FCC-hh – Layout and Optics for PL

Beam 2 injection and RF insertion

Gustavo Pérez Segurana

FCC layout

Vertical offset between injection and circulating planes: 1.25 m Longitudinal dimension: 2160 m

Dipole

Quadrupole

Dipole Quadrupole

PL layout (from right)

Vertical offset between injection and circulating planes: 1.25 m Longitudinal dimension: 2160 m Horizontal offset for RF: 0.085 m

IPL layout (From right)

Strong focusing quadrupole after MSI to decrease strength requirement of MKI

Dispersion localized within rf doglegs

Injection geometry

mb: SBEND, I=55.48m, BField=1.2 T

msi3: SBEND, I=50.0m, BField=1.2 T

msi2: SBEND, I=3.0m, BField=1.0 T

msi1: SBEND, I=4.0m, BField=0.7 T

mki: SBEND, I=40.0m, angle=0.000166 CDR value: <0.00018

Septum and Kicker apertures

	Septum field (T)	Septum thickne (mm)	ss Stro
msi1	0.7	> 8.0	Lin
msi2	1.0	> 12.0	
msi3	1.2	> 18.0 (Cl	DR specifications)

Strong focusing quadrupole after MSI to decrease strength requirement of MKI.

Limited by aperture constraints.

TDI

 $- \mu_v$

600

Values from: FCC-hh protection absorbers and the dump - FCC Week 2018

Beam aperture

Close calls:

- Large β_x at MKI entry
- Large β_y at MKI exit
- Large β_y at first RF separation dipole

Quadrupole strengths

*working names