Experimental Overview Of Critical Fluctuations

Ashish Pandav National Institute of Science Education and Research, HBNI, India Lawrence Berkeley National Lab, US

November 29, 2022

Outline

- 1. Introduction
- 2. Results
- 3. Future Prospects &
 - Challenges
- 4. Summary

In part supported by

CPOD2022- Workshop on Critical Point and Onser of Deconfinement, 28th Nov – 2nd Dec, 2022

Probing the QCD Phase Diagram via Fluctuations

Goal: Study of QCD Phase Diagram

Varying beam energy varies Temperature (T) and Baryon Chemical Potential (μ_B). Fluctuations of conserved quantities are sensitive to phase transition and critical point.

Observables

□ Higher-order cumulants of net-particle distributions (proxy for **conserved charges**).

Search for QCD Critical Point

Non-monotonic collision energy dependence with deviation below and above baseline fluctuations. → Existence of critical region

M. A. Stephanov, Phys.Rev.Lett. 107 (2011) 052301 A. Bzdak et al, Phys. Rept. 853, 1-87 (2020)

Search for Crossover

 C_5 , C_6 : negative for LQCD, FRG (Functional Renormalization Group) – crossover C_5 , C_6 : positive for HRG (GCE) and UrQMD (No QCD transition)

HotQCD, Phys. Rev. D101,074502 (2020)

Wei-jie Fu et. al, PRD 104, 094047(2021)

Ordering of ratios :
$$\frac{C_3}{C_1} > \frac{C_4}{C_2} > \frac{C_5}{C_1} > \frac{C_6}{C_2}$$
 - LQCD, FRG

Search for 1st order Phase Transition

Multiplicity distribution bi-modal (contribution from two phases)

Proton factorial cumulants κ_n : with increasing order, increase rapidly in magnitude with alternating sign

$$\begin{split} \kappa_1 &= C_1 \\ \kappa_2 &= -C_1 + C_2 \\ \kappa_3 &= 2C_1 - 3C_2 + C_3 \\ \kappa_4 &= -6C_1 + 11C_2 - 6C_3 + C_4 \\ \kappa_5 &= 24C_1 - 50C_2 + 35C_3 - 10C_4 + C_5 \\ \kappa_6 &= -120C_1 + 274C_2 - 225C_3 + \\ &\qquad 85C_4 - 15C_5 + C_6 \end{split}$$

 $P(N) = (1 - \alpha)P_a(N) + \alpha P_b(N)$: Two Component/Bimodal Distribution

Analysis Procedure

2/ Construct net-particle multiplicity distributions

3/ Perform measurement of cumulants

4/ Correct for volume fluctuation effect: perform centrality bin-width correction (CBWC) / VFC

5/ Correct for detector efficiency

6/ Comparison with models to draw conclusion

Analysis Methods and Corrections

Particle Identification

Correction for Efficiency and Volume Fluctuation

- □ Binomial Efficiency correction
- □ Check for non-binomial effects: unfolding X. Luo, PRC 91, (2015) 034907, T. Nonaka et al, PRC 95, (2017) 064912, X. Luo et al, PRC 99 (2019), 044917, T. Nonaka et al, NIMA906 10-17(2018)
- □ Centrality Bin Width Correction data driven
- □ Volume Fluctuation Correction model dependent

X. Luo et al, J.Phys. G 40, 105104 (2013), V. Skokov et al., Phys. Rev. C88 (2013) 034911 P. Braun-Munzinger et al, NPA 960 (2017)114-130

□ Maximize resolution and minimize self correlation effects.

Statistical and Systematic Uncertainties

□ Delta Theorem and Bootstrap method

X. Luo, J. Phys. G39, 025008 (2012), A. Pandav et al, NPA991, 121608 (2019)

Vary PID, track selection cuts, background contamination

Event-by-event Raw Net-proton Distributions

1) Net-proton distributions, top 5% central collisions, efficiency uncorrected.

2) Values of the mean increase as energy decreases, effect of baryon stopping.

Net-proton Cumulant Measurements

Cumulant Measurements at vanishing μ_B

□ Presence of long-range rapidity correlations ($\Delta y_{corr} > 0.5$) between protons and antiprotons. HIJING and EPOS reproduces qualitative trend but show quantitative differences.

□ Vanishing third order cumulant observed – consistent with LQCD and HRG calculations.

Net-Proton C₄/C₂ – Critical Point Search

Non-monotonic collision energy dependence observed for net-proton C₄/C₂ − consistent with CP expectation. Non-CP models fail to reproduce the observed trend.
Suppression observed at √s_{NN} = 3GeV (µ_B = 750 MeV), consistent with UrQMD – QCD matter created is dominantly hadronic.

Net-Particle C_4/C_2 – Critical Point Search

Measurements and QCD Thermodynamics

Ordering of ratios (Net-baryon): $\frac{C_3}{C_1} > \frac{C_4}{C_2} > \frac{C_5}{C_1} > \frac{C_6}{C_2}$ - LQCD, FRG

 Within uncertainties, 7.7 and 200 GeV data consistent with predicted hierarchy. UrQMD does not follow the ordering. Positive for all the ratios.
At 3 GeV, violation of ordering is seen. Observed ordering reproduced by UrQMD.

Net-Proton C_6/C_2 – Crossover Search

□ Increasingly negative C_6/C_2 (7.7 – 200 GeV) with decreasing energy at a level of $\leq 1.7\sigma$ observed for 0-40% centrality – lattice QCD calculations are consistent with observed trend in data.

□ At 3 GeV, 0-40% measurement positive.

□ C_6/C_2 (50-60%), UrQMD ≥ 0 for all energies.

STAR: PRL 127, 262301 (2021) HRG CE: P. B Munzinger et al, NPA1008, 122141(2021)

Net-Proton C_6/C_2 – Crossover Search

- Decreasing trend of cumulant ratios observed with increase in system size. (p+p, Zr+Zr, Ru+Ru, and Au+Au collisions)
- □ Measurements at high charged multiplicity consistent with lattice QCD.
- □ Fifth and sixth order cumulant ratios grow progressively negative towards higher charged particle multiplicity sign consistent with lattice QCD calculation with a crossover.

Proton κ_5 and $\kappa_6 - 1^{st}$ order Phase Transition Phase Transition

STAR: arXiv:2207.09837

STAR: PRC 104, 024902 (2021)

□ For $\sqrt{s_{NN}} \ge 11.5$ GeV, the proton κ_n within uncertainties does not support the twocomponent shape of proton distributions. Possibility of sign change at low energy.

□ Peripheral data and UrQMD calculations consistent with zero at all energies.

Future Prospects and Upcoming Experiments

Crossover Search and Probing Magnetic field in HIC

STAR BUR Run22, STAR note 0773, ALICE: arXiv1812.06772

CP Search: BES-II at RHIC and CBM at FAIR https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

Initial Volume Fluctuation Effect at High Barvonic Density Region

- □ Initial volume fluctuation effect significant at low $\sqrt{s_{NN}}$.
- □ Low collision energy: low charged particle multiplicity poor centrality resolution.
- □ Look for alternate way to obtain $< N_{part} >$ in experiments.

Current Status of CP and Conclusion

A. Pandav, D. Mallick, B. Mohanty, PPNP. 125, 103960 (2022)

Critical point unlikely to exist below $\frac{\mu_B}{T} < 2.5 (\sqrt{s_{NN}} > 27 \text{ GeV})$ - lattice QCD

Measurements at $\sqrt{s_{NN}} = 3 \text{ GeV} - \text{strongly suggest QCD matter}$ created is hadronic.

Critical region, if created in HIC is likely to be between $\sqrt{s_{NN}} = 3 - 27$ GeV.

Measurements from BES-II, upcoming experiments: CBM at FAIR will be crucial.

Acknowledgements

Alphabetically: Xin Dong, ShinIchi Esumi, **Yige Huang**, **Ho-San Ko**, Xiaofeng Luo, **Debasish Mallick**, Bedangadas Mohanty, **Dylan Neff**, Risa Nishitani, Toshihiro Nonaka, **Zachary Sweger**, Nu Xu, **Xin Zhang**, **Yu Zhang**, and other STAR colleagues.

STAR Collaboration, EHEP group at NISER and RNC group at LBNL

Acknowledgements

Alphabetically: Xin Dong, ShinIchi Esumi, **Yige Huang**, **Ho-San Ko**, Xiaofeng Luo, **Debasish Mallick**, Bedangadas Mohanty, **Dylan Neff**, Risa Nishitani, Toshihiro Nonaka, **Zachary Sweger**, Nu Xu, **Xin Zhang**, **Yu Zhang**, and other STAR colleagues.

STAR Collaboration, EHEP group at NISER and RNC group at LBNL

THANK YOU FOR YOUR ATTENTION