Experimental Overview Of Critical Fluctuations

Ashish Pandav National Institute of Science Education and Research, HBNI, India Lawrence Berkeley National Lab, US

November 29, 2022

Outline

- 1. Introduction
- 2. Results
- 3. Future Prospects &
	- Challenges
- 4. Summary

In part supported by

CPOD2022- Workshop on Critical Point and Onser of Deconfinement, 28th Nov – 2nd Dec, 2022

Probing the QCD Phase Diagram via Fluctuations

Goal: Study of QCD Phase Diagram

Introduction: QCD Phase Diagram

Varying beam energy varies Temperature (T) and Baryon Chemical Potential (μ_B) . Fluctuations of conserved quantities are sensitive to phase transition and critical point.

3 Experimental overview of critical fluctuations −*Ashish Pandav* $g_{\text{premin-ent}(\alpha)}$ phase and the high-temperature order phase is a first-order phase transition α

Observables

Higher-order cumulants of net-particle distributions (proxy for **conserved charges**).

Search for QCD Critical Point

Non-monotonic collision energy dependence with deviation below and above baseline fluctuations. \rightarrow Existence of critical region

Experimental overview of critical fluctuations − Ashish Pandav from the critical point and the "angle" relative to the crossover direction (i.e., *h* = 0 for *T* > *Tc*) respectively. In terms Experimental overview of critical fluctuations - Ash

Search for Crossover *HotQCD, Phys. Rev. D101,074502 (2020)* $\overline{\mathbf{S}}$ $\overline{\Omega}$ $\frac{1}{2}$

 $\overline{}$

Wei-jie Fu et. Al, arXiv:2101.06035 B. Friman et al, Eur.Phys.J. C71 1694 (2011) Wei-jie Fu et. Al, arXiv:2101.06035 ⁵, C₆: negative for LQCD, FRG (Functional Renorm
C₈ (GeV) NN Collision Energy states and the collision Energy states and the collision Energy states and the collision *C*₅, *C*₆: negative for LQCD, FRG (Functional Renormalization Group) – crossover C_5, C_6 : positive for HRG (GCE) and UrQMD (No QCD transition)

HotQCD, Phys. Rev. D101,074502 (2020) HotQCD, Phys. Rev. D101,074502 (2020)

Wei-jie Fu et. al, PRD 104, 094047 (2021)

Ordering of ratios :
$$
\frac{c_3}{c_1} > \frac{c_4}{c_2} > \frac{c_5}{c_1} > \frac{c_6}{c_2}
$$
 - LQCD, FRG

active of the Uran at a level of *and a level of critical fluctuations −* Ashish Pandav
Experimental overview of critical fluctuations − Ashish Pandav dependence of !8/!9 (0-40%). Deviations from zero at a level of ≲ 2/ observed.

!", !#: negative for LQCD, FRG, PQM − crossover

Search for 1st order Phase Transition

Multiplicity distribution bi-modal (contribution from two phases) Multiplicity distribution bi-modal (contribution from two phases)

Proton factorial cumulants κ_n : with increasing order, increase rapidly in magnitude with alternating sign magnitude with alternating sign BZDAK, KOCH, OLIINYCHENKO, AND STEINHEIMER PHYSICAL REVIEW C **98**, 054901 (2018)

 $\kappa_1 = C_1$ $\kappa_2 = -C_1 + C_2$ $\kappa_3 = 2C_1 - 3C_2 + C_3$ $\kappa_4 = -6C_1 + 11C_2 - 6C_3 + C_4$ $\kappa_5 = 24C_1 - 50C_2 + 35C_3 - 10C_4 + C_5$ $\kappa_6 = -120C_1 + 274C_2 - 225C_3 +$ $85C_4-15C_5+C_6$

 $P(N) = (1 - \alpha)P_a(N) + \alpha P_b(N)$: Two Component/Bimodal Distribution efficiency simposed values and α $\alpha(N) = (1 - \alpha)P_{\alpha}(N) + \alpha P_{\alpha}(N)$: Two Component/Bimodal Distribution

Analysis Procedure

2/ Construct net-particle multiplicity distributions

3/ Perform measurement of cumulants

4/ Correct for volume fluctuation effect: perform centrality bin-width correction (CBWC) / VFC

5/ Correct for detector efficiency

6/ Comparison with models to draw conclusion

Analysis Methods and Corrections

Correction for Efficiency and Volume Fluctuation

- Binomial Efficiency correction
- Check for non-binomial effects: unfolding *X. Luo , PRC 91, (2015) 034907, T. Nonaka et al, PRC 95, (2017) 064912, X. Luo et al, PRC 99 (2019), 044917 , T. Nonaka et al, NIMA906 10-17(2018)*
- Centrality Bin Width Correction data driven
- Volume Fluctuation Correction model dependent

X. Luo et al, J.Phys. G 40, 105104 (2013), V. Skokov et al., Phys. Rev. C88 (2013) 034911 P. Braun-Munzinger et al, NPA 960 (2017)114-130

self correlation effects. Carlo Glauber model simulations [74].

Statistical and Systematic Uncertainties TABLE II. The uncorrected number of charged particles in the uncorrected particles in the uncorrected particles

 $\overline{309}$ Through a model simulation is seen that larger is the lar ³¹⁰ ⌘ acceptance used for centrality selection, closer are the $\frac{1}{2}$ because the cumulants to the actual values $\frac{1}{2}$. **Q** Delta Theorem and Bootstrap method

2
2019) X. Luo, J. Phys. G39, 025008 (2012), A. Pandav et al, NPA991, 121608 (2019)

 $\frac{3}{2}$ in graduate for the centrality definition of particles for the centrality definition of $\frac{3}{2}$ endent - U Vary PID track endent \Box Vary PID, track selection cuts, $\delta^{0.034911}$ background contamination 3177 letting, it may be mentioned that the choice that the 200 62.4 54.4 39 27 19.6 14.5 11.5 7.7 5-10 618 482 516 439 412 376 330 287 225

Experimental overview of critical fluctuations −Ashish Pandav $\overline{\mathbf{320}}$ These are the driving considerations for the centrality considerations for the centrality considerations for the centrality considerations for the centrality considerations of the centrality considerations o

Event-by-event Raw Net-proton Distributions

1) Net-proton distributions, top 5% central collisions, efficiency uncorrected. η is the proton distributions, top 5% central comsions, emerging difference and η

2) Values of the mean increase as energy decreases, effect of baryon stopping.

Net-proton Cumulant Measurements PHYSICAL REVIEW LETTERS 126, 092301 (2021)

Cumulant Measurements at vanishing μ_B $\mathfrak{g} \mu_{\scriptscriptstyle R}$

 $\sqrt{2\pi}$ Presence of long-range rapidity correlations $\left(\lambda y \right)$ ≥ 0.5 between protons and antiprotons HIJING and EPOS reproduces qualitative trend but show quantitative differences. **D** Presence of long-range rapidity correlations ($\Delta y_{corr} > 0.5$) between protons and antiprotons.

 $\boxed{\Box}$ Vanishing third order cumulant observed – consistent with LO \mathcal{C} and \mathcal{C} and \mathcal{C} as \mathcal{C} conserved deviation is \mathcal{C}

ment is expected because of the small acceptance window as discussed above. For Dh *>* 0*.*8, deviations

therefore consistent with the assumption of global baryon number conservation, i.e. conservation within

Net-Proton C_4/C_2 – Critical Point Search

 \Box Non-monotonic collision energy dependence observed for net-proton C_4/C_2 − consistent with CP expectation. Non-CP models fail to reproduce the observed trend. **□** Suppression observed at $\sqrt{s_{NN}}$ = 3GeV (μ_B = 750 MeV), consistent with UrQMD – QCD matter created is dominantly hadronic.

Net-Particle C_4/C_2 – Critical Point Search

Experimental overview of critical fluctuations −*Ashish Pandav 14*

 \equiv

Measurements and QCD Thermodynamics

Ordering of ratios (Net-baryon): $\frac{C_3}{C_1}$ C_1 $> \frac{C_4}{C_2} > \frac{C_5}{C_1}$ C_1 $>$ $\frac{\mathcal{C}_6}{\mathcal{C}_2}$ - LQCD, FRG

 \Box Within uncertainties, 7.7 and 200 GeV data consistent with predicted hierarchy. UrQMD does not follow the ordering. Positive for all the ratios. At 3 GeV, violation of ordering is seen. Observed ordering reproduced by UrQMD.

Net-Proton C₆/C₂ − Crossover Search $\begin{array}{ccc} \hline \end{array}$ $\begin{array$ $1011 \, \mathrm{G}/\mathrm{G}$ Crossover Search \mathbf{a} \mathbb{R}^n , positive for \mathbb{R}^n , positive for \mathbb{R}^n

 $\boxed{\Box}$ Increasingly negative C_6/C_2 (7.7 – 200 GeV) with $\left| \begin{array}{ccc} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array} \right|$ decreasing energy at a level of $\leq 1.7\sigma$ observed $\frac{d}{d}$ UrQMD $\frac{d}{d}$ observed. The specific of $\frac{1}{\sqrt{2}}$ observed. $\begin{array}{|c|c|c|c|c|c|}\n\hline\n\textbf{1} & \textbf{0} & \textbf{0} & \textbf{0} & \textbf{0} & \textbf{0} & \textbf{0} \\
\hline\n\end{array}$ **40%** IIII 50-60% $\begin{array}{|c|c|c|c|c|}\n\hline\n\textbf{2} & \textbf{0} & \textbf{0} & \textbf{0} & \textbf{0} & \textbf{0} & \textbf{0} \\
\hline\n\end{array}$ are consistent with observed trend σ 10% centrality attitude σ 0.0 ca. \blacksquare mercasm_{ $\boxed{\Box}$ Increasing −⊂
⊢

−1

 \Box At 3 GeV, 0-40% measurement positive.

|y| < 0.5

Proton Control Control of

 $C_6/C_2(50-60\%)$, UrQMD ≥ 0 for all energies.

STAR: arXiv:2207.09837

STAR: PRL 127, 262301 (2021) HRG CE: P. B Munzinger et al, NPA1008, 122141(2021)

Net-Proton C_6/C_2 – Crossover Search

- \Box Decreasing trend of cumulant ratios observed with increase in system size. (p+p, Zr+Zr, Ru+Ru, and Au+Au collisions)
- Measurements at high charged multiplicity consistent with lattice QCD.
- \Box Fifth and sixth order cumulant ratios grow progressively negative towards higher charged particle multiplicity – sign consistent with lattice QCD calculation with a crossover.

Proton κ_5 and $\kappa_6 - 1$ st order Phase Transition Phase Transition

STAR: arXiv:2207.09837 STAR: PRC 104, 024902 (2021)

 \Box For $\sqrt{s_{NN}} \geq 11.5$ GeV, the proton κ_n within uncertainties does not support the twocomponent shape of proton distributions. Possibility of sign change at low energy.

 \Box Peripheral data and UrQMD calculations consistent with zero at all energies.

Future Prospects and Upcoming Experiments

Crossover Search and Probing Magnetic field in HIC

stransition region, the expected of the expected of $\frac{1}{2}$ stars but are readily in the properties of the properties; the properties of the property in the property in the property of the property of the property of the $\mathcal{S}IAK$ DC ⁶ correspond approx-*STAR BUR Run22, STAR note 0773, ALICE: arXiv1812.06772*

⁸ . This confirms that in the transition region, two

CP Search: BES-II at RHIC and CBM at FAIR https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

Experimental overview of critical fluctuations −Ashish Pandav **15/06/2022 Hot and Cold Cold Cold Cold Cold D**CD Townhall Meeting, 23

Initial Volume Fluctuation Effect at High Baryonic Density Region \rightarrow nitial **V** α ^{*r*} olume Fluctuation Eff

- Initial volume fluctu results are applied CBWC except for the one (blue crosses) using *b* 3 fm events. \Box Initial volume fluctuation effect significant at low $\sqrt{s_{NN}}$.
	- $\text{at low } v_{\text{SNN}}$. munipheny - poor centrality resolution. \Box Low collision energy: low charged particle multiplicity - poor centrality resolution.
	- \Box Low consion energy. Tow charged parties to \Box Look for alternate way to obtain $\langle N_{p_i} \rangle$ ³⁹¹ tiplicities. Therefore, the accuracy of ↵*^m* and *wi,j* is de-*N*part and reference multiplicity, respectively. (b): *N*part root-**Q** Look for alternate way to obtain $\langle N_{part} \rangle$ in experiments.

Current Status of CP and Conclusion

A. Pandav, D. Mallick, B. Mohanty, PPNP. 125, 103960 (2022)

Critical point unlikely to exist below $\frac{\mu_B}{T}$ < 2.5 ($\sqrt{s_{NN}}$ > 27 GeV) lattice QCD

Measurements at $\sqrt{s_{NN}}$ = 3 GeV – strongly suggest QCD matter created is hadronic.

Critical region, if created in HIC is likely to be between $\sqrt{s_{NN}}$ = 3 – 27 GeV.

Measurements from BES-II, upcoming experiments**:** CBM at FAIR will be crucial.

Acknowledgements

Alphabetically: Xin Dong, ShinIchi Esumi, Yige Huang, Ho-San Ko, Xiaofeng Luo, Debasish Mallick, Bedangadas Mohanty, Dylan Neff, Risa Nishitani, Toshihiro Nonaka, Zachary Sweger, Nu Xu, Xin Zhang, Yu Zhang, and other STAR colleagues.

STAR Collaboration, EHEP group at NISER and RNC group at LBNL

Acknowledgements

Alphabetically: Xin Dong, ShinIchi Esumi, Yige Huang, Ho-San Ko, Xiaofeng Luo, Debasish Mallick, Bedangadas Mohanty, Dylan Neff, Risa Nishitani, Toshihiro Nonaka, Zachary Sweger, Nu Xu, Xin Zhang, Yu Zhang, and other STAR colleagues.

STAR Collaboration, EHEP group at NISER and RNC group at LBNL

THANK YOU FOR YOUR ATTENTION