

QCD phase transition from lattice QCD

small quark mass & strong magnetic field

- Heng-Tong Ding Central China Normal University
- Online workshop on Critical Point and Onset of Deconfinement (CPOD2022) 28 Nov. - 2 Dec., 2022

Search for criticality

Almaalol et al., arXiv:2209.05009

Sign Problem at $\mu_B = /=0$ Taylor Expansion: Jishinu Goswami [Tue] Imaginary µ_{B:} David Clark [Tue]

QCD criticality at $\mu_B = 0$: relevance to CEP?

Columbia plot: QCD phase diagram in quark mass plane

RG arguments: Pisarski & Wilczek, PRD29 (1984) 338

 $\mathbf{Q} m_q = 0 \text{ or } \infty \text{ with } N_f = 3$: a first order phase transition

K. Rajagopal & F. Wilczek, Searchieve Critical lines of 2nd order transition NPB 399 (1993) 395 $N_f=2$: O(4) universality class Gavin, Gocksch & Pisarski, PRD 49 (1994) 3079 $N_f=3$: Z(2) universality class F. Wilczek IJMPA 7(1992) 3911

 \bigcirc Axial U(1) anomaly in Nf=2 QCD If manifested at T_c : 2nd order O(4) If not: 1st order or 2nd order $(U(2)_L \otimes U(2)_R/U(2)_V)$

> Butti, Pelissetto and Vicari, JHEP 08 (2003) 029 Pelissetto & Vicari, PRD 88 (2013) 105018 Grahl, PRD 90 (2014) 117904

1st order deconfinement phase transition region

See Masakiyo Kitazawa's talk on Thu

Upper right corner of the Columbia plot:

Observed a 2nd order Z(2) transition in N_f=2 QCD with sufficiently heavy quarks

1st order chiral phase transition region

Bottom left corner of the Columbia plot:

1st order chiral phase transition region

Dini et al., Bielefeld-Bangalore, PRD 105 (2022) 3,034510

1st order chiral phase transition region

Dini et al., Bielefeld-Bangalore, PRD 105 (2022) 3,034510

Signatures of symmetry restorations

local operators, e.g. $\chi_{\pi} = \int d^4x \langle \pi^i(x)\pi^i(0) \rangle$ with $\pi^i(x) = i \bar{\psi}_l(x) \gamma_5 \tau^i \psi_l(x)$

Susceptibilities defined as integrated two point correlation functions of the

Restoration of $SU(2)_L x SU(2)_R$:

$$\chi_{\rm disc} = \frac{T}{V} \int d^4x \left\langle \left[\bar{\psi}(x)\psi(x) - \left\langle \bar{\psi}(x)\psi(x) \right\rangle \right]^2 \right\rangle$$

Effective restoration of $U(I)_A$:

SU(2)xSU(2) symmetry restoration at T=205 MeV

HTD, S.-T. Li, A. Tomiya, S. Mukherjee, X.-D. Wang, Y. Zhang PoS LATTICE2021(2022)619

In the chiral symmetric phase Z(2) subgroup of SU(2)xSU(2) sym. Partition function: even function of m $\langle \psi \psi \rangle \propto m \text{ as } m \to 0$ $\chi_{disc} \propto m^2 \text{ as } m \to 0$

Continuum and chiral extrapolations in N_f=

chiral limit

HTD, S.-T. Li, A. Tomiya, S. Mukherjee, X.-D. Wang, Y. Zhang PRL126(2021)082001

with $m_{\pi} \leq 140$ MeV data at T ≈ 205 MeV 2+1 QCD
[MeV] Joint fit: simultaneous fits
Continuum: $c_0 + c_1/N_{\tau}^2 + c_2/N_{\tau}^4$ Chiral: quadratic in quark mass
Value at $N_{\tau} \rightarrow \infty$ and $m \rightarrow 0$:
5.6 ± 2.3
anifested in the U(1) _A measure Ontinuum a na level at 1.6T _c

Indication: Chiral phase transition is 2nd order O(4) tic in I/N_{τ} with

 $N_{\tau}=12 \& 16 data$ Chiral: quadratic in quark mass

Value at $N_{\tau} \rightarrow \infty$ and $m \rightarrow 0$:

4.4 ± I.9

at $m_1=0$

 $\gg m_c^{phy} > m_c^{tri}$: favors a 2nd order O(4) but not Z(2) chiral phase transition

chiral phase transition in $N_f=2+1$ QCD

Ratio of order parameter and its sus.

HTD et al.[HotQCD], Phys.Rev. Lett. 123 (2019) 062002, S.-T. Li et al., Nucl. Phys. Rev. 37 (2020) 3, 674, O. Kaczmarek et al., Acta Phys. Pol. B Proc. Suppl. 14 (2021) 291

 $T_c^0 = 132^{+3}_{-6} \text{ MeV}$

Twisted Wilson fermions

A.Y.Kotov, M.P.Lombardo and A.Trunin, Phys. Lett. B 823 (2021)136749

$$T_c^0 = 134^{+6}_{-4} \text{ MeV}$$

11/23

Recap: relevance of criticality at $\mu_B=0$ to CEP

 I_{pc} : ≈ 156 MeV, chiral crossover T at $\mu_B=0$ Bazavov et al., [HotQCD] Phys. Lett. B795 (2019) 15 Borsanyi et al., Phys. Rev. Lett. 125 (2020) 052001 T_c^{CEP} : transition T at the critical end point T_c^0 : ≈ 132 MeV chiral phase transition T at

 m_q =O and μ_B =O HTD et al.[HotQCD], PRL123 (2019) 062002 A.Y.Kotov et al., PLB 823 (2021)136749 A.Y.Kotov et al., PLB 823 (2021)136749

 T_c^{tri} : transition T at the tri-critical point

Random Matrix Model & NJL suggests:

 $T_c^{tri} - T_c^{CEP}(m_q) \propto m_q^{2/5}$

Y. Hatta & T. Ikeda, PRD67 (2003) 014028 M. A. Halasz et al, PRD 58 (1998) 096007 M. Buballa, S. Carignano, PLB791(2019)361

$I = T_c^0(\mu_B)$ decreases as μ_B up to NLO from LQCD

 $T_c^0 > T_c^{tri} > T_c^{CEP}$

O. Kaczmarek et al., PRD83 (2011) 014504

- P. Hegde & HTD, PoS LATTICE2015 (2016) 141
- O. Kaczmarek et al., PoS LATTICE2021 (2022) 429

12/23

Microscopic manifestation of the symmetry restorations: Dirac Eigenvalues and their correlations C_n $\langle \bar{\psi}\psi\rangle = \int_0^\infty \frac{4m_l \rho}{\lambda^2 + m_l^2} \,\mathrm{d}\lambda \quad \lim_{m_l \to 0} \langle \bar{\psi}\psi\rangle = \pi\rho(0)$ E.g.: $\frac{V}{T} \frac{\partial \rho}{\partial m_l} = \int_0^\infty d\lambda_2 \frac{4m_l C_2(\lambda, \lambda_2; m_l)}{\lambda_2^2 + m_l^2}$ $\chi_1 \equiv \chi_{disc} = \int_0^\infty \frac{4m_l \partial \rho / \partial m_l}{\lambda^2 + m_l^2} d\lambda$ $C_2(\lambda_1, \lambda_2)$ [MeV] (80³ × 16, $m_{\pi} = 80$ MeV) 160 $\propto \left\langle \left(\bar{\psi}\psi - \langle \bar{\psi}\psi \rangle \right)^2 \right\rangle = \kappa_2(\bar{\psi}\psi)$ 140

$$\chi_2 = \int_0^\infty \frac{4m_l \partial^2 \rho / \partial m_l^2}{\lambda^2 + m_l^2} d\lambda \propto \kappa_3(\bar{\psi}\psi) + \cdots$$

$$\chi_n = \int_0^\infty \frac{4m_l \partial^n \rho / \partial m_l^n}{\lambda^2 + m_l^2} d\lambda \propto \kappa_{n+1}(\bar{\psi}\psi) + \cdots$$

$$\frac{\partial^{n} \rho(\lambda)}{\partial m_{l}^{n}} = f(C_{n+1}, C_{n}, \dots, C_{2})$$
$$C_{n} = \kappa_{n}(\rho_{U}(\lambda))$$
HT

ΓD, S.-T. Li, A. Tomiya, S. Mukherjee, X.-D. Wang, Y. Zhang, PRL126(2021)082001

1st, 2nd & 3rd quark mass derivative of ρ on N_{τ}=8 lattices at $T \approx 205$ MeV $\simeq 1.6T_c$

 $m_l^{-1} \partial \rho / \partial m_l \approx \partial^2 \rho / \partial m_l^2$

Dilute instanton gas approximation at 1.6 Tc: $\rho(\lambda \to 0, m_l \to 0) \propto m_l^2 \delta(\lambda)$ HTD, S.-T. Li, A. Tomiya, S. Mukherjee, X.-D. Wang, Y. Zhang, PRL126(2021)082001

 $\partial^3 \rho / \partial m_l^3 \approx 0$

HTD, Wei-Ping Huang, Min Lin et al., PoS LATTICE2021 (2022) 591

No scaling at $T \in [1.08, 1.2] \tilde{T}_c^0$

Wei-Ping Huang et al., work in progress, HTD, Wei-Ping Huang, Min Lin et al., PoS LATTICE2021 (2022) 591

Scaling behavior in $\partial \rho / \partial m_l / \chi_{disc}$ v.s. λ / m_l near T_c

Scaling at $T \in [0.96, 1.04] \tilde{T}_c^0$

 $J(\lambda/m_l) \times \chi_{disc}$

Criticality of QCD in correlated Dirac Eigenvalues

Wei-Ping Huang et al., work in progress

Reproduction of $\partial^2 \rho / \partial m_l^2 / \chi_2 \& \rho$ without fits!

A plausible CEP in T-eB plane

Prediction of a Critical End Point in the T-eB plane

Observation of a 1st order phase transition at $eB=9 \text{ GeV}^2$

M. D'Elia et al., Phys.Rev.D 105 (2022) 3, 034511

QCD transition in strong magnetic fields Inverse magnetic catalyses and reduction of T_{pc}

Continuum extrapolated lattice QCD results with physical pion mass

Reduction of T_{pc} always associated with IMC? Not necessarily! Role of hadrons?

Masses of $\pi^{0,\pm}$ and $K^{0,\pm}$ and energy density

 $N_{f}=2+I QCD, M_{\pi}(eB=0) \approx 220 MeV,$

 $32^3 \times 96$ lattices with $a^{-1} \approx 1.7$ GeV and HISQ action

HTD, S.-T. Li, A. Tomiya, X.-D. Wang, Y. Zhang, PRD 126 (2021) 082001 See quenched LQCD results in Bali et al., PRD 97 (2018) 034505, Luschevskaya et al., NPB 898 (2015) 627

Energy density in Hadron resonance gas model

HTD, S.-T. Li, Q. Shi, A. Tomiya, X.-D. Wang, Y. Zhang, arXiv: 2011.04870

N_f=2+1 QCD, $M_{\pi}(eB = 0) \approx 135$ MeV, $T_{pc}(eB = 0) \approx 157$ MeV, $32^3 \times 8$ and $48^3 \times 12$ lattices with HISQ action

Ratio X(eB)/X(eB=0) for 2nd order off-diagonal fluctuations

X(eB)/X(eB=0) : Rcp like observable At $eB \simeq M_{\pi}^2$: deviation from unity is mild At $eB \simeq 8M_{\pi}^2$: ~2 !

Note: $T_{pc}(eB \simeq 10M_{\pi}^2)/T_{pc}(eB = 0) \sim 99\%$

HTD, S.-T. Li, J.-H. Liu and X.-D. Wang, QM2022, arXiv:2208.07285

N_f=2+1 QCD, $M_{\pi}(eB = 0) \approx 135$ MeV, $T_{pc}(eB = 0) \approx 157$ MeV, $32^3 \times 8$ and $48^3 \times 12$ lattices with HISQ action

Ratio X(*eB*)/X(*eB*=0) for 2nd order off-diagonal fluctuations

HTD, S.-T. Li, J.-H. Liu and X.-D. Wang, QM2022, arXiv:2208.07285

QCD benchmarks for the manifestation of eB in conserved charge fluctuations See Jun-Hong Liu's talk on Fri.

Jun-Hong Liu et al., work in progress

22/23

 \bigvee Most relevant criticality at $\mu_B = 0$ to thermodynamics at CEP: 2nd O(4) phase transition $\implies T_c^{CEP} < T_c^0 \approx 132 \text{MeV}$

Criticality in Dirac eigenvalue correlation: Microscopic manifestation of the criticality in a narrow T window

QCD benchmarks for 2nd off-diagonal fluctuations in a background magnetic field: possibility to detect the existence of a magnetic field in HIC

Summary & Outlook

