec. V. In Sec. VI we
identify parity doubled baryon matter as a candidate for
a chiral spin symmetric regime of cold and dense QCD,
which can be naturally embedded into quarkyonic mat-
ter. Finally, we discuss the prospects and limitations of
dilepton spectra to probe matter in the chiral spin sym-
metric regime, Sec. VII.

II. CHIRAL SPIN SYMMETRY OF THE COLOR
CHARGE AND ITS IMPLICATIONS

The Banks-Casher relation [18] connects the quark
condensate of the QCD vacuum with the density of the
near-zero modes of the Dirac operator,

h ̄ i = ⇡ lim
�!0

lim
m!0

lim
V!1

⇢(�,m) . (1)

An artificial truncation of the near-zero modes on the
lattice at T = 0 may then be expected to restore
the SU(NF )L ⇥ SU(NF )R and possibly the U(1)A chi-
ral symmetry of the QCD Lagrangian. For example,
the instanton liquid model [19, 20] suggests that both
SU(NF )L ⇥ SU(NF )R and U(1)A breakings are due to
the ’t Hooft determinant induced by the instanton fluc-
tuations of the QCD vacuum at sufficiently strong cou-
pling [21].

A spectrum calculation based on such truncated Dirac
operators has revealed a larger degeneracy pattern than
expected, both for mesons [22–24] and baryons [25].
From the quantum numbers of the degenerate states
the symmetry groups responsible for this large degen-
eracy, the chiral spin SU(2)CS and SU(2NF ), were re-
constructed in refs. [26, 27]. An SU(2)CS chiral spin
transformation acting on Dirac spinors can be defined as

 !  0 = exp

✓
i
"n⌃n

2

◆
 , (2)

where the generators ⌃n/2 of the four-dimensional re-
ducible representation are

⌃n = {�0,�i�5�0, �5} (3)

and satisfy the su(2) algebra. This transformation ro-
tates in the space of right- and left-handed Weyl spinors
R,L, and an equivalent representation of Eq. (2) is

✓
R
L

◆
!

✓
R0

L0

◆
= exp

✓
i
"n�n

2

◆✓
R
L

◆
. (4)

In Euclidean spacetime with its O(4) symmetry, all
four directions are equivalent and one can use any Eu-
clidean hermitian �-matrix �k, k = 1, 2, 3, 4 to replace

the Minkowskian �0,

⌃n = {�k,�i�5�k, �5}, (5)

�i�j + �j�i = 2�ij ; �5 = �1�2�3�4. (6)

The su(2) algebra is satisfied for any k = 1, 2, 3, 4, so
any choice is permitted that does not mix operators with
different spatial O(3) spins. Note that SU(2)CS contains
U(1)A as a subgroup. The direct product of the SU(2)CS

group with the flavor group SU(NF ) can be embedded
into a SU(2NF ) group, which includes the chiral symme-
try as a subgroup,

SU(2NF ) � SU(NF )L ⇥ SU(NF )R ⇥ U(1)A . (7)

The SU(2)CS and SU(2NF ) groups are not symme-
tries of the Dirac Lagrangian. In a fixed Lorentz frame
we can split the latter in color-electric (temporal) and
color-magnetic (spatial) parts,

 ̄�µDµ =  ̄�0D0 +  ̄�iDi , (8)

where the first term is invarant under SU(2)CS and
SU(2NF ), while the second term is not. At the same
time these are symmetries of the Lorentz-invariant color
charge

Qa =

Z
d3x  †(x)T a (x) , (9)

with T a the SU(3) color generators. This feature allows
for the SU(2)CS and SU(2NF ) symmetries to distin-
guish between the chromoelectric and chromomagnetic
interactions in a given reference frame. The chromoelec-
tric gauge field couples to the color charge, consequently
the chromoelectric interaction of quarks and gauge fields
is SU(2)CS and SU(2NF ) symmetric. The chromo-
magnetic gauge fields couple to a current, which is not
SU(2)CS and SU(2NF ) symmetric. Thus, the symmetry
of the electric part of the QCD Lagrangian is larger than
the symmetry of the QCD Lagrangian as a whole.

The observation of the SU(2)CS , SU(2NF ) symmetries
in the hadron spectrum upon truncation of the near-zero
modes of the Dirac operator then implies that the mag-
netic interaction at zero temperature is located mostly in
those near-zero modes, whereas a confining electric inter-
action is distributed among all Dirac modes. Hence, con-
finement and chiral symmetry breaking in QCD are not
directly related phenomena. Based on this observation it
was predicted that, for finite temperature QCD without
any truncations, the chiral spin and SU(2NF ) symme-
tries should emerge above the chiral symmetry restoring
crossover [28].

III. CHIRAL SPIN SYMMETRY AT FINITE
TEMPERATURE

Above the pseudocritical temperature for chiral sym-
metry restoration in NF = 2 + 1 QCD, Tpc ⇠ 155 MeV

2

all known results on screening masses are fully consis-
tent with such an intermediate temperature range be-
tween broken chiral symmetry and a partonic quark gluon
plasma. Using quark hadron duality of screening masses
to identify the onset of the plasma regime, we derive how
the upper boundary of the chiral spin symmetric band
curves away from the T -axis in Sec. V. In Sec. VI we
identify parity doubled baryon matter as a candidate for
a chiral spin symmetric regime of cold and dense QCD,
which can be naturally embedded into quarkyonic mat-
ter. Finally, we discuss the prospects and limitations of
dilepton spectra to probe matter in the chiral spin sym-
metric regime, Sec. VII.

II. CHIRAL SPIN SYMMETRY OF THE COLOR
CHARGE AND ITS IMPLICATIONS

The Banks-Casher relation [18] connects the quark
condensate of the QCD vacuum with the density of the
near-zero modes of the Dirac operator,

h ̄ i = ⇡ lim
�!0

lim
m!0

lim
V!1

⇢(�,m) . (1)

An artificial truncation of the near-zero modes on the
lattice at T = 0 may then be expected to restore
the SU(NF )L ⇥ SU(NF )R and possibly the U(1)A chi-
ral symmetry of the QCD Lagrangian. For example,
the instanton liquid model [19, 20] suggests that both
SU(NF )L ⇥ SU(NF )R and U(1)A breakings are due to
the ’t Hooft determinant induced by the instanton fluc-
tuations of the QCD vacuum at sufficiently strong cou-
pling [21].

A spectrum calculation based on such truncated Dirac
operators has revealed a larger degeneracy pattern than
expected, both for mesons [22–24] and baryons [25].
From the quantum numbers of the degenerate states
the symmetry groups responsible for this large degen-
eracy, the chiral spin SU(2)CS and SU(2NF ), were re-
constructed in refs. [26, 27]. An SU(2)CS chiral spin
transformation acting on Dirac spinors can be defined as

 !  0 = exp

✓
i
"n⌃n

2

◆
 , (2)

where the generators ⌃n/2 of the four-dimensional re-
ducible representation are

⌃n = {�0,�i�5�0, �5} (3)

and satisfy the su(2) algebra. This transformation ro-
tates in the space of right- and left-handed Weyl spinors
R,L, and an equivalent representation of Eq. (2) is

✓
R
L

◆
!

✓
R0

L0

◆
= exp

✓
i
"n�n

2

◆✓
R
L

◆
. (4)

In Euclidean spacetime with its O(4) symmetry, all
four directions are equivalent and one can use any Eu-
clidean hermitian �-matrix �k, k = 1, 2, 3, 4 to replace

the Minkowskian �0,

⌃n = {�k,�i�5�k, �5}, (5)

�i�j + �j�i = 2�ij ; �5 = �1�2�3�4. (6)

The su(2) algebra is satisfied for any k = 1, 2, 3, 4, so
any choice is permitted that does not mix operators with
different spatial O(3) spins. Note that SU(2)CS contains
U(1)A as a subgroup. The direct product of the SU(2)CS

group with the flavor group SU(NF ) can be embedded
into a SU(2NF ) group, which includes the chiral symme-
try as a subgroup,

SU(2NF ) � SU(NF )L ⇥ SU(NF )R ⇥ U(1)A . (7)

The SU(2)CS and SU(2NF ) groups are not symme-
tries of the Dirac Lagrangian. In a fixed Lorentz frame
we can split the latter in color-electric (temporal) and
color-magnetic (spatial) parts,

 ̄�µDµ =  ̄�0D0 +  ̄�iDi , (8)

where the first term is invarant under SU(2)CS and
SU(2NF ), while the second term is not. At the same
time these are symmetries of the Lorentz-invariant color
charge

Qa =

Z
d3x  †(x)T a (x) , (9)

with T a the SU(3) color generators. This feature allows
for the SU(2)CS and SU(2NF ) symmetries to distin-
guish between the chromoelectric and chromomagnetic
interactions in a given reference frame. The chromoelec-
tric gauge field couples to the color charge, consequently
the chromoelectric interaction of quarks and gauge fields
is SU(2)CS and SU(2NF ) symmetric. The chromo-
magnetic gauge fields couple to a current, which is not
SU(2)CS and SU(2NF ) symmetric. Thus, the symmetry
of the electric part of the QCD Lagrangian is larger than
the symmetry of the QCD Lagrangian as a whole.

The observation of the SU(2)CS , SU(2NF ) symmetries
in the hadron spectrum upon truncation of the near-zero
modes of the Dirac operator then implies that the mag-
netic interaction at zero temperature is located mostly in
those near-zero modes, whereas a confining electric inter-
action is distributed among all Dirac modes. Hence, con-
finement and chiral symmetry breaking in QCD are not
directly related phenomena. Based on this observation it
was predicted that, for finite temperature QCD without
any truncations, the chiral spin and SU(2NF ) symme-
tries should emerge above the chiral symmetry restoring
crossover [28].

III. CHIRAL SPIN SYMMETRY AT FINITE
TEMPERATURE

Above the pseudocritical temperature for chiral sym-
metry restoration in NF = 2 + 1 QCD, Tpc ⇠ 155 MeV

Dirac:

7

Name Dirac structure Abbreviation

Pseudoscalar �5 PS ⇤
U(1)AScalar 1 S

Axial-vector �k�5 A ⇤
SU(2)AVector �k V

Tensor-vector �k�3 T ⇤
U(1)AAxial-tensor-vector �k�3�5 X

TABLE II. Fermion bilinears considered in this work and their transformation properties (last column). This classification
assumes propagation in z-direction. The open vector index k here runs over the components 1, 2, 4, i.e., x, y and t.

The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [27, 28],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [22]. The SU(2)CS chiral spin transformations are defined by
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where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d
3
x  

†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.

In Minkowski space in a given reference frame the quark-gluon interaction can be split into temporal and spatial
parts:
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µ
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The temporal term includes the interaction of the color-octet charge density

 ̄(x) �0
t

2
 (x) =  (x)†

t

2
 (x) (31)

with the chromo-electric component of the gluonic field. It is invariant under SU(2)CS [28]. We emphasize that the
SU(2)CS transformations defined in Eq. (26) via the Euclidean Dirac matrices can be identically applied to Minkowski
Dirac spinors without any modification of the generators. The spatial part contains the quark kinetic term and the
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interaction with the chromo-magnetic field. This term breaks SU(2)CS . In other words: the SU(2)CS symmetry
distinguishes between quarks interacting with the chromo-electric and chromo-magnetic components of the gauge
field. It is important to note that discussing “electric” and “magnetic” components can be done only in Minkowski
space and in addition one needs to fix the reference frame. However, at high temperatures Lorentz invariance is
broken and a natural frame to discuss physics is the rest frame of the medium.

The SU(2)CS transformations (26) with k = 1 generate the following two SU(2)CS - singlets and two SU(2)CS -
triplets of bilinears:

(Vy); (Ay, Tt, Xt) , (32)

(Vt); (At, Ty, Xy) . (33)

These irreducible representations of SU(2)CS can be obtained by applying the SU(2)CS transformation (26) on any
of the bilinears from the given representation and the result will be a linear combination of all bilinears in the given
representation. The observation of a degeneracy of the correlators built from the triplet bilinears in Eq. (32) would
imply the emergence of the corresponding SU(2)CS symmetry. We stress that this is not a symmetry of deconfined
free quarks, see Eq. (15), and the observation of a degeneracy within the triplet in Eq. (32) means that the quarks
in the system interact exclusively via the chromo-electric field, without any chromo-magnetic admixture. Since only
color-singlet bilinears can propagate on the lattice at any temperature the systems represent color-singlet quark -
antiquark objects bound by chromo-electric interactions.

Note that the observation of a degeneracy of correlators for the triplet bilinears in Eq. (33) would not discriminate
between the confining mode and free quarks, because the current conservation in the free quark system also provides
such a degeneracy, as follows already from the discussion in the previous section, see Eq. (15)1.

The transformations (26) with k = 2 generate the following singlets and triplets:

(Vx); (Ax, Tt, Xt) , (34)

(Vt); (At, Tx, Xx) . (35)

Again, a degeneracy of the correlators built from the triplet bilinears in Eq. (34) is a signal for the emergence of the
SU(2)CS symmetry. This is di↵erent from the degeneracy of the correlators of the triplet bilinears from Eq. (35)
which in the free quark case can be connected to current conservation and thus is not suitable for discriminating
between the interacting mode and a system of free quarks.

This discussion (as well as a structure of the SU(4) multiplets below) implies that only the study of a possible
degeneracy among correlators of the bilinears (32), as well as the bilinears (34) is suitable for the analysis of the
underlying dynamics and degrees of freedom. Note that only those SU(2)CS , k = 1, 2, 3, 4 transformations can be
considered for a given observable that do not mix operators of di↵erent spin and thus respect rotational invariance at
non-zero temperature. This requirement is met for our setup by the k = 1, 2 transformations, as indicated above.

We remark that at zero temperature in the continuum there is a SO(3) symmetry in the x, y, t subspace and the
z-correlators of the Vx, Vy, Vt bilinears (20) coincide. The same is true for the z-correlators of the corresponding x, y

and t components of the bilinears (22), (23) and (24). At finite temperature this rotational symmetry is broken down
to a residual SO(2) symmetry which connects the correlators of the spatial components Vx $ Vy and Ax $ Ay et
cetera. On the lattice the reduced symmetry for the T > 0 case and the z = const subspace is D4h and the relevant
symmetry is S2 ⇥ SU(2)CS [22]2, such that the multiplets are

(Vx, Vy); (Ax, Ay, Tt, Xt) , (36)

(Vt); (At, Tx, Ty, Xx, Xy) . (37)

Finally we remark that the group SU(2)CS⌦SU(2)F , where SU(2)F is the isospin symmetry group, can be extended
to SU(4) with fifteen generators:

{(~⌧ ⌦ 1D), (1F ⌦ ~⌃k), (~⌧ ⌦ ~⌃k)} . (38)

The corresponding transformations are a trivial generalization of Eq. (26) obtained by replacing the generators ~⌃
by those listed in (38). Also the group SU(4) is a symmetry of the quark - chromo-electric interaction terms of the

1 This is true for the correlators normalized to 1 which we study here. Without this normalization there is an overall factor of 2 between
the free correlators built with the Vt, At and Tx, Ty , Xx, Xy bilinears (see, e.g., Eq. (16)), that would allow one to distinguish the results
for free quarks from the full SU(2)CS case in an elaborated calculation with properly renormalized full QCD correlators.

2 S2 here denotes the permutation- or symmetric group for x $ y interchanges.

Obviously:
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interaction with the chromo-magnetic field. This term breaks SU(2)CS . In other words: the SU(2)CS symmetry
distinguishes between quarks interacting with the chromo-electric and chromo-magnetic components of the gauge
field. It is important to note that discussing “electric” and “magnetic” components can be done only in Minkowski
space and in addition one needs to fix the reference frame. However, at high temperatures Lorentz invariance is
broken and a natural frame to discuss physics is the rest frame of the medium.

The SU(2)CS transformations (26) with k = 1 generate the following two SU(2)CS - singlets and two SU(2)CS -
triplets of bilinears:

(Vy); (Ay, Tt, Xt) , (32)

(Vt); (At, Ty, Xy) . (33)

These irreducible representations of SU(2)CS can be obtained by applying the SU(2)CS transformation (26) on any
of the bilinears from the given representation and the result will be a linear combination of all bilinears in the given
representation. The observation of a degeneracy of the correlators built from the triplet bilinears in Eq. (32) would
imply the emergence of the corresponding SU(2)CS symmetry. We stress that this is not a symmetry of deconfined
free quarks, see Eq. (15), and the observation of a degeneracy within the triplet in Eq. (32) means that the quarks
in the system interact exclusively via the chromo-electric field, without any chromo-magnetic admixture. Since only
color-singlet bilinears can propagate on the lattice at any temperature the systems represent color-singlet quark -
antiquark objects bound by chromo-electric interactions.

Note that the observation of a degeneracy of correlators for the triplet bilinears in Eq. (33) would not discriminate
between the confining mode and free quarks, because the current conservation in the free quark system also provides
such a degeneracy, as follows already from the discussion in the previous section, see Eq. (15)1.

The transformations (26) with k = 2 generate the following singlets and triplets:

(Vx); (Ax, Tt, Xt) , (34)

(Vt); (At, Tx, Xx) . (35)

Again, a degeneracy of the correlators built from the triplet bilinears in Eq. (34) is a signal for the emergence of the
SU(2)CS symmetry. This is di↵erent from the degeneracy of the correlators of the triplet bilinears from Eq. (35)
which in the free quark case can be connected to current conservation and thus is not suitable for discriminating
between the interacting mode and a system of free quarks.

This discussion (as well as a structure of the SU(4) multiplets below) implies that only the study of a possible
degeneracy among correlators of the bilinears (32), as well as the bilinears (34) is suitable for the analysis of the
underlying dynamics and degrees of freedom. Note that only those SU(2)CS , k = 1, 2, 3, 4 transformations can be
considered for a given observable that do not mix operators of di↵erent spin and thus respect rotational invariance at
non-zero temperature. This requirement is met for our setup by the k = 1, 2 transformations, as indicated above.

We remark that at zero temperature in the continuum there is a SO(3) symmetry in the x, y, t subspace and the
z-correlators of the Vx, Vy, Vt bilinears (20) coincide. The same is true for the z-correlators of the corresponding x, y

and t components of the bilinears (22), (23) and (24). At finite temperature this rotational symmetry is broken down
to a residual SO(2) symmetry which connects the correlators of the spatial components Vx $ Vy and Ax $ Ay et
cetera. On the lattice the reduced symmetry for the T > 0 case and the z = const subspace is D4h and the relevant
symmetry is S2 ⇥ SU(2)CS [22]2, such that the multiplets are

(Vx, Vy); (Ax, Ay, Tt, Xt) , (36)

(Vt); (At, Tx, Ty, Xx, Xy) . (37)

Finally we remark that the group SU(2)CS⌦SU(2)F , where SU(2)F is the isospin symmetry group, can be extended
to SU(4) with fifteen generators:

{(~⌧ ⌦ 1D), (1F ⌦ ~⌃k), (~⌧ ⌦ ~⌃k)} . (38)

The corresponding transformations are a trivial generalization of Eq. (26) obtained by replacing the generators ~⌃
by those listed in (38). Also the group SU(4) is a symmetry of the quark - chromo-electric interaction terms of the

1 This is true for the correlators normalized to 1 which we study here. Without this normalization there is an overall factor of 2 between
the free correlators built with the Vt, At and Tx, Ty , Xx, Xy bilinears (see, e.g., Eq. (16)), that would allow one to distinguish the results
for free quarks from the full SU(2)CS case in an elaborated calculation with properly renormalized full QCD correlators.

2 S2 here denotes the permutation- or symmetric group for x $ y interchanges.

Not so obvious                                    : 15 generators
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Name Dirac structure Abbreviation

Pseudoscalar �5 PS ⇤
U(1)AScalar 1 S

Axial-vector �k�5 A ⇤
SU(2)AVector �k V

Tensor-vector �k�3 T ⇤
U(1)AAxial-tensor-vector �k�3�5 X

TABLE II. Fermion bilinears considered in this work and their transformation properties (last column). This classification
assumes propagation in z-direction. The open vector index k here runs over the components 1, 2, 4, i.e., x, y and t.

The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [27, 28],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [22]. The SU(2)CS chiral spin transformations are defined by

q(x) ! exp

✓
i

2
~⌃~✏

◆
q(x) , q̄(x) ! q̄(x)�4 exp

✓
�
i

2
~⌃~✏

◆
�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d
3
x  

†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.

In Minkowski space in a given reference frame the quark-gluon interaction can be split into temporal and spatial
parts:

 �
µ
Dµ  =  �

0
D0  +  �

i
Di  , (29)

where

Dµ =

✓
@µ � ig

t ·Aµ

2

◆
 . (30)

The temporal term includes the interaction of the color-octet charge density

 ̄(x) �0
t

2
 (x) =  (x)†

t

2
 (x) (31)

with the chromo-electric component of the gluonic field. It is invariant under SU(2)CS [28]. We emphasize that the
SU(2)CS transformations defined in Eq. (26) via the Euclidean Dirac matrices can be identically applied to Minkowski
Dirac spinors without any modification of the generators. The spatial part contains the quark kinetic term and the

[Glozman, EPJA 15]



Relations in meson multiplets

f1(0, 1++)
 (1F ⌦ �5�i) 

!(0, 1��)
 (1F ⌦ �i) 

b1(1, 1+�)
 (⌧a⌦�5�4�i) 

!(0, 1��)
 (1F ⌦ �4�i) 

⇢(1, 1��)
 (⌧a ⌦ �4�i) 

h1(0, 1+�)
 (1F⌦�5�4�i) 

⇢(1, 1��)
 (⌧a ⌦ �i) 

a1(1, 1++)
 (⌧a ⌦ �5�i) 

(0, 0)

(1/2, 1/2)a

(1/2, 1/2)b

(1, 0) � (0, 1)

U(1)A U(1)A

SU(2)A

SU(2)A

SU(2)A

f1(0, 1++)
 (1F ⌦ �5�i) 

!(0, 1��)
 (1F ⌦ �i) 

b1(1, 1+�)
 (⌧a⌦�5�4�i) 

!(0, 1��)
 (1F ⌦ �4�i) 

⇢(1, 1��)
 (⌧a ⌦ �4�i) 

h1(0, 1+�)
 (1F⌦�5�4�i) 

⇢(1, 1��)
 (⌧a ⌦ �i) 

a1(1, 1++)
 (⌧a ⌦ �5�i) 

(0, 0)

(1/2, 1/2)a

(1/2, 1/2)b

(1, 0) � (0, 1)

SU(2)CS

SU(2)CS
SU(4)

FIG. 1. Transformations between interpolating vector operators, i = 1, 2, 3. The left columns

indicate the chiral representation for each operator. Red and blue arrows connect operators that

transform into each other under SU(2)L ⇥SU(2)R and U(1)A, respectively. Green arrows connect

operators that form triplets of SU(2)CS , k = 4. The f1 and a1 operators are the SU(2)CS , k = 4 –

singlets. Purple arrows show the 15-plet of SU(4). The f1 operator is a SU(4)-singlet.

Transformation properties of the local J = 1 quark-antiquark bilinears O�(x, y, z, t) with

respect to SU(2)L ⇥ SU(2)R and U(1)A are given on the left side of Fig. 1 and those with

respect to SU(2)CS, k = 4 and SU(4) on the right side of Fig. 1 [6]. Emergence of the

respective symmetries is signalled by the degeneracy of the correlators (9) calculated with

operators that are connected by the corresponding transformations.

III. METHODOLOGY

The lattice data presented in the next section is calculated on JLQCD gauge configura-

tions with NF = 2 fully dynamical domain wall fermions ([9, 16]). The length of the fifth

dimension for the fermions is chosen as L5 = 16, to ensure good chiral symmetry [14].

The quark propagators are computed on point sources after three steps of stout smearing.

The fermion fields obey anti-periodic boundary conditions in time direction. For the gauge

part we use the Symanzik-improved gauge action with an inverse gauge coupling �g =

4.3 (a = 0.075 fm). The time extent of the lattices is Nt = 12, which corresponds to a

temperature of T ' 220 MeV (⇠ 1.2Tc). We calculate the data on three spatial volumes,

Ns = 24, 32, 48, with a quark mass of mud = 0.001. Measurements are performed on O(50)

independent configurations.

5

chiral symmetry                                                    CS symmetry

[Rohrhofer et al., PLB 20]
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Emergent CS symmetry: where does it come from?

QCD quark action, chiral limit:

2

all known results on screening masses are fully consis-
tent with such an intermediate temperature range be-
tween broken chiral symmetry and a partonic quark gluon
plasma. Using quark hadron duality of screening masses
to identify the onset of the plasma regime, we derive how
the upper boundary of the chiral spin symmetric band
curves away from the T -axis in Sec. V. In Sec. VI we
identify parity doubled baryon matter as a candidate for
a chiral spin symmetric regime of cold and dense QCD,
which can be naturally embedded into quarkyonic mat-
ter. Finally, we discuss the prospects and limitations of
dilepton spectra to probe matter in the chiral spin sym-
metric regime, Sec. VII.

II. CHIRAL SPIN SYMMETRY OF THE COLOR
CHARGE AND ITS IMPLICATIONS

The Banks-Casher relation [18] connects the quark
condensate of the QCD vacuum with the density of the
near-zero modes of the Dirac operator,

h ̄ i = ⇡ lim
�!0

lim
m!0

lim
V!1

⇢(�,m) . (1)

An artificial truncation of the near-zero modes on the
lattice at T = 0 may then be expected to restore
the SU(NF )L ⇥ SU(NF )R and possibly the U(1)A chi-
ral symmetry of the QCD Lagrangian. For example,
the instanton liquid model [19, 20] suggests that both
SU(NF )L ⇥ SU(NF )R and U(1)A breakings are due to
the ’t Hooft determinant induced by the instanton fluc-
tuations of the QCD vacuum at sufficiently strong cou-
pling [21].

A spectrum calculation based on such truncated Dirac
operators has revealed a larger degeneracy pattern than
expected, both for mesons [22–24] and baryons [25].
From the quantum numbers of the degenerate states
the symmetry groups responsible for this large degen-
eracy, the chiral spin SU(2)CS and SU(2NF ), were re-
constructed in refs. [26, 27]. An SU(2)CS chiral spin
transformation acting on Dirac spinors can be defined as

 !  0 = exp

✓
i
"n⌃n

2

◆
 , (2)

where the generators ⌃n/2 of the four-dimensional re-
ducible representation are

⌃n = {�0,�i�5�0, �5} (3)

and satisfy the su(2) algebra. This transformation ro-
tates in the space of right- and left-handed Weyl spinors
R,L, and an equivalent representation of Eq. (2) is

✓
R
L

◆
!

✓
R0

L0

◆
= exp

✓
i
"n�n

2

◆✓
R
L

◆
. (4)

In Euclidean spacetime with its O(4) symmetry, all
four directions are equivalent and one can use any Eu-
clidean hermitian �-matrix �k, k = 1, 2, 3, 4 to replace

the Minkowskian �0,

⌃n = {�k,�i�5�k, �5}, (5)

�i�j + �j�i = 2�ij ; �5 = �1�2�3�4. (6)

The su(2) algebra is satisfied for any k = 1, 2, 3, 4, so
any choice is permitted that does not mix operators with
different spatial O(3) spins. Note that SU(2)CS contains
U(1)A as a subgroup. The direct product of the SU(2)CS

group with the flavor group SU(NF ) can be embedded
into a SU(2NF ) group, which includes the chiral symme-
try as a subgroup,

SU(2NF ) � SU(NF )L ⇥ SU(NF )R ⇥ U(1)A . (7)

The SU(2)CS and SU(2NF ) groups are not symme-
tries of the Dirac Lagrangian. In a fixed Lorentz frame
we can split the latter in color-electric (temporal) and
color-magnetic (spatial) parts,

 ̄�µDµ =  ̄�0D0 +  ̄�iDi , (8)

where the first term is invarant under SU(2)CS and
SU(2NF ), while the second term is not. At the same
time these are symmetries of the Lorentz-invariant color
charge

Qa =

Z
d3x  †(x)T a (x) , (9)

with T a the SU(3) color generators. This feature allows
for the SU(2)CS and SU(2NF ) symmetries to distin-
guish between the chromoelectric and chromomagnetic
interactions in a given reference frame. The chromoelec-
tric gauge field couples to the color charge, consequently
the chromoelectric interaction of quarks and gauge fields
is SU(2)CS and SU(2NF ) symmetric. The chromo-
magnetic gauge fields couple to a current, which is not
SU(2)CS and SU(2NF ) symmetric. Thus, the symmetry
of the electric part of the QCD Lagrangian is larger than
the symmetry of the QCD Lagrangian as a whole.

The observation of the SU(2)CS , SU(2NF ) symmetries
in the hadron spectrum upon truncation of the near-zero
modes of the Dirac operator then implies that the mag-
netic interaction at zero temperature is located mostly in
those near-zero modes, whereas a confining electric inter-
action is distributed among all Dirac modes. Hence, con-
finement and chiral symmetry breaking in QCD are not
directly related phenomena. Based on this observation it
was predicted that, for finite temperature QCD without
any truncations, the chiral spin and SU(2NF ) symme-
tries should emerge above the chiral symmetry restoring
crossover [28].

III. CHIRAL SPIN SYMMETRY AT FINITE
TEMPERATURE

Above the pseudocritical temperature for chiral sym-
metry restoration in NF = 2 + 1 QCD, Tpc ⇠ 155 MeV

CS invariant breaks CS

The classical QCD action in the chiral limit is not CS symmetric!

Quark gluon interactions:              colour-electric                  colour-magnetic

The free quark action in the chiral limit is not CS symmetric!
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CS invariant breaks CS

Necessary condition for approximate CS symmetry: 

Quantum effective action         dominated by colour-electric interactions! 
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Figure 2. Temporal correlation functions for NF = 2 QCD with chiral fermions on 12 ⇥ 483 lattices. Left: Full QCD results
at T = 220 MeV, representing multiplets of all groups, U(1)A, SU(2)L ⇥ SU(2)R, SU(2)CS and SU(4). Right: Correlators
calculated with free quarks with manifest U(1)A and SU(2)L ⇥ SU(2)R symmetries. From [16].

[29, 30], one a priori expects observables to exhibit a
SU(2)L ⇥ SU(2)R chiral symmetry. The chiral conden-
sate decreases significantly through a smooth crossover
between T ⇡ 100 � 200 MeV. The effects of the axial
anomaly are determined by the topological charge den-
sity. There are strong indications from the lattice that
the U(1)A symmetry is approximately restored above
Tch ⇡ 200 MeV [31–34], which suggests that the topo-
logical fluctuations at these temperatures are strongly
suppressed. This effective symmetry restoration is visible
by the degeneracy of all correlators (obtained with a chi-
rally symmetric Dirac operator) connected by the U(1)A
transformation [15, 16]. Closer to Tpc, the quark conden-
sate becomes appreciable and should provide a splitting
of the respective correlators, as is also observed [33, 35].
For the following, mostly qualitative, considerations, we
take Tch ⇡ Tpc approximately, without loss of generality.

Detailed lattice studies of spatial [15] and temporal
[16] meson correlators at T>⇠Tch, calculated in NF = 2
QCD with a chirally symmetric Dirac operator at physi-
cal quark masses, exhibit approximate multiplets of both
SU(2)CS and SU(2NF ) groups, i.e. they display a sym-
metry larger than the chiral symmetry of the QCD La-
grangian. As an example and for later reference, we re-
produce the temporal correlators from [16] in Fig. 2. Cor-
relators of the isovector scalar (S) and isovector pseu-
doscalar (PS) operators are connected by the U(1)A
transformation and their degeneracy indicates an effec-
tive restoration of this symmetry. If there is a tiny split-
ting of the S and PS correlators, it is too small to be
seen in the present lattice data. An approximate degen-
eracy of the a1, b1, ⇢(1, 0)+(0, 1) and ⇢(1/2, 1/2)b correla-
tors indicates emergent approximate SU(2)CS and SU(4)
symmetries. This larger symmetry disappears again once
temperatures exceed T>⇠3Tch [15, 16]. Let us assess the
implications of this observation in some detail.

For any meson operator O�(⌧,x) =  ̄(⌧,x)�⌧
2 (⌧,x)

with � 2 {1, �5, �µ, �5�µ,�µ⌫ , �5�µ⌫}, the Euclidean cor-

relation functions,

C�(⌧,x) = hO�(⌧,x)O�(0,0)i , (10)

carry the full spectral information of all excitations with
J = 0, 1 in their associated spectral functions ⇢�(!,p),

C�(⌧,p) =

Z 1

0

d!

2⇡
K(⌧,!)⇢�(!,p) ,

K(⌧,!) =
cosh(!(⌧ � 1/2T ))

sinh(!/2T )
. (11)

The spatial and temporal correlators probed in [15, 16],

Cs

�(z) =
X

x,y,⌧

C�(⌧,x) , (12)

C⌧

�(⌧) =
X

x,y,z

C�(⌧,x) , (13)

collect the spectral information projected on the (px =
py = ! = 0) and (px = py = pz = 0) axes, respec-
tively. In thermal equilibrium the system is isotropic and
the momentum distribution is the same in all directions,
⇢�(!,p) = ⇢�(!, |p|). Observing approximate chiral spin
symmetry both in the frequency and one momentum di-
rection is therefore sufficient to conclude that it is also
realized in the full spectral functions ⇢�(!,p). Finally,
since different quantum number channels are evaluated
with the same action, one must conclude that the ob-
served degeneracy patterns reflect an approximate sym-
metry of the non-perturbative effective action, and hence
the thermal partition function of QCD.

Finite temperature chiral spin symmetry is thus an ex-
ample of an emergent symmetry. Similar to the synthetic
vacuum situation described in the last section, for this to
happen the chromoelectric sector of the effective quark
action must dominate over the chromomagnetic sector.
Moreover, the chromoelectric interaction has to domi-
nate over the spatial kinetic terms, which implies that
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Spectral function contains all information about
degrees of freedom

Inversion from discrete data ill-posed problem

Finite T has preferred reference frame: colour-electric and colour magnetic distinguishable!

 Chiral symmetry restoration at finite T  
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FIG. 1. Overview of our spatial correlators in a wide range of temperatures. The correlators are shown as a function of the
dimensionless combination zT = nz/Nt and are normalized to 1 at nz = 1. Note that the correlators are for di↵erent lattice
sizes as indicated (compare Table III for details). We label groups of correlators according to the multiplets E1, E2 and E3 as
introduced in Eqs. (43) – (45).
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We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
consider

C�(nz) =
X

nx,ny,nt

hO�(nx, ny, nz, nt)O�(0, 0)
†
i . (42)

Obviously this is the lattice version of the continuum form in Eq. (1).

V. RESULTS

In Fig. 1 we compare the spatial correlators for a wide range of temperatures from T ⇠ 220 MeV to 960 MeV to
give an impression of the changing behavior observed for di↵erent values of T . The correlators are shown as a function
of the dimensionless combination zT = nz/Nt (compare Eq. (41)) using the full range of nz values – up to periodicity.
In order to compare di↵erent correlators without a proper renormalization, our correlators are normalized to 1 at
nz = 1. Because of the degeneracy of x and y components in vector operators we show only the correlators for the x

components.
The top left panel of Fig. 1 shows correlators at a temperature of T ⇠ 220 MeV, i.e., 1.2Tc. All correlation

functions of chiral partners are degenerate within errors. In detail, this are the two pairs (Vx, Ax) and (Vt, At), each
of which reflects SU(2)R ⇥ SU(2)L symmetry. U(1)A symmetry in the vector channel, represented by the operator
pairs (Tx, Xx) and (Tt, Xt), is manifest for all ensembles. For the scalar (PS, S) pair we find the restoration of U(1)A
symmetry to be heavily dependent on the parameters. As it is evident from the top left panel of Fig. 1, PS and S are
degenerate within errors for our finest lattice. On the coarser 32⇥ 8 ensemble at 220 MeV we find a visible di↵erence
of PS and S correlators consistent with previous findings in literature, e.g. the data for staggered quarks presented
in Fig. 7 of Ref. [19].3

For temperatures between T ⇠ 220 – 500 MeV the correlators are grouped into three distinct multiplets4:

E1 : PS $ S , (43)

E2 : Vx $ Tt $ Xt $ Ax , (44)

E3 : Vt $ Tx $ Xx $ At . (45)

Possible splittings within each of these multiplets are obviously much smaller than the distances between the multiplets.
The multiplet structure reflects the symmetries as follows: The multiplet E1 indicates the restoration of U(1)A
symmetry. Degeneracies within the multiplets E2 and E3 reflect the larger symmetries SU(2)CS and SU(4) as
discussed in the previous section.

The formation of the multiplet E3 is not necessarily a consequence of the SU(2)CS and SU(4) symmetries as
the same degeneracy of correlators is seen also for non-interacting quarks (15) and can be attributed to current
conservation. Consequently from the observation of the E3 multiplet alone we could not claim the emergence of the
SU(2)CS and SU(4) symmetries. However, the E2 degeneracy is not manifest in the free quark system (15) and
indeed can be attributed to the emergent SU(2)CS and SU(4) symmetries.
We speak of separate multiplets when the splittings within the multiplets are much smaller than splittings between

di↵erent multiplets. All correlators connected by chiral U(1)A and SU(2)L ⇥ SU(2)R transformations are indistin-
guishable at all temperatures. At temperatures above T ⇠ 600 MeV we observe that the distinct multiplet E2, related
to emergence of the SU(2)CS and SU(4) symmetries, is washed out. The remaining E3 multiplet structure can be
attributed to quasi-free quarks.
In Fig. 2 we now focus on the E1 and E2 multiplets at three di↵erent temperatures. For comparison we also show

the corresponding correlators computed for free quarks (dashed lines). The latter correlators are obtained with the
same lattice Dirac operator and lattice size as used for the full QCD but now with a unit gauge configuration. We
note that for free quarks only those degeneracies exist that are predicted by the chiral U(1)A and SU(2)L ⇥ SU(2)R
symmetries.
For the lowest temperature T ⇠ 220 MeV we still observe a small residual splitting within the E2 multiplet, while

at T ⇠ 380 MeV the di↵erence nearly vanishes. Furthermore, there is a clear splitting between the E1 and E2

multiplets indicating SU(2)CS and SU(4) symmetries. In addition all correlators are well separated from their free
quark counterparts shown as dashed curves.

3 For detailed studies of U(1)A symmetry around Tc see e.g. [21] or [24]. The latter study uses the same simulation setup as the present
work.

4 Note that in E2 and E3 we leave out the y components which are exactly degenerate with the respective x components explicitly listed
in E2 and E3.
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FIG. 2. Temporal correlation functions for 483⇥12 lattices. The l.h.s. shows correlators calculated

with free noninteracting quarks on the same lattice, and features a symmetry pattern expected from

chiral symmetry. The r.h.s. presents full QCD data at a temperature of T = 220MeV (1.2Tc),

which shows multiplets of all U(1)A, SU(2)L ⇥ SU(2)R, SU(2)CS and SU(4) groups.

On the left side of Fig. 2 we show the correlators calculated with free, noninteracting

quarks on the same lattice with the same Dirac action (the gauge operator U is set to 1).

Dynamics of free quarks are governed by the Dirac equation and only chiral symmetries

exist. Indeed, a multiplet structure in this case is very di↵erent as compared to the right

side of Fig. 2 and only degeneracies due to U(1)A and SU(2)L ⇥ SU(2)R symmetries are

seen in meson correlators calculated for free quarks. The pattern seen on the left of Fig. 2

reflects correlators at a very high temperature, since due to the asymptotic freedom at very

high T the quark-gluon interactions can be neglected.

While we observe practically exact chiral symmetries, the SU(2)CS and SU(4) symme-

tries are only approximate. A degree of the symmetry breaking can be evaluated via the

parameter ,

 =
C

(1,0)�(0,1)
⇢ � C

(1/2,1/2)
⇢

C
(1,0)�(0,1)
⇢ � CS

, (11)

that measures the splitting within the SU(2)CS multiplet relative to the distance between

di↵erent multiplets. With this definition, good symmetry implies || ⌧ 1.

The degree of the symmetry breaking obviously depends on the dimensionless variable

tT . At tT ⇠ 0.5 the breaking is tiny, as can be seen from Fig. 3. For the noninteracting

quarks there is no SU(2)CS symmetry and in infinite volume || ⇠ 1 [13].
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FIG. 1. Transformations between interpolating vector operators, i = 1, 2, 3. The left columns

indicate the chiral representation for each operator. Red and blue arrows connect operators that

transform into each other under SU(2)L ⇥SU(2)R and U(1)A, respectively. Green arrows connect

operators that form triplets of SU(2)CS , k = 4. The f1 and a1 operators are the SU(2)CS , k = 4 –

singlets. Purple arrows show the 15-plet of SU(4). The f1 operator is a SU(4)-singlet.

Transformation properties of the local J = 1 quark-antiquark bilinears O�(x, y, z, t) with

respect to SU(2)L ⇥ SU(2)R and U(1)A are given on the left side of Fig. 1 and those with

respect to SU(2)CS, k = 4 and SU(4) on the right side of Fig. 1 [6]. Emergence of the

respective symmetries is signalled by the degeneracy of the correlators (9) calculated with

operators that are connected by the corresponding transformations.

III. METHODOLOGY

The lattice data presented in the next section is calculated on JLQCD gauge configura-

tions with NF = 2 fully dynamical domain wall fermions ([9, 16]). The length of the fifth

dimension for the fermions is chosen as L5 = 16, to ensure good chiral symmetry [14].

The quark propagators are computed on point sources after three steps of stout smearing.

The fermion fields obey anti-periodic boundary conditions in time direction. For the gauge

part we use the Symanzik-improved gauge action with an inverse gauge coupling �g =

4.3 (a = 0.075 fm). The time extent of the lattices is Nt = 12, which corresponds to a

temperature of T ' 220 MeV (⇠ 1.2Tc). We calculate the data on three spatial volumes,

Ns = 24, 32, 48, with a quark mass of mud = 0.001. Measurements are performed on O(50)

independent configurations.
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FIG. 6. Illustrative sketch for the temperature evolution of the QCD e↵ective degrees of freedom as suggested by the changing
symmetry content manifest in our spatial correlators.

of symmetry breaking: the confining electric interaction becomes small relative to the quark kinetic term. Finally, up
to T ⇠ 1 GeV (5.7Tc) there is an evolution to a weakly interacting QGP, where the relevant symmetries are the full
set of chiral symmetries. Fig. 6 provides an illustrative sketch of this temperature evolution for the e↵ective degrees
of freedom of QCD. We note that the temperature range, in which the most drastic changes of thermodynamical bulk
quantities occur, coincides qualitatively with the “stringy fluid” regime, see, e.g., Fig. 4 of Ref. [8].
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APPENDIX A

All free spatial continuum correlators that we discuss in Section 2 can be expressed as linear combinations of
Cz(z) and C⌧ (z) defined in Eq. (12). These two correlators can be simplified by switching to polar coordinates
px = r cos('), py = r sin('). The '-integration gives a factor of 2⇡ and the transformation ⇠

2 = (r/!n)2 + 1 of the
remaining integration variable brings the correlators to the form

Cz(z) =
1

2⇡�

X

n2Z
!
2
n

Z 1

1
d⇠ ⇠ e

�2 z |!n| ⇠ ,

C⌧ (z) =
1

2⇡�

X

n2Z
!
2
n

Z 1

1
d⇠ ⇠

1

⇠2
e
�2 z |!n| ⇠ . (47)

crossover

crossover

Degrees of freedom (to be verified):



Check well-studied observables: screening masses

3

Figure 2. Temporal correlation functions for NF = 2 QCD with chiral fermions on 12 ⇥ 483 lattices. Left: Full QCD results
at T = 220 MeV, representing multiplets of all groups, U(1)A, SU(2)L ⇥ SU(2)R, SU(2)CS and SU(4). Right: Correlators
calculated with free quarks with manifest U(1)A and SU(2)L ⇥ SU(2)R symmetries. From [16].

[29, 30], one a priori expects observables to exhibit a
SU(2)L ⇥ SU(2)R chiral symmetry. The chiral conden-
sate decreases significantly through a smooth crossover
between T ⇡ 100 � 200 MeV. The effects of the axial
anomaly are determined by the topological charge den-
sity. There are strong indications from the lattice that
the U(1)A symmetry is approximately restored above
Tch ⇡ 200 MeV [31–34], which suggests that the topo-
logical fluctuations at these temperatures are strongly
suppressed. This effective symmetry restoration is visible
by the degeneracy of all correlators (obtained with a chi-
rally symmetric Dirac operator) connected by the U(1)A
transformation [15, 16]. Closer to Tpc, the quark conden-
sate becomes appreciable and should provide a splitting
of the respective correlators, as is also observed [33, 35].
For the following, mostly qualitative, considerations, we
take Tch ⇡ Tpc approximately, without loss of generality.

Detailed lattice studies of spatial [15] and temporal
[16] meson correlators at T>⇠Tch, calculated in NF = 2
QCD with a chirally symmetric Dirac operator at physi-
cal quark masses, exhibit approximate multiplets of both
SU(2)CS and SU(2NF ) groups, i.e. they display a sym-
metry larger than the chiral symmetry of the QCD La-
grangian. As an example and for later reference, we re-
produce the temporal correlators from [16] in Fig. 2. Cor-
relators of the isovector scalar (S) and isovector pseu-
doscalar (PS) operators are connected by the U(1)A
transformation and their degeneracy indicates an effec-
tive restoration of this symmetry. If there is a tiny split-
ting of the S and PS correlators, it is too small to be
seen in the present lattice data. An approximate degen-
eracy of the a1, b1, ⇢(1, 0)+(0, 1) and ⇢(1/2, 1/2)b correla-
tors indicates emergent approximate SU(2)CS and SU(4)
symmetries. This larger symmetry disappears again once
temperatures exceed T>⇠3Tch [15, 16]. Let us assess the
implications of this observation in some detail.

For any meson operator O�(⌧,x) =  ̄(⌧,x)�⌧
2 (⌧,x)

with � 2 {1, �5, �µ, �5�µ,�µ⌫ , �5�µ⌫}, the Euclidean cor-

relation functions,

C�(⌧,x) = hO�(⌧,x)O�(0,0)i , (10)

carry the full spectral information of all excitations with
J = 0, 1 in their associated spectral functions ⇢�(!,p),

C�(⌧,p) =

Z 1

0

d!

2⇡
K(⌧,!)⇢�(!,p) ,

K(⌧,!) =
cosh(!(⌧ � 1/2T ))

sinh(!/2T )
. (11)

The spatial and temporal correlators probed in [15, 16],

Cs

�(z) =
X

x,y,⌧

C�(⌧,x) , (12)

C⌧

�(⌧) =
X

x,y,z

C�(⌧,x) , (13)

collect the spectral information projected on the (px =
py = ! = 0) and (px = py = pz = 0) axes, respec-
tively. In thermal equilibrium the system is isotropic and
the momentum distribution is the same in all directions,
⇢�(!,p) = ⇢�(!, |p|). Observing approximate chiral spin
symmetry both in the frequency and one momentum di-
rection is therefore sufficient to conclude that it is also
realized in the full spectral functions ⇢�(!,p). Finally,
since different quantum number channels are evaluated
with the same action, one must conclude that the ob-
served degeneracy patterns reflect an approximate sym-
metry of the non-perturbative effective action, and hence
the thermal partition function of QCD.

Finite temperature chiral spin symmetry is thus an ex-
ample of an emergent symmetry. Similar to the synthetic
vacuum situation described in the last section, for this to
happen the chromoelectric sector of the effective quark
action must dominate over the chromomagnetic sector.
Moreover, the chromoelectric interaction has to domi-
nate over the spatial kinetic terms, which implies that
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Directly related to the partition function and equation of state

by transfer matrices:  
<latexit sha1_base64="44kp+vASNpUS/42D1xIuN3aVFAE=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXGhJpKgIQsFNlxX6gjaGyXTSDp1MwsxEaEPc+CtuXCji1r9w5984bbPQ1gMXzpxzL3Pv8SJGpbKsbyO3tLyyupZfL2xsbm3vmLt7TRnGApMGDlko2h6ShFFOGooqRtqRICjwGGl5w9uJ33ogQtKQ19UoIk6A+pz6FCOlJdc8qN+Q++QMVdNTWHfH2cMdp65ZtErWFHCR2Bkpggw11/zq9kIcB4QrzJCUHduKlJMgoShmJC10Y0kihIeoTzqachQQ6STTC1J4rJUe9EOhiys4VX9PJCiQchR4ujNAaiDnvYn4n9eJlX/lJJRHsSIczz7yYwZVCCdxwB4VBCs20gRhQfWuEA+QQFjp0Ao6BHv+5EXSPC/ZF6XyXblYuc7iyINDcAROgA0uQQVUQQ00AAaP4Bm8gjfjyXgx3o2PWWvOyGb2wR8Ynz/cGpXe</latexit>

T = e�aH , Tz = e�aHz

Screening masses: eigenvalues of 
<latexit sha1_base64="I7Hivi5WLdz4CmDX7I6Kq1rtxE8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KomIiqeClx4r2g9oQ9lsN+3SzSbsToQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3U791iPXRsTqAccJ9yM6UCIUjKKV7mu9p16p7FbcGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezUyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF77mVBJilyx+aIwlQRjMv2b9IXmDOXYEsq0sLcSNqSaMrTpFG0I3uLLy6R5XvEuKxd3Xrl6k8dRgGM4gTPw4AqqUIM6NIDBAJ7hFd4c6bw4787HvHXFyWeO4A+czx8wyo23</latexit>

Hz

For T=0 equivalent to eigenvalues of     ,  for             “finite size effect” 
<latexit sha1_base64="XfXBVdaVhilvzM19O4WTdnqzpAk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIiqeClx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777aytb2xubRd2irt7+weHpaPjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7G9zO//YRK81g+mEmCfkSHkoecUWOlRq1fKrsVdw6ySryclCFHvV/66g1ilkYoDRNU667nJsbPqDKcCZwWe6nGhLIxHWLXUkkj1H42P3RKzq0yIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynaELzll1dJ67LiXVeuGl65epfHUYBTOIML8OAGqlCDOjSBAcIzvMKb8+i8OO/Ox6J1zclnTuAPnM8fnQ+Myg==</latexit>

H
<latexit sha1_base64="I/BinJiLOug5/c7mGFwwM8QdXnU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEVDwVvHis0C9oQ9lsJ+3SzSbuboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCopeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3cxvP6HSPJYNM0nQj+hQ8pAzaqzUbvQkPhK3X664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj93Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIy+50MuEJmxMQSyhS3txI2oooyYxMq2RC85ZdXSeui6l1VLx+8Su02j6MIJ3AK5+DBNdTgHurQBAZjeIZXeHMS58V5dz4WrQUnnzmGP3A+fwCEXo8C</latexit>

T 6= 0

4 Leonid Ya. Glozman et al.: Chiral spin symmetry and the QCD phase diagram

Figure 2. Temporal correlation functions for NF = 2 QCD with chiral fermions on 12 ⇥ 483 lattices. Left: Full QCD results
at T = 220 MeV, representing multiplets of all groups, U(1)A, SU(2)L ⇥ SU(2)R, SU(2)CS and SU(4). Right: Correlators
calculated with free quarks with manifest U(1)A and SU(2)L ⇥ SU(2)R symmetries. From [16].

At zero density, there are then three temperature regimes
in QCD with clearly distinguishable symmetries: the low
temperature regime with spontaneously broken chiral sym-
metry, an intermediate regime with approximate chiral
spin and SU(2NF ) symmetries, and a high temperature
regime with chiral symmetry1.

4 Screening masses

Ultimately, the nature of the degrees of freedom compos-
ing the thermal system in its different regimes is encoded
in the spectral functions. At present, these are not yet
available fully non-perturbatively. However, we have in-
creasingly detailed, non-perturbative knowledge of screen-
ing masses, which govern the exponential decay of spatial
correlators, Eq. (12). For the following it is useful to re-
call that, on a Euclidean space time lattice, the thermal
partition function can be represented equivalently by two
different Hamiltonians,

epV/T = Z = Tr(e�aHN⌧ ) =
X

n

e�aEnN⌧

= Tr(e�aHzNz ) =
X

nz

e�aEnzNz . (14)

Here, H is the usual QCD Hamiltonian translating states
by one lattice spacing in Euclidean time, whereas Hz is the

1 There are several other observations of non-perturbative
dynamics above Tch. The concept of a semi-QGP [37] predicts
a separation of chiral symmetry restoration and deconfinement
by an intermediate T ⇠ 155 � 350 MeV range [38]. In recent
lattice simulations at the physical point, thermal monopole
condensation, often interpreted as marking the transition be-
tween confined and deconfined regimes, is observed at T ⇡ 275
MeV [39], and the spectral density of a chiral Dirac operator
suggests a novel phase T ⇠ 200 � 250 MeV with approximate
IR scale invariance [40,41]. At present it is not clear if and how
these phenomena are related to chiral spin symmetry.

analogous operator translating states in the z-direction,

| (⌧ + 1;x)i = exp(�aH)| (⌧ ;x)i ,
| (⌧ ;x, y, z + 1)i = exp(�aHz)| (⌧ ;x)i . (15)

On the lattice, both are straightforwardly defined without
gauge fixing via the lattice action between adjacent ⌧ - or
z-slices, respectively [42].

The thermodynamic limit (Nx,y,z ! 1 with T�1 =
aN⌧ finite) formally represents the “vacuum” physics of
Hz, whose spectrum is sensitive to the ”finite volume ef-
fect” of the compactified ⌧ -direction, i.e. T�1. The screen-
ing masses are the corresponding ground state energies
in each quantum number channel. Obviously, in the limit
T = 0 the spectrum is identical to that of H, while for
T ! 1 it reduces to the spectrum of 3d QCD, which
is known as dimensional reduction. Evidently, screening
masses are directly related to the equation of state, which
is completely determined by the full spectrum of Hz.

In order to characterize the dominant dynamical de-
grees of freedom, it is natural to proceed in analogy to
vacuum QCD, where rarely any confusion arises between
hadronic physics and quark gluon physics. While experi-
mental initial and final states are ever exclusively hadronic,
one may speak of parton physics driving the dynamics
whenever quark hadron duality holds [43], i.e. the hadronic
observables follow perturbative predictions for partonic
(sub- ) processes. This is also the terminology adopted
in some discussions of experimental results, see e.g. [44].
For a thermal equilibrium system, screening masses are
accessible by perturbative and non-perturbative calcula-
tions, thus providing a viable theoretical testing ground.

4.1 Chromoelectric vs. chromomagnetic fields

Thermal QCD generates three parametrically distinguished
scales, the hard scale of the non-zero Matsubara modes,
⇠ ⇡T , the intermediate scale of the color-electric fields,
⇠ gT , and the fully non-perturbative soft scale ⇠ g2T
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competes with the quadratic one to bend down the pseudoscalar mass as shown in Fig. 5.
Toward the lower end of the range, the competition between this term and the leading one
results in an e↵ective slope of opposite sign with respect to the analytically known one. At
T ⇠ 1 GeV, the various terms cancel each other and the mass turns out to be very close to
free-value 2⇡T .

7.2 Vector mass

The mass di↵erence (mV�mP )/(2⇡T ) is an interesting quantity to investigate the magnitude
of the spin-dependent contributions. We plot our results for this quantity (last column of
Table 1) as a function of ĝ4 on the right panel of Fig. 4. The data turn out to lie on a straight
line with a vanishing intercept. By fitting them to

(mV �mP )

2⇡T
= s4 ĝ

4 , (18)

we obtain s4 = 0.00704(14) with �2/dof = 0.79. It turns out that the spin-dependent contri-
bution can be parameterized by a single O(ĝ4) term in the entire range of temperatures ex-
plored. Furthermore, it remains clearly visible up to the highest temperature, where the pseu-
doscalar and the vector masses are still significantly di↵erent within our numerical precision,
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Figure 5: Pseudoscalar (red) and vector
(blue) screening masses versus ĝ2. The
bands represent the best fits in Eqs. (17) and
(19), while the dashed line is the analytically
known contribution.

see Fig. 5. The best polynomial that parame-
terizes our results for the vector mass (fourth
column of Table 1) is therefore

mV

2⇡T
= p0 + p2 ĝ

2 + p3 ĝ
3 + (p4 + s4) ĝ

4 , (19)

where p0, . . . , p4 are those in Eq. (17) while
s4 is taken from Eq. (18). The covari-
ances of the coe�cients p3 and p4 with
s4 are cov(p3, s4)/[�(p3)�(s4)] = 0.08 and
cov(p4, s4)/[�(p4)�(s4)] = �0.07.

As shown in Fig. 5, the quartic contribu-
tion is necessary to explain the data over the
entire temperature range. In particular at the
electroweak scale, it is still approximately 15%
of the total contribution due to the interac-
tions. Also for the vector mass, the coe�cient
of the quartic term in Eq. (19) has an opposite
sign with respect to p2, but it is approximately
half of the analogous one for the pseudoscalar.
When the mass is plotted as a function of ĝ2,
see Fig. 5, the quartic contribution competes
with the quadratic one but is not large enough
to push down the vector mass, at least in the
range considered. At the lower end of our range, T ⇠ 1 GeV, it is the spin-dependent term
that is responsible for the deviation of the vector mass from 2⇡T , given the cancellation
among the other terms.

12

Nf=3,  T=1 GeV -160 GeV

Highly non-trivial technically:
shifted b.c. + step-scaling techniques
(Alpha-Collaboration)

5

invariant operators [47], lattice evaluations at T ⇡ 2Tch

give mgi
D

⇡ 7.5T [46, 48, 49], which amounts to a Debye
radius of rD ⇡ 0.09 fm. Defining the Debye mass instead
as the matching coefficient of the A2

0-term in EQCD,
which to leading order corresponds to the propagator
pole mass, one obtains mpole

D
⇡ 2.5T [50] or rD ⇡ 0.27 fm.

While rather different, both definitions result in a screen-
ing length smaller than a typical hadron size. A chiral
spin symmetric regime composed of hadron-like objects
thus appears to contradict the common picture of Debye
screening [51], as was also pointed out in [52].

However, both definitions of the Debye mass are based
on pure gauge quantities and related to the screening
of static charges. Even for heavy quarks the dynami-
cal picture is more complicated, with mass values differ-
ing widely between quantum number channels, and the
precise connection between the Debye mass and the dis-
sociation of bound states remains far from clear, for a
review see [53]. In the context of chiral spin symme-
try we are interested in the fate of the light quarks and
mesons, which also give the dominant contribution to
the equation of state. But relativistic quarks have no
associated potentials in the first place, and chromoelec-
tric flux distributions within light mesons will depend on
all quantum numbers and behave quite differently from
those between static quarks.

Moreover, restricting QCD to Nf = 2+1 light flavors,
as is done in most lattice sumulations at the physical
point, neither propagator poles nor heavy quarkonium
screening masses enter the partition function Eq. (14)
at all. Only mgi

D
can possibly appear as screening mass

pertaining to the purely gluonic JPC = 0�+ operator
Tr(FijA0) [46]. This represents one single term, which is
subdominant since its screening mass value is larger than
those of all twelve flavor non-singlet J = 0, 1 mesons to
be discussed below. The Debye mass therefore has little
influence on the thermodynamics of light quarks.

C. Meson screening masses

What we need to do instead is to study meson screen-
ing masses in the light quark sector. A lot of progress has
been made, both analytically and numerically, towards
an increasingly precise evaluation over a wide temper-
ature range. In Fig. 3 we reprint a recent lattice de-
termination of the scalar and vector screening masses
composed of ūd quarks [33]. Also shown is the leading
perturbative result ⇠ 2⇡T , corresponding to the Mat-
subara modes of two free quarks, and the first correction
⇠ g2 evaluated within EQCD [54]. Note that this in-
cludes an all-loop-order HTL resummation of soft contri-
butions from the scale ⇠ gT . One observes the screening
masses in both vector and scalar channels to overshoot
the ⇠ 2⇡T level and to slowly approach the O(g2) pre-
diction, while spin dependence enters the perturbative
series at O(g4) only [55, 56].

Lattice calculations of pseudo-scalar and vector me-

son screening masses have recently been extended with
unprecedented precision to the high temperature range
T = 1 � 160 GeV [57], permitting a detailed analysis of
their perturbative behavior. In particular, over all three
orders of magnitude in temperature, the lattice data are
perfectly parametrized by

mPS

2⇡T
= 1 + p2 ĝ

2(T ) + p3 ĝ
3(T ) + p4 ĝ

4(T ) ,

mV

2⇡T
=

mPS

2⇡T
+ s4 ĝ

4(T ) , (15)

where ĝ2(T ) denotes the temperature-dependent running
coupling renormalized in the MS-scheme at µ = 2⇡T .
The perturbative value of p2 from [54] is fully confirmed,
while p3, p4, s4 are not yet computed analytically, but fit-
ted to the lattice data. Note that all coefficients are num-
bers, and the only temperature dependence of Eq. (15)
resides in the coupling, whose logarithmically slow run-
ning is responsible for the flat behavior observed for
T>⇠1 GeV in Fig. 3. The spin dependence is found to
be consistent with a single O(ĝ4) term s4 over the entire
temperature range down to 1 GeV, and vanishes only for
T ! 1 with the running coupling. Thus, (neglecting
the wiggles within errors) all structure of the lattice data
above T>⇠1 GeV in Fig. 3 can be desribed by a sufficiently
deep, resummed perturbative expansion about partonic
degrees of freedom, and is therefore characteristic of a
quark gluon plasma.

What has remained entirely uncommented in the liter-
ature so far is the rapid bending of the curves within
T ⇡ 0.5 � 0.7 GeV, from a steep increase with tem-
perature to an entirely flat behavior. The nearly ver-
tical portions of the plot cannot possibly be accounted
for by series like Eqs. (15), since their temperature de-
pendence resides in the coupling only. The same fea-
ture is observed in the same temperature range for all
J = 0, 1 mesons composed of ūs and s̄s quarks as well
[33]. That is, altogether this abruptly bending structure
is present across 12 different quantum number channels!
Since these constitute the dominant contributions to the
partition function Eq. (14), an apparent change of dy-
namics takes place for the entire system, signalled by the
complete breakdown of resummed perturbation theory at
the “knee” of those curves. At the temperatures in ques-
tion, this cannot be caused by chiral symmetry breaking.
Rather, when decreasing temperature from the plasma
regime, at the “knee” of the screening masses the chiral
spin symmetric regime is entered, which a perturbative
calculation about partons cannot reproduce to any order.

Conversely, increasing temperature from the hadronic
regime, each meson screening mass m� enters the pertur-
bative regime at some individual screening temperature
Ts(�), which one may define by, e.g., the most negative
curvature of m�/T (the location of the bend),

Ts(�) : min
T

⇢
d2

dT 2

m�

T

�
. (16)

Thus, for T>⇠Ts(�) quark hadron duality is realized in

the data, it is not necessary to model the temperature dependence of the discretization e↵ects
so as to perform a global fit of the data.

T T (GeV)
mP

2⇡T

mV

2⇡T

(mV �mP )

2⇡T

T0 164.6(5.6) 1.0194(25) 1.0261(23) 0.0071(7)
T1 82.3(2.8) 1.0219(15) 1.0291(18) 0.0076(4)
T2 51.4(1.7) 1.0216(16) 1.0312(18) 0.0087(4)
T3 32.8(1.0) 1.0217(15) 1.0302(19) 0.0092(6)
T4 20.63(63) 1.0220(15) 1.0343(17) 0.0105(6)
T5 12.77(37) 1.0185(18) 1.0306(24) 0.0132(10)
T6 8.03(22) 1.0200(18) 1.0341(28) 0.0143(13)
T7 4.91(13) 1.0192(18) 1.037(3) 0.0181(14)
T8 3.040(78) 1.0124(18) 1.0380(25) 0.0252(13)
T9 2.833(68) 1.0147(24) 1.038(3) 0.0244(20)
T10 1.821(39) 1.0122(18) 1.044(4) 0.0305(20)
T11 1.167(23) 1.0039(20) 1.045(6) 0.041(4)

Table 1: Best results for the pseudoscalar, mP , and the vector, mV , non-singlet screening
masses in the continuum limit together with their di↵erence.

7 Discussion and interpretation of the results

The main results of this paper are the non-singlet meson screening masses reported in Table 1.
They have been computed in a wide temperature range starting from T ⇠1 GeV up to 160 GeV
or so with a precision of a few permille.

The first observation is that, as anticipated in section 5, within our rather small statistical
errors we find an excellent agreement between the scalar and pseudoscalar masses and the
vector and axial ones. This is a clear manifestation of the restoration of chiral symmetry
occurring at high temperature. For this reason we do not show explicitly the results for the
other two channels, and we focus on the pseudoscalar and vector masses.

A second observation is that the bulk of the non-singlet meson screening masses is given
by the free-theory value, 2⇡T , plus a few percent positive contribution over the entire range
of temperatures explored.

Thanks to the precision of our results, we can scrutinize in detail the temperature de-
pendence induced by the non-trivial dynamics. We introduce the function ĝ2(T ) defined as

1

ĝ2(T )
⌘

9

8⇡2
ln

2⇡T

⇤MS

+
4

9⇡2
ln

✓
2 ln

2⇡T

⇤MS

◆
, (16)

where ⇤MS = 341 MeV is taken from Ref. [40]. It corresponds to the 2-loop definition
of the strong coupling constant in the MS scheme at the renormalization scale µ = 2⇡T .
For our purposes, however, this is just a function of the temperature T , suggested by the
e↵ective theory analysis, that we use to analyze our results2. The crucial point is the leading
logarithmic dependence on T .

2
One could also use a non-perturbative definition of the coupling constant, such as ḡ

2
SF. In this case,

however, comparing our data with the analytic results in the literature would be more involved.
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Figure 4: Left: the pseudoscalar mass, normalized to 2⇡T , subtracted of the analytically
known contributions versus ĝ4. Right: the vector-pseudoscalar mass di↵erence, normalized
to 2⇡T , versus ĝ4. Red bands represent the best fits of the data as explained in the text.

7.1 Pseudoscalar mass

We start our analysis by fitting the pseudoscalar mass in the third column of Table 1 to a
quartic polynomial in ĝ. The intercept turns out to be compatible with 1, as predicted by the
free theory, within a large error. We have thus enforced it to the free-theory value, p0 = 1,
and we have fitted again the data. The coe�cient of the ĝ2 term turns out to be compatible
with the theoretical expectation in Eq. (9) within again a large uncertainty. We have thus
fixed also this coe�cient to its analytical value, p2 = 0.032739961, and we have performed
again the quartic fit of the form

mP

2⇡T
= p0 + p2 ĝ

2 + p3 ĝ
3 + p4 ĝ

4 . (17)

As a result, for the fit parameters we obtain p3 = 0.0038(22), p4 = �0.0161(17) and
cov(p3, p4)/[�(p3)�(p4)] = �1.0 with the excellent value of �2/dof = 0.75. The quality of the
fit can be appreciated in the left plot of Fig. 4, where mP /(2⇡T ) - subtracted of the analyti-
cally known contributions - is shown as a function of ĝ4 together with the best fit to Eq. (17).
If the cubic coe�cient is enforced to vanish, i.e. p3 = 0, the fit returns p4 = �0.01323(20)
with again an excellent value of �2/dof = 0.96. The subtracted data lie on a straight line
over two orders of magnitude in the temperature. The polynomial in Eq. (17) is our best
parameterization of the results over the entire range of temperatures explored.

The quartic term is necessary to explain the data over the entire temperature range. In
particular at the electroweak scale or so, it is still approximately half of the total contribution
due to the interactions. Notice that the sign of the quartic term is negative, opposite to
the one of the quadratic contribution, and the magnitude turns out to be approximately 2–3
times smaller than p2. When the data are plotted as a function of ĝ2, the quartic contribution

11
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Figure 3. Screening masses of the lightest ūd mesons, evaluated in simulations using HISQ fermions, from [33].

that quantum number channel2. We may then conclude
that the bound states have released their quark gluon
content, i.e., their chromoelectric interaction is screened.
Once this happens in sufficiently many quantum number
channels, chiral spin symmetry is broken as expected for
a quark gluon plasma. Note that the resulting value of
Ts, where this happens, depends on the precise flavor and
mass content of the theory, as well as on the definition of
Ts(�), as expected for a crossover.

We conclude that the behavior of meson screening
masses from 12 different quantum number channels in
Nf = 2+ 1 QCD provide an independent demonstration
of the existence of a temperature window Tch<⇠T<⇠Ts, in
which chiral symmetry is restored but the dynamics is
inconsistent with a partonic description. By Eq. (14),
it is then equally impossible to describe the equation of
state in this regime by parton dynamics.

By contrast, Fig. 3 (left) shows chiral symmetry
restoration to be achieved by the initially heavier chi-
ral partners of the lowest screening masses dropping
abrubptly around Tch, and the same is true for all other
flavour combinations [33]. Then Eq. (14) implies growing
pressure around Tch, also in the absence of parton dynam-
ics. The same observation was made for chiral multiplets
of baryons extracted from temporal lattice correlators.
When used in a hadron resonance gas calculation, these
equally lead to growing pressure [58] at and above Tch.

2
The screening masses discussed here were extracted by

exp(�mscrz) fits to the large distance correlators, which is ap-

propriate for bound states of Hz . However, for either unstable or

multiparticle states, the exponential gets modified by power law

factors, whose general effect is a lowering of the resulting mass.

While this implies some uncertainty on the value of Ts(�), the

exponential fits provide lower bounds on their true values.

V. CHIRAL SPIN SYMMETRY AT FINITE
TEMPERATURE AND DENSITY

Having discussed the chiral spin symmetric tempera-
ture range Tch<⇠T<⇠Ts at zero density, the question arises
what happens with this regime at non-vanishing baryon
chemical potential. The quark chemical potential term
in the QCD action is manifestly SU(2)CS and SU(2NF )
symmetric [59]. This suggests that both symmetries ob-
served at µ = 0 should also persist at finite chemical
potential.

It is well known from lattice simulations how the chiral
crossover temperature, which constitutes a lower bound
for and is close to the chiral spin symmetric regime, be-
haves for small µB

<⇠3T . Several consistent evaluations
give

Tpc(µB)

Tpc(0)
= 1� 0.016(5)

✓
µB

Tpc(0)

◆2

+ . . . ,

⇡ Tch(µB)

Tch(0)
(17)

with the subleading term not yet statistically significant
[30, 60–63]. The qualitative behavior of the upper bound-
ary can be inferred from the value of a chosen meson
screening mass at the temperature Ts (vector mesons
show the most pronounced knee across all flavor chan-
nels),

mV (Ts)

Ts
= C0 . (18)

Then, by CP -symmetry we know that mesonic screening
masses are even functions of µB/T , and therefore

mV (µB)

T
= C0 + C2

⇣µB

T

⌘2
+ . . . . (19)

According to the discussion above, the ⇢-meson gets
screened at zero density once mV (µB = 0)>⇠C0Ts. Keep-
ing this value constant as chemical potential is varied,

5

invariant operators [47], lattice evaluations at T ⇡ 2Tch

give mgi
D

⇡ 7.5T [46, 48, 49], which amounts to a Debye
radius of rD ⇡ 0.09 fm. Defining the Debye mass instead
as the matching coefficient of the A2

0-term in EQCD,
which to leading order corresponds to the propagator
pole mass, one obtains mpole

D
⇡ 2.5T [50] or rD ⇡ 0.27 fm.

While rather different, both definitions result in a screen-
ing length smaller than a typical hadron size. A chiral
spin symmetric regime composed of hadron-like objects
thus appears to contradict the common picture of Debye
screening [51], as was also pointed out in [52].

However, both definitions of the Debye mass are based
on pure gauge quantities and related to the screening
of static charges. Even for heavy quarks the dynami-
cal picture is more complicated, with mass values differ-
ing widely between quantum number channels, and the
precise connection between the Debye mass and the dis-
sociation of bound states remains far from clear, for a
review see [53]. In the context of chiral spin symme-
try we are interested in the fate of the light quarks and
mesons, which also give the dominant contribution to
the equation of state. But relativistic quarks have no
associated potentials in the first place, and chromoelec-
tric flux distributions within light mesons will depend on
all quantum numbers and behave quite differently from
those between static quarks.

Moreover, restricting QCD to Nf = 2+1 light flavors,
as is done in most lattice sumulations at the physical
point, neither propagator poles nor heavy quarkonium
screening masses enter the partition function Eq. (14)
at all. Only mgi

D
can possibly appear as screening mass

pertaining to the purely gluonic JPC = 0�+ operator
Tr(FijA0) [46]. This represents one single term, which is
subdominant since its screening mass value is larger than
those of all twelve flavor non-singlet J = 0, 1 mesons to
be discussed below. The Debye mass therefore has little
influence on the thermodynamics of light quarks.

C. Meson screening masses

What we need to do instead is to study meson screen-
ing masses in the light quark sector. A lot of progress has
been made, both analytically and numerically, towards
an increasingly precise evaluation over a wide temper-
ature range. In Fig. 3 we reprint a recent lattice de-
termination of the scalar and vector screening masses
composed of ūd quarks [33]. Also shown is the leading
perturbative result ⇠ 2⇡T , corresponding to the Mat-
subara modes of two free quarks, and the first correction
⇠ g2 evaluated within EQCD [54]. Note that this in-
cludes an all-loop-order HTL resummation of soft contri-
butions from the scale ⇠ gT . One observes the screening
masses in both vector and scalar channels to overshoot
the ⇠ 2⇡T level and to slowly approach the O(g2) pre-
diction, while spin dependence enters the perturbative
series at O(g4) only [55, 56].

Lattice calculations of pseudo-scalar and vector me-

son screening masses have recently been extended with
unprecedented precision to the high temperature range
T = 1 � 160 GeV [57], permitting a detailed analysis of
their perturbative behavior. In particular, over all three
orders of magnitude in temperature, the lattice data are
perfectly parametrized by

mPS

2⇡T
= 1 + p2 ĝ

2(T ) + p3 ĝ
3(T ) + p4 ĝ

4(T ) ,

mV

2⇡T
=

mPS

2⇡T
+ s4 ĝ

4(T ) , (15)

where ĝ2(T ) denotes the temperature-dependent running
coupling renormalized in the MS-scheme at µ = 2⇡T .
The perturbative value of p2 from [54] is fully confirmed,
while p3, p4, s4 are not yet computed analytically, but fit-
ted to the lattice data. Note that all coefficients are num-
bers, and the only temperature dependence of Eq. (15)
resides in the coupling, whose logarithmically slow run-
ning is responsible for the flat behavior observed for
T>⇠1 GeV in Fig. 3. The spin dependence is found to
be consistent with a single O(ĝ4) term s4 over the entire
temperature range down to 1 GeV, and vanishes only for
T ! 1 with the running coupling. Thus, (neglecting
the wiggles within errors) all structure of the lattice data
above T>⇠1 GeV in Fig. 3 can be desribed by a sufficiently
deep, resummed perturbative expansion about partonic
degrees of freedom, and is therefore characteristic of a
quark gluon plasma.

What has remained entirely uncommented in the liter-
ature so far is the rapid bending of the curves within
T ⇡ 0.5 � 0.7 GeV, from a steep increase with tem-
perature to an entirely flat behavior. The nearly ver-
tical portions of the plot cannot possibly be accounted
for by series like Eqs. (15), since their temperature de-
pendence resides in the coupling only. The same fea-
ture is observed in the same temperature range for all
J = 0, 1 mesons composed of ūs and s̄s quarks as well
[33]. That is, altogether this abruptly bending structure
is present across 12 different quantum number channels!
Since these constitute the dominant contributions to the
partition function Eq. (14), an apparent change of dy-
namics takes place for the entire system, signalled by the
complete breakdown of resummed perturbation theory at
the “knee” of those curves. At the temperatures in ques-
tion, this cannot be caused by chiral symmetry breaking.
Rather, when decreasing temperature from the plasma
regime, at the “knee” of the screening masses the chiral
spin symmetric regime is entered, which a perturbative
calculation about partons cannot reproduce to any order.

Conversely, increasing temperature from the hadronic
regime, each meson screening mass m� enters the pertur-
bative regime at some individual screening temperature
Ts(�), which one may define by, e.g., the most negative
curvature of m�/T (the location of the bend),

Ts(�) : min
T

⇢
d2

dT 2

m�

T

�
. (16)

Thus, for T>⇠Ts(�) quark hadron duality is realized in

  Change of dynamics at               GeV in 12 lightest meson channels!  CS symmetry!

Drastic change: “vertical” - “horizontal”

Resummed pert. theory:

Cannot describe the “bend” 

Chiral symmetry restoration

Heavy chiral partners “come down” 
in all flavour combinations

pressure increases
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Finite density

Finite density:                is CS invariant;  regime must continue to finite density  

Upper “boundary” of CS band:  screening radius at “bend” (one possible def.)  
 
 
 

For small       , line of constant  
 
 
 

Lower “boundary” of CS band:  (this is a lower bound only)
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for and is close to the chiral spin symmetric regime, be-
haves for small µB

<⇠3T . Several consistent evaluations
give

Tpc(µB)

Tpc(0)
= 1� 0.016(5)

✓
µB

Tpc(0)

◆2

+ . . . ,

⇡ Tch(µB)

Tch(0)
(17)

with the subleading term not yet statistically significant
[29, 60–63]. The approximation in the second line is due
to Tch being somewhat larger than Tps, as discussed in
Sec. III and visible in Fig. 3. It can be improved upon by
a suitable definition and quantitative evaluation of Tch,
e.g. by U(1)A restoration.

The qualitative behavior of the upper boundary can be
inferred from the value of a chosen meson screening mass
at the temperature Ts. Here we choose vector mesons
as they show the most pronounced bend across all flavor
channels. The screening mass at the bend corresponds
to an inverse screening radius,

r�1
V

⌘ mV (µB = 0, Ts) = C0Ts , (18)

i.e., for zero density the chromoelectric interaction is
screened once T > Ts. Then, by CP -symmetry we
know that mesonic screening masses are even functions
of µB/T , and therefore

mV (µB)

T
= C0 + C2

⇣µB

T

⌘2
+ . . . . (19)

According to the discussion above, the ⇢-meson gets
screened once mV (µB , T )>⇠r�1

V
. Keeping this value con-

stant as chemical potential is varied, dmV

!
= 0, one finds

dTs

dµB

= �2C2

C0

µB

T
� 2C2

2

C2
0

⇣µB

T

⌘3
+ . . . . (20)

Since we know from analytic calculations [64] as well
as lattice simulations [65, 66] that C2 > 0, the upper
boundary of the chiral spin symmetric regime leaves the
temperature axis with zero slope and negative curvature.
We then conclude that the QCD phase diagram shows a
chiral spin symmetric band that bends downwards with
chemical potential, as sketched in Fig. 1. This can be
checked straightforwardly by repeating the analysis of
meson correlators from [15, 16] with imaginary chemical
potential. Since the chemical potential term is invariant
under chiral spin symmetry, screening masses and corre-
lators will be shifted differently for real and imaginary
chemical potentials, cf. Eq. (19), but the degeneracy pat-
terns should be the same in both cases.

Finally, we stress that these expectations concerning
the shape of the chiral spin symmetric band hold for suf-
ficiently small µB/T . The further qualitative behavior
depends on the relative size of the curvatures d2Tch/dµ2

B

and d2Ts/dµ2
B

with growing chemical potential. If the
latter is sufficiently much larger than the former, then

Figure 4. Qualitative sketch of a possible QCD phase diagram
with a band of approximate chiral spin symmetry termina-
ting at the critical end point of a non-analytic chiral phase
transition.

the boundaries of the band merge at some non-vanishing
temperature. This might in particular be expected to
happen at the critical endpoint of a possible first-order
chiral phase transition, as sketched in Fig. 4. In this case
the steeply rising part of the screening masses m�/T ,
Fig. 3 right, would move towards Tch(µB) and evolve into
a discontinuous jump as µB approaches the critical end-
point, where the scalar screening masses have to vanish
and display a kink. Again, at least a trend towards one
or another behavior can be determined by screening mass
studies at imaginary chemical potential.

VI. BARYONIC PARITY DOUBLET MATTER
AND ITS SYMMETRIES

As chemical potential gets larger, we have no more re-
liable information from the lattice. We now discuss on
a merely qualitative level, how a chiral spin symmetric
regime can exist in the baryon rich region at reasonably
large chemical potentials, as would be the case in a sce-
nario like Fig. 1.

It has been known for a long time that one can con-
struct a manifestly chirally symmetric Lagrangian with
massive fermions if there are degenerate fermions of
opposite parity [67], the so called parity doublet La-
grangian. Indeed, parity doubling of the light baryons is
clearly observed on the lattice above Tch at zero density
[58, 68], as a consequene of chiral symmetry restoration.

Consider a pair of isodoublet fermion fields

 =

✓
 +

 �

◆
, (21)

where the independent Dirac spinors  + and  � have
positive and negative parity, respectively. Note that
there is in addition an isospin index which is suppressed.
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with the subleading term not yet statistically significant
[29, 60–63]. The approximation in the second line is due
to Tch being somewhat larger than Tps, as discussed in
Sec. III and visible in Fig. 3. It can be improved upon by
a suitable definition and quantitative evaluation of Tch,
e.g. by U(1)A restoration.

The qualitative behavior of the upper boundary can be
inferred from the value of a chosen meson screening mass
at the temperature Ts. Here we choose vector mesons
as they show the most pronounced bend across all flavor
channels. The screening mass at the bend corresponds
to an inverse screening radius,
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i.e., for zero density the chromoelectric interaction is
screened once T > Ts. Then, by CP -symmetry we
know that mesonic screening masses are even functions
of µB/T , and therefore

mV (µB)

T
= C0 + C2

⇣µB

T

⌘2
+ . . . . (19)
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Since we know from analytic calculations [64] as well
as lattice simulations [65, 66] that C2 > 0, the upper
boundary of the chiral spin symmetric regime leaves the
temperature axis with zero slope and negative curvature.
We then conclude that the QCD phase diagram shows a
chiral spin symmetric band that bends downwards with
chemical potential, as sketched in Fig. 1. This can be
checked straightforwardly by repeating the analysis of
meson correlators from [15, 16] with imaginary chemical
potential. Since the chemical potential term is invariant
under chiral spin symmetry, screening masses and corre-
lators will be shifted differently for real and imaginary
chemical potentials, cf. Eq. (19), but the degeneracy pat-
terns should be the same in both cases.

Finally, we stress that these expectations concerning
the shape of the chiral spin symmetric band hold for suf-
ficiently small µB/T . The further qualitative behavior
depends on the relative size of the curvatures d2Tch/dµ2
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and d2Ts/dµ2
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with growing chemical potential. If the
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with a band of approximate chiral spin symmetry termina-
ting at the critical end point of a non-analytic chiral phase
transition.

the boundaries of the band merge at some non-vanishing
temperature. This might in particular be expected to
happen at the critical endpoint of a possible first-order
chiral phase transition, as sketched in Fig. 4. In this case
the steeply rising part of the screening masses m�/T ,
Fig. 3 right, would move towards Tch(µB) and evolve into
a discontinuous jump as µB approaches the critical end-
point, where the scalar screening masses have to vanish
and display a kink. Again, at least a trend towards one
or another behavior can be determined by screening mass
studies at imaginary chemical potential.

VI. BARYONIC PARITY DOUBLET MATTER
AND ITS SYMMETRIES

As chemical potential gets larger, we have no more re-
liable information from the lattice. We now discuss on
a merely qualitative level, how a chiral spin symmetric
regime can exist in the baryon rich region at reasonably
large chemical potentials, as would be the case in a sce-
nario like Fig. 1.

It has been known for a long time that one can con-
struct a manifestly chirally symmetric Lagrangian with
massive fermions if there are degenerate fermions of
opposite parity [67], the so called parity doublet La-
grangian. Indeed, parity doubling of the light baryons is
clearly observed on the lattice above Tch at zero density
[58, 68], as a consequene of chiral symmetry restoration.

Consider a pair of isodoublet fermion fields
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where the independent Dirac spinors  + and  � have
positive and negative parity, respectively. Note that
there is in addition an isospin index which is suppressed.
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chemical potential, as sketched in Fig. 1. This can be
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meson correlators from [15, 16] with imaginary chemical
potential. Since the chemical potential term is invariant
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lators will be shifted differently for real and imaginary
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the boundaries of the band merge at some non-vanishing
temperature. This might in particular be expected to
happen at the critical endpoint of a possible first-order
chiral phase transition, as sketched in Fig. 4. In this case
the steeply rising part of the screening masses m�/T ,
Fig. 3 right, would move towards Tch(µB) and evolve into
a discontinuous jump as µB approaches the critical end-
point, where the scalar screening masses have to vanish
and display a kink. Again, at least a trend towards one
or another behavior can be determined by screening mass
studies at imaginary chemical potential.
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As chemical potential gets larger, we have no more re-
liable information from the lattice. We now discuss on
a merely qualitative level, how a chiral spin symmetric
regime can exist in the baryon rich region at reasonably
large chemical potentials, as would be the case in a sce-
nario like Fig. 1.

It has been known for a long time that one can con-
struct a manifestly chirally symmetric Lagrangian with
massive fermions if there are degenerate fermions of
opposite parity [67], the so called parity doublet La-
grangian. Indeed, parity doubling of the light baryons is
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there is in addition an isospin index which is suppressed.

<latexit sha1_base64="YMm4jq7o71t7okBTiNP31n+rpbY=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRbBU9ktRT1JsRePFdy20C4lm2bb0GyyJFmhLP0NXjwo4tUf5M1/Y9ruQVsfDDzem2FmXphwpo3rfjuFjc2t7Z3ibmlv/+DwqHx80tYyVYT6RHKpuiHWlDNBfcMMp91EURyHnHbCSXPud56o0kyKRzNNaBDjkWARI9hYyW8OarfuoFxxq+4CaJ14OalAjtag/NUfSpLGVBjCsdY9z01MkGFlGOF0VuqnmiaYTPCI9iwVOKY6yBbHztCFVYYoksqWMGih/p7IcKz1NA5tZ4zNWK96c/E/r5ea6CbImEhSQwVZLopSjoxE88/RkClKDJ9agoli9lZExlhhYmw+JRuCt/ryOmnXqt5Vtf5QrzTu8jiKcAbncAkeXEMD7qEFPhBg8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwCx1I33</latexit>

C2 > 0
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SU(2)A, U(1)A, SU(4)
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Possibilities for the QCD phase diagram
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Cold and dense candidate:  baryon parity doublet models CS symmetric  
Total symmetry depends on couplings to mesons  
[Glozman, Catillo PRD 18] 

Quarkyonic matter [McLerran, Pisarski, NPA 07;  O.P., Scheunert JHEP 19]  
Contains regime with chirally symmetric baryon matter 
Consistent with intermediate CS regime!

Can be realized with or without non-analytic chiral phase  
transition! 

etc   …

CS



Effective degrees of freedom…?          Spectral functions

Based on micro-causality of scalar, local quantum fields at finite T:

[Bros, Buchholz., NPB 94,  Ann. Inst. Poincare Phys. Theor. 96]

1 Introduction

The phases of QCD under extreme conditions and the nature of its associated e�ective
degrees of freedom are among the most pressing problems of theoretical physics, a�ecting
experimental programs from heavy ion collisions to astro-particle and gravitational wave
physics. Of particular interest is the question, deeply related to the confinement problem,
how ordinary hadronic matter gets modified in medium to eventually dissolve into the
expected quark gluon plasma.

In principle, the answer is provided by the spectral properties of Euclidean two-point
functions of gauge-invariant operators O�p·, xq,

C�p·, xq “ xO�p·, xq O�p0, 0qyT , (1.1)

where � denotes a set of quantum numbers, the expectation value is over a thermal ensemble
at temperature T and we specialise on zero baryon density, µB “ 0. The Fourier transform
of the correlators take the universal form

C�p·, pq “
ª 8

0

dÊ

2fi

coshpÊp· ´ 1{2T qq
sinhpÊ{2T q fl�pÊ, pq , (1.2)

where the associated spectral functions fl�pÊ, pq contain the desired information about the
possible excitations in a given quantum number channel. In order to fully describe a thermal
system of strong-interaction particles, one requires a non-perturbative framework. While
lattice QCD is a powerful tool to numerically compute the correlators (1.1), extracting the
associated spectral function is an ill-posed inverse problem. For this reason, most attempts
to obtain QCD spectral functions from the lattice require intricate statistical methods com-
bined with input based on either perturbative calculations or phenomenological modelling.
Introductions and overviews of results can be found in [1–3].

In this work we pursue another approach, which was developed in Refs. [4–8] and
is based on a T ° 0 generalisation of axiomatic, local vacuum QFTs. Applications of
these principles over the years have led to numerous foundational insights, including the
relationship between spin and statistics, the generality of CPT symmetry, and the rigorous
connection of Minkowski and Euclidean QFTs [9–11]. In this non-perturbative framework,
Refs. [4–8] focussed on the simplest case of Hermitian scalar fields „pxq, and established
that characteristic features such as the loss of Lorentz symmetry can be incorporated by
defining a thermal background state |�—y at temperature T “ 1{—, which is no longer
invariant under the full Poincaré group. Together with the standard constraints brought
about by the assumption of thermal equilibrium [12, 13] it was demonstrated that the
locality of the fields alone1 imposes particularly significant constraints, and implies the
following representation of the spectral function [4],

flPSpp0, p̨q “
ª 8

0
ds

ª
d3ų

p2fiq2 ‘pp0q ”
`
p2

0 ´ pp̨ ´ ųq2 ´ s
˘ rD—pų, sq . (1.3)

1By locality we mean: r„pxq, „pyqs “ 0 for px ´ yq2 † 0, which is simply the physical assumption that
all measurements respect causality.

– 2 –

Exact, goes to Källen-Lehmann representation for 
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Figure 7: Left: Temporal correlation function predicted by the spectral function Eq. (12), Fig. 6 (red band),
compared to the full lattice data from Fig. 2 [5]. Right: The corresponding prediction based on a Breit-Wigner
ansatz, Eq. (13).

absence of a true phase transition, and propose an ansatz with particle and scattering contributions,

eD�(u, s) = eDm,�(u) �(s � m2) + eDc,�(u, s) . (10)

In an isotropic medium the spatial correlators and the spectral density are then related by [15]

Cs

PS
(z) = 1

2

π 1

0
ds

π 1

|z |
dR e�R

p
sD�(R, s). (11)

For temperatures below the threshold to the scattering states we then expect the first term in
Eq. (10) to dominate. Neglecting the continuum part, the calculation of the spectral function is
straightforward. First, we fit the spatial pseudo-scalar correlators from Fig. 1 by the sum of two
exponentials representing the ⇡, ⇡⇤, which gives an excellent description of the data in the entire
temperature range, cf. Fig. 6 (left). This provides the Dm,�(|x|) = ↵⇡,⇡⇤ exp(��⇡,⇡⇤ |x|), from which
the spectral function can be reconstructed using Eqs. (9,10) and the vacuum masses m⇡,m⇡⇤ ,

⇢PS(!, p = 0) = ✏(!)
2666664
✓(!2 � m2

⇡)
4↵⇡ �⇡

p
!2 � m2

⇡

(!2 � m2
⇡ + �

2
⇡)2
+ ✓(!2 � m2

⇡⇤)
4↵⇡⇤ �⇡⇤

q
!2 � m2

⇡⇤

(!2 � m2
⇡⇤ + �2

⇡⇤)2

3777775
.

(12)

The result is shown in Fig. 6 (right) and displays the vacuum thresholds followed by a pronounced
resonance-like peak structure for both the pion and its first excitation. As the temperature increases,
the peaks widen and gradually disappear into a continuum, consistent with sequential hadron
melting, albeit at temperatures significantly above Tpc. This is in accord with the approximately
chiral-spin symmetric window with non-perturbative, hadron-like excitations.

Since we neglected the continuum contribution from Eq. (10), it is crucial to perform a quality
check. This is done in Fig. 7 (left), where we predict the temporal correlator C⌧

PS
using our spectral

function from the spatial correlator at T = 220 MeV, and compare with the lattice result from
Fig. 2. Excellent quantitative agreement is found except for very short distances, which is due to the
neglected higher excited states in the description of the spatial correlator. For higher temperatures
we expect the quality of the prediction to deteriorate, as in this case the neglected continuum part
Dc,� should play an increasing role.
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Relation between spatial correlators and thermal spectral density

[Lowdon, O.P.,  JHEP 22 ]



[Bros, Buchholz., NPB 02]

In the T Ñ 0 limit Eq. (1.3) reduces to the well-known Källén-Lehmann spectral repres-
entation2, and hence represents its T ° 0 generalisation. From the structure of Eq. (1.3)
one can see that the e�ects of the background state are entirely captured by the thermal
spectral density rD—pų, sq. Determining the properties of this quantity is therefore essential
for describing the characteristics of scalar particles in thermal media.

Eq. (1.3) is completely general and holds for any scalar field satisfying locality. In order
to understand the thermal spectral density for a specific theory in more detail, additional
information is necessary. In Ref. [8] the authors proposed that the singular structure
of rD—pų, sq in the variable s is preserved relative to the vacuum theory, as long as no
phase transition is met. This implies that discrete and continuous contributions can be
decomposed. In particular, if a theory contains a particle state of mass m at T “ 0, then

rD—pų, sq “ rDm,—pųq ”ps ´ m2q ` rDc,—pų, sq, (1.4)

where rDc,—pų, sq is continuous in s [8]. Equation. (1.4) provides a natural description
of particles moving within a thermal medium. For T ° 0 the so-called damping factor
rDm,—pųq is non-trivial, which due to Eq. (1.3) causes flpp0, p̨q to have contributions outside
of the mass shell p2 “ m2, resulting in the screening of the T “ 0 state. The T -dependence
of this screening is entirely controlled by the damping factor, the behaviour of which is
determined by the underlying dynamics between the particle and the constituents in the
thermal medium [8]. The structure of damping factors in specific models were explored in
Ref. [8], and more recently in Refs. [16, 17]. There it was demonstrated that these quantities
can be used to perform non-perturbative calculations of related in-medium observables,
including the shear viscosity.

In the present work, we apply the observations from [16, 17] to lattice data for scalar
and pseudoscalar correlators, and compute first the spectral density rD—pų, sq, and from it
the spectral function flpÊ, p “ 0q. On the lattice, it is the spatial correlators integrated over
the orthogonal directions that are accessible over the largest distances, and hence contain
the most information about the thermal system,

Cpx3q “
ª 8

´8
dx1

ª 8

´8
dx2

ª —
2

´ —
2

d· Cp·, x̨q (1.5)

“
ª 8

´8

dp3
2fi

eip3x3

ª 8

0

dp0
fip0

flpp0, p1 “ p1 “ 0, p3q. (1.6)

Equation (1.6) demonstrates that the structure of Cpx3q is entirely controlled by the spec-
tral function of the corresponding hadronic operator, and thus directly probes the spectral
properties of QCD for T ° 0.

In Sec. 2 we establish an analytic connection between the spatial correlator Eq. (1.5)
and the spectral representation in Eq. (1.3). We use this information in Sec. 3.2 to extract
the properties of the light-quark pseudoscalar spectral function from lattice QCD data, and
finally in Sec. 4 we summarise our main findings and discuss their physical implications.

2For the vacuum commutator the Källén-Lehmann representation has the momentum-space form [14, 15]:
2fi‘pp0q ≥8

0 ds ”
`
p2 ´ s

˘
flpsq, where flpsq is the spectral density whose singularities capture the presence of

stable particle states.

– 3 –

For stable massive particle with gap to continuum states (QCD pions!):

Analytic structure inherited from vacuum in absence of phase transition

low T behaviour influenced (dominated) by vacuum particle states

Ansatz

2.2. KÄLLÉN-LEHMANN SPECTRAL REPRESENTATION 45

Figure 2.1: Spectral function.

Thus the Feynman propagator without time ordering can be expressed as

hW| �(x)�(y) |Wi =
X

�

Z
d3 p
(2⇡)3

1
2Ep(�)

e�ip·(x�y)
��� hW| �(0) |�0i

���2, (2.24)

which is to be compared with the free scalar result (1.161). Including time ordering, we can peform
the same manipulations for the integral as in the free theory and therefore conclude

hW|T�(x)�(y) |Wi =
X

�

Z
d4 p
(2⇡)4

i
p2 �m2

� + i✏
e�ip·(x�y)

��� hW| �(0) |�0i
���2. (2.25)

One can define

DF(x � y; M2) :=
Z

d4 p
(2⇡)4

i
p2 �M2 + i✏

e�ip·(x�y) (2.26)

to write

hW|T�(x)�(y) |Wi =
1Z

0

dM2

2⇡
⇢(M2)DF(x � y; M2) (2.27)

in terms of the spectral function

⇢(M2) =
X

�

2⇡ �(M2 �m2
�)
��� hW| �(0) |�0i

���2, (2.28)

which has a typical form like in Figure 2.1. It is crucial to appreciate that the 1-particle states leads
to an isolated �-function peak around M2 = m2. Therefore below M2 � (2m)2 or M2 � m2

bound the
spectral function takes the form

⇢(M2) = 2⇡ �(M2 �m2) Z. (2.29)

Here we have defined the field-strength or wavefunction renormalisation

Z =
��� hW| �(0) |10i

���2, (2.30)

Vacuum spectral function:



The pion spectral function
[Lowdon, O.P.,  JHEP 22]
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spatial correlators
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⇡,⇡⇤2-state fits

spectral functions predict temporal correlators, compare with data 

Rohrhofer et al., Phys. Rev. D100 (2019)

Rohrhofer et al., Phys. Lett. B802 (2020)
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Figure 7: Left: Temporal correlation function predicted by the spectral function Eq. (12), Fig. 6 (red band),
compared to the full lattice data from Fig. 2 [5]. Right: The corresponding prediction based on a Breit-Wigner
ansatz, Eq. (13).

absence of a true phase transition, and propose an ansatz with particle and scattering contributions,

eD�(u, s) = eDm,�(u) �(s � m2) + eDc,�(u, s) . (10)

In an isotropic medium the spatial correlators and the spectral density are then related by [15]

Cs

PS
(z) = 1

2

π 1

0
ds

π 1

|z |
dR e�R

p
sD�(R, s). (11)

For temperatures below the threshold to the scattering states we then expect the first term in
Eq. (10) to dominate. Neglecting the continuum part, the calculation of the spectral function is
straightforward. First, we fit the spatial pseudo-scalar correlators from Fig. 1 by the sum of two
exponentials representing the ⇡, ⇡⇤, which gives an excellent description of the data in the entire
temperature range, cf. Fig. 6 (left). This provides the Dm,�(|x|) = ↵⇡,⇡⇤ exp(��⇡,⇡⇤ |x|), from which
the spectral function can be reconstructed using Eqs. (9,10) and the vacuum masses m⇡,m⇡⇤ ,

⇢PS(!, p = 0) = ✏(!)
2666664
✓(!2 � m2

⇡)
4↵⇡ �⇡

p
!2 � m2

⇡

(!2 � m2
⇡ + �

2
⇡)2
+ ✓(!2 � m2

⇡⇤)
4↵⇡⇤ �⇡⇤

q
!2 � m2

⇡⇤

(!2 � m2
⇡⇤ + �2

⇡⇤)2

3777775
.

(12)

The result is shown in Fig. 6 (right) and displays the vacuum thresholds followed by a pronounced
resonance-like peak structure for both the pion and its first excitation. As the temperature increases,
the peaks widen and gradually disappear into a continuum, consistent with sequential hadron
melting, albeit at temperatures significantly above Tpc. This is in accord with the approximately
chiral-spin symmetric window with non-perturbative, hadron-like excitations.

Since we neglected the continuum contribution from Eq. (10), it is crucial to perform a quality
check. This is done in Fig. 7 (left), where we predict the temporal correlator C⌧

PS
using our spectral

function from the spatial correlator at T = 220 MeV, and compare with the lattice result from
Fig. 2. Excellent quantitative agreement is found except for very short distances, which is due to the
neglected higher excited states in the description of the spatial correlator. For higher temperatures
we expect the quality of the prediction to deteriorate, as in this case the neglected continuum part
Dc,� should play an increasing role.
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Figure 7: Left: Temporal correlation function predicted by the spectral function Eq. (12), Fig. 6 (red band),
compared to the full lattice data from Fig. 2 [5]. Right: The corresponding prediction based on a Breit-Wigner
ansatz, Eq. (13).

absence of a true phase transition, and propose an ansatz with particle and scattering contributions,

eD�(u, s) = eDm,�(u) �(s � m2) + eDc,�(u, s) . (10)

In an isotropic medium the spatial correlators and the spectral density are then related by [15]

Cs

PS
(z) = 1

2

π 1

0
ds

π 1

|z |
dR e�R

p
sD�(R, s). (11)

For temperatures below the threshold to the scattering states we then expect the first term in
Eq. (10) to dominate. Neglecting the continuum part, the calculation of the spectral function is
straightforward. First, we fit the spatial pseudo-scalar correlators from Fig. 1 by the sum of two
exponentials representing the ⇡, ⇡⇤, which gives an excellent description of the data in the entire
temperature range, cf. Fig. 6 (left). This provides the Dm,�(|x|) = ↵⇡,⇡⇤ exp(��⇡,⇡⇤ |x|), from which
the spectral function can be reconstructed using Eqs. (9,10) and the vacuum masses m⇡,m⇡⇤ ,

⇢PS(!, p = 0) = ✏(!)
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(12)

The result is shown in Fig. 6 (right) and displays the vacuum thresholds followed by a pronounced
resonance-like peak structure for both the pion and its first excitation. As the temperature increases,
the peaks widen and gradually disappear into a continuum, consistent with sequential hadron
melting, albeit at temperatures significantly above Tpc. This is in accord with the approximately
chiral-spin symmetric window with non-perturbative, hadron-like excitations.

Since we neglected the continuum contribution from Eq. (10), it is crucial to perform a quality
check. This is done in Fig. 7 (left), where we predict the temporal correlator C⌧

PS
using our spectral

function from the spatial correlator at T = 220 MeV, and compare with the lattice result from
Fig. 2. Excellent quantitative agreement is found except for very short distances, which is due to the
neglected higher excited states in the description of the spatial correlator. For higher temperatures
we expect the quality of the prediction to deteriorate, as in this case the neglected continuum part
Dc,� should play an increasing role.
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Perturbative plasmon: Breit-Wigner shape
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Figure 8: Possibilities for the QCD phase diagram with a chiral spin and SU(4)-symmetric band.

For comparison, we have also tried a Breit-Wigner ansatz commonly associated with perturba-
tive plasma excitations,

⇢BW
PS

(!, p = 0) = 4↵⇡!�⇡
(!2 � m2

⇡ � �2
⇡)2 + 4!2�2

⇡

+
4↵⇤

⇡!�⇡⇤

(!2 � m2
⇡⇤ � �2

⇡⇤)2 + 4!2�2
⇡⇤
. (13)

This ansatz can be fitted equally well to the spatial correlator at T = 220 MeV, but in this case the
predicted temporal correlator is not compatible with the data, Fig. 7 (right).

5. The QCD phase diagram

Having established an e�ectively chiral spin symmetric temperature window at zero density
with non-perturbative dynamics, the question is what happens at finite baryon chemical potential.
This adds µB/3  ̄�0 to the e�ective Lagrangian, and since the generators of chiral spin commute
with �0, Eq. (2), an approximate chiral spin symmetry at zero density must continue to µB , 0. At
least for µB/T<⇠3 we can then infer what happens to the chiral spin symmetric band.

Since full chiral symmetry restoration is necessary for chiral spin symmetry, its lower boundary
Tch(µ)>⇠Tpc(µ). In Sec. 3 we identified the upper crossover Ts by the bending of the screening masses,
which marks the screening of the colour-electric interactions and the onset of perturbative behaviour.
Picking the vector meson screening radius at its bend to define the screening temperature Ts,

r�1
V
(µB = 0,Ts) ⌘ mV (µB = 0,Ts) = C0Ts , (14)

we can use the Taylor expanded screening mass to deduce the line of constant r�1
V

,

mV (µB)
T

= C0 + C2

⇣ µB
T

⌘2
+ . . . ) dTs

dµB
= �2C2

C0

µB
T

�
2C2

2

C2
0

⇣ µB
T

⌘3
+ . . . . (15)

Since C2 > 0 [16, 17], the upper crossover line bends downwards, as indicated in Fig. 8.
As chemical potential increases, further details of the phase diagram remain unknown, and

several options for the continuation of the chiral spin symmetric band are possible. In the cold and
dense regime, baryon parity doublet matter is consistent with chiral spin symmetry, provided it is
decoupled from ⇡,� to leading order, otherwise it is only chirally symmetric. Similarly, quarkyonic
matter with a chirally symmetric confined regime [18, 19] may also be chiral spin symmetric, as
discussed in [20]. This is independent of the question whether or not there is a non-analytic chiral
phase transition. Two possibilities (there are more) for the phase diagram are shown in Fig. 8.
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Bros+Buchholz Ansatz

Both fit spatial correlator

Predicted temporal correlators:



In progress: same analysis for additional states
[Bala, Kaczmarek, Lowdon, O.P., Ueding]

 HISQ sea + domain wall valence quarks, physical masses on
<latexit sha1_base64="XH/IoljMex+TTKY9wQ+nt8hA9BI=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgKexqiOIp4MVjBPOAZA2zk9lkyOzDmd5AWPIdXjwo4tWP8ebfOEn2oIkFDUVVN91dXiyFRtv+tnJr6xubW/ntws7u3v5B8fCoqaNEMd5gkYxU26OaSxHyBgqUvB0rTgNP8pY3up35rTFXWkThA05i7gZ0EApfMIpGcquVx8suioBr4lR7xZJdtucgq8TJSAky1HvFr24/YknAQ2SSat1x7BjdlCoUTPJpoZtoHlM2ogPeMTSkZo+bzo+ekjOj9IkfKVMhkrn6eyKlgdaTwDOdAcWhXvZm4n9eJ0H/2k1FGCfIQ7ZY5CeSYERmCZC+UJyhnBhCmRLmVsKGVFGGJqeCCcFZfnmVNC/KTrVcua+UajdZHHk4gVM4BweuoAZ3UIcGMHiCZ3iFN2tsvVjv1seiNWdlM8fwB9bnDxTHkP0=</latexit>

643 ⇥ 16

Goal: analyse all scalar and pseudo-scalar correlators, here:         - channel, PS

<latexit sha1_base64="bdL87jNpOnt6qdrtbrfmnEF2oHY=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBAEIeyGoCIIAS+eJIJ5QLKE2UlvMmR2dpmZFULIR3jxoIhXv8ebf+Mk2YMmFjQUVd10dwWJ4Nq47rezsrq2vrGZ28pv7+zu7RcODhs6ThXDOotFrFoB1Si4xLrhRmArUUijQGAzGN5O/eYTKs1j+WhGCfoR7UseckaNlZr33fCmfO51C0W35M5AlomXkSJkqHULX51ezNIIpWGCat323MT4Y6oMZwIn+U6qMaFsSPvYtlTSCLU/np07IadW6ZEwVrakITP198SYRlqPosB2RtQM9KI3Ff/z2qkJr/wxl0lqULL5ojAVxMRk+jvpcYXMiJEllClubyVsQBVlxiaUtyF4iy8vk0a55F2UKg+VYvU6iyMHx3ACZ+DBJVThDmpQBwZDeIZXeHMS58V5dz7mrStONnMEf+B8/gDph46f</latexit>

Nf = 2 + 1
<latexit sha1_base64="WvHpWiGfMRkRhhyOTS2D9gMEy3g=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqHgqePFYwX5AG8pku2mXbjZxdyOU0D/hxYMiXv073vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nirImjUWsOgFqJrhkTcONYJ1EMYwCwdrB+Hbmt5+Y0jyWD2aSMD/CoeQhp2is1OkFqDI91f1yxa26c5BV4uWkAjka/fJXbxDTNGLSUIFadz03MX6GynAq2LTUSzVLkI5xyLqWSoyY9rP5vVNyZpUBCWNlSxoyV39PZBhpPYkC2xmhGellbyb+53VTE177GZdJapiki0VhKoiJyex5MuCKUSMmliBV3N5K6AgVUmMjKtkQvOWXV0nroupdVmv3tUr9Jo+jCCdwCufgwRXU4Q4a0AQKAp7hFd6cR+fFeXc+Fq0FJ585hj9wPn8AcyyQOg==</latexit>
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Conclusions

QCD has an emergent approximate Chiral Spin symmetry  
in an intermediate temperature and density range  

Screening masses entirely non-perturbative in that window  

Spectral functions from spatial lattice correlators, based on locality 

Effective degrees of freedom in CS-regime hadron-like  

CS-regime extends as a band into QCD phase diagram;  
natural connection to quarkyonic matter 


