The CEP’s location and critical exponents are used to obtain the non-singular scaling functions

\[L^{-\gamma/\nu} \chi(\tau_s, L) = f_2^s(\tau_s L^{1/\nu}) \]

\[\tau_s = (\sqrt{s} - \sqrt{s_{CEP}})/\sqrt{s_{CEP}} \]

\[\nu \sim 0.63 \quad \gamma \sim 1.237 \]

\[\sqrt{s_{NN}}(\infty) \sim 45.0 \text{ GeV} \]

Data collapse onto a single curve, confirms the expected non-singular scaling function.
Data collapse onto a single curve, confirms the expected non-singular scaling functions

Susceptibility Scaling Functions – Fluctuations driven

\[L^{-\beta \delta/\nu} \chi(\tau_s, L) = f_1^\mu(\tau_s L^{1/\nu}) \]

\[\frac{1}{\langle N \rangle} \left(\frac{\partial \langle N \rangle}{\partial \mu} \right) = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} \]

\[\kappa_T \propto \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} = \frac{C_2}{C_1} \]

\[L^{-\beta \delta/\nu} \chi(\tau_s, L) = f_1^\mu(\tau_s L^{1/\nu}) \]
Dynamic Finite – Size Scaling

- 2nd order phase transition
 \[\nu \sim 0.63 \quad \gamma \sim 1.2 \]
 \[\sqrt{S_{NN}}(\infty) \sim 45.0 \text{GeV} \]

DFSS ansatz

at time \(t \) when \(\sqrt{s} \) is near \(\sqrt{s_{\text{cep}}} \)

\[\chi(L, \sqrt{s}, t) = L^{\gamma/\nu} f(\tau_s L^{1/\nu}, t L^{-z}) \]

For

\[\sqrt{s} = \sqrt{s_{\text{cep}}} \]

\[\chi(L, \sqrt{s_{\text{cep}}}, t) = L^{\gamma/\nu} f(t L^{-z}) \]

M. Suzuki,
Prog. Theor. Phys. 58, 1142, 1977

Experimental estimate of the dynamic critical exponents

\[\nu \sim 0.63 \]
\[\gamma \sim 1.2 \]

\[z \sim 0.785 \]