
Pan Tutorial: A Whirlwind
Tour of the Pan Language

C. Loomis (CNRS/LAL)

11th Quattor Workshop (CERN)
16-18 March 2011

Contents

• Basics

– Download, install.

– Declarative syntax

• Performance

• Idioms

• Advanced techniques

16-18 March 2011 Pan Compiler (C. Loomis) 2

Raison d’être

• Purpose

– Define (machine) configuration parameters

– Subject to (user-defined) validation criteria

• Goals

– Simple, human-friendly syntax

– Same language for parameters, validation, etc.

– Easy reuse & sharing of configuration information

16-18 March 2011 Pan Compiler (C. Loomis) 3

Place in the Ecosystem

• Workflow is nearly identical to that for
standard software development. Between
VCS and “actuators”:

– Version control system: SCDB, CDB, …

– Quattor NCM subsystem: configuration
components, …

• In principle, could be used with any VCS and
used for any type of configuration.

Pan Compiler (C. Loomis)16-18 March 2011 4

Download & Installation

• To follow exercises:

– Download latest panc tarball from SF

– Requires version of Java JDK or JRE 1.6

– Setup environment (PATH=…) for panc

• SourceForge links

– Use v8.4.7

– http://sourceforge.net/projects/quattor/files/pan
c/

16-18 March 2011 Pan Compiler (C. Loomis) 5

http://sourceforge.net/projects/quattor/files/panc/
http://sourceforge.net/projects/quattor/files/panc/

Hello World

16-18 March 2011 Pan Compiler (C. Loomis) 6

hello_world.pan

#

object template hello_world;

‘/message’ = ‘Hello World!’;

$ panc hello_world.pan

$ ls hello_world.*

$ cat hello_world.xml

<?xml version="1.0" encoding="UTF-8"?>

<nlist format="pan" name="profile">

<string name="message">Hello World!</string>

</nlist>

Declarative Language

• Primary statement is an assignment!

• Define tree of configuration parameters:
– Syntax similar to unix file system

– Looks very much like proc file system on linux

• Other statements:
– Template declaration

– (Global) variable, type, or function definitions

– Binding statement: types applied to path

16-18 March 2011 Pan Compiler (C. Loomis) 7

'/my/path' = 47;

Declarative Language (2)

• Feel yourself missing procedural flow control
in templates?

– Very likely an opportunity to capture and reuse
some configuration into separate templates.

– Or something that is better done in the perl code
of a configuration module.

16-18 March 2011 Pan Compiler (C. Loomis) 8

Statements

16-18 March 2011 Pan Compiler (C. Loomis) 9

Statement Purpose

‘/path’ = ‘OK’; unconditionally assign the value to the given absolute or
relative path

‘/path’ ?= ‘OK’; conditionally assign the value to the given absolute or
relative path

include { ‘other_template’ }; include and execute the statements in the other
template; if name if undef or null, nothing is done

variable X = ‘OK’; create global variable X with the value ‘OK’

variable X ?= ‘OK’; conditionally set the variable X to the value ‘OK’

type x = string; define type x to be a string

function x = 42; define function x that always returns 42

bind ‘/path’ = x; bind type definition x to the path ‘/path’

prefix ‘/path’; sets the path prefix to ‘/path’ for any subsequent relative
assignment statements

Types of Templates

16-18 March 2011 Pan Compiler (C. Loomis) 10

Modifier Name Purpose

object object template signals that a profile (*.xml file) should be
generated

<none> ordinary template contains any type of statement for inclusion by
other templates

unique unique template like an ordinary template but will be executed
only once for each profile

declaration declaration template may only contain variable, type, and function
definitions; only executed once for each profile

structure structure template contains only relative assignment statements;
included via the create() function

Batch System

• Use example of a simple batch system to show
major features of pan language.

• Batch system (or cluster) has a “head node”
that accepts job requests and farms them out
to a number of worker nodes for execution.

• Server: has nodes (each node participates in
queues, has capabilities), has queues (each
queue has CPU limit)

• Worker: references server, enabled/disabled

Pan Compiler (C. Loomis)16-18 March 2011 11

Batch1

• Simple example showing how to declare the
configuration for server and 1 worker.

• Not very extensible organization:

– All of the templates at root level.

– Copy/paste duplication with workers.

16-18 March 2011 Pan Compiler (C. Loomis) 12

Batch2

• Split service configuration from node
declarations.

• Use namespaces for service and node
declarations.

• Can make more workers with less duplication.

• Doesn't provide protection against bad values
in the configuration.

16-18 March 2011 Pan Compiler (C. Loomis) 13

Batch3

• Add type declarations:

– Boolean, longs, etc.

• Often default values make sense and would
like to define values only if different than the
default.

16-18 March 2011 Pan Compiler (C. Loomis) 14

Type Hierarchy

16-18 March 2011 Pan Compiler (C. Loomis) 15

Batch4

• Provide default values:

– Can provide resources as well as properties!

– Defaults only provided if the parent exists.

• Would like to provide consistency checks
between values and between node
declarations.

16-18 March 2011 Pan Compiler (C. Loomis) 16

Batch5

• Cross-value/cross-machine validation:

– Ensure that listed queues actually exist.

– Ensure that server and workers all know about
each other.

• Templates often modify multiple parameters
in the same part of the configuration tree.

16-18 March 2011 Pan Compiler (C. Loomis) 17

Batch6

• Use of the 'prefix' statement:

– Pseudo-statement: only affects containing
template

– Best practice: one prefix at beginning of template

16-18 March 2011 Pan Compiler (C. Loomis) 18

Common Problems

• Last statement executed provides the value of
a DML block.
– All DML statements provide a value, even flow

control statements like if/else, foreach, while, etc.

– Use care when assigning to resources in DML
block.

Pan Compiler (C. Loomis)16-18 March 2011 19

'/path' = if (false) 'MY VALUE'; # returns undef

'/path' = {

m['child'] = 3;

}; # Value is 3, not nlist!

Performance

• Be explicit with paths, push as much information
to left of assignments as possible.

• Invoking compiler:
– Avoid panc script if possible. You pay the startup costs

of the JVM every time it is invoked.
– Ant/maven are more effective and provide

dependency management as well.

Pan Compiler (C. Loomis)16-18 March 2011 20

'/path' = nlist('a', 1, 'b', 2);

More legible and faster.

'/path/a' = 1;

'/path/b' = 2;

Performance

• Use escaped literal syntax:

• Always use a built-in function instead of a
function defined in pan!
– Especially important for append(), prepend()

– Look at to_uppercase(), to_lowercase(), etc.

Pan Compiler (C. Loomis)16-18 March 2011 21

'/path' = nlist(escape('a/b'), 1);

More legible and faster.

'/path/{a/b}' = 1;

Performance

• Avoid SELF if possible!
– Avoid incremental builds of lists, rearranging the

configuration, if possible.

– Always (!!) use SELF directly in any DML block. Do
NOT copy to a local variable!

Pan Compiler (C. Loomis)16-18 March 2011 22

'/path/a' = 1;

'/path/b' = 2;

'/path' = {

copy = SELF; # Deep copy of SELF!

copy['c'] = 3;

SELF; # Added value is LOST.

};

Idioms

• Default variables for modifying configuration.

16-18 March 2011 Pan Compiler (C. Loomis) 23

variable MY_SERVICE_CONFIG ?= null; # or undef

include { if_exists(MY_SERVICE_CONFIG) };

variable ADD_NFS_MOUNT ?= null;

'/mounts' = {

if (ADD_NFS_MOUNT) {

'/var/log …';

} else {

null;

};

};

Idioms

• null is useful for tri-state variables or sentinel
values:

• Use file_contents() and format() for simple
configuration files.

16-18 March 2011 Pan Compiler (C. Loomis) 24

variable X = true; # or false or null

'/path' = X; # completely unset if null

variable X = file_contents('my_cfg_file');

'/path' = format(X, 10, 20, 'USER');

Advanced Techniques

• Annotations

• Logging/debugging:

– Can generate dependency information

– Use verbose for performance stats

– Use memory, call, … logging for detailed analysis

– Use debug() function for detailed information

– Use traceback() to find problem location

16-18 March 2011 Pan Compiler (C. Loomis) 25

Documentation

• Please read the documentation!

– Compiler and language manuals (pan-book).

– README often has useful information!

16-18 March 2011 Pan Compiler (C. Loomis) 26

