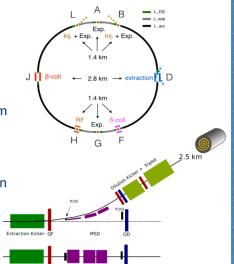
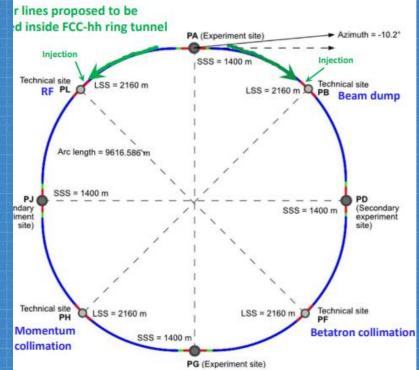
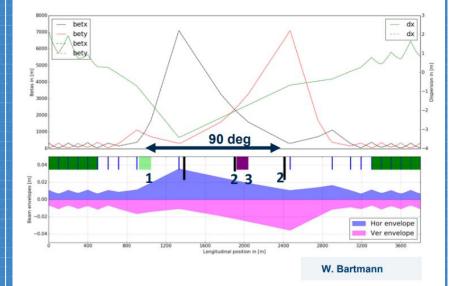
Injection and dump optics for FCC-hh mostly a recap from FCC week

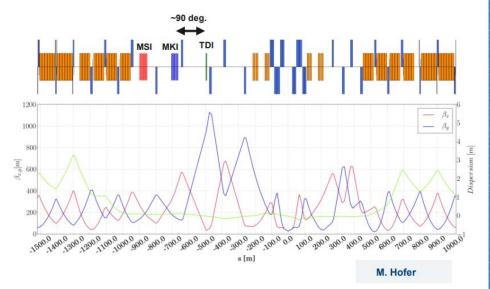
W. Bartmann, FCC-hh design meeting, 15-Sept-22


Questions to be addressed and conclusion

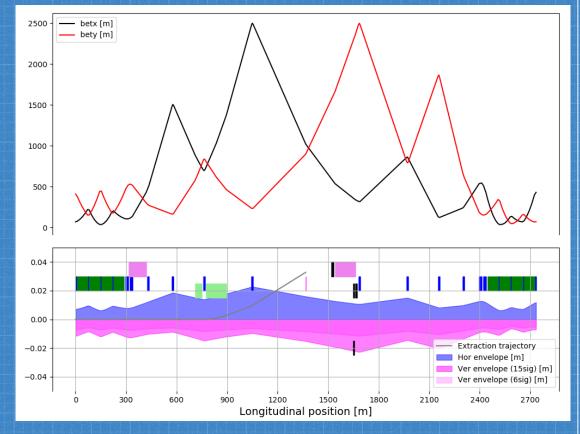

- Can we combine in one straight section of 2.16 km the FCC-hh injection and dump systems?
- Yes ... with more complicated HW, failure scenarios and operation, but no fundamental performance limit identified

Injection/extraction - old vs new layout

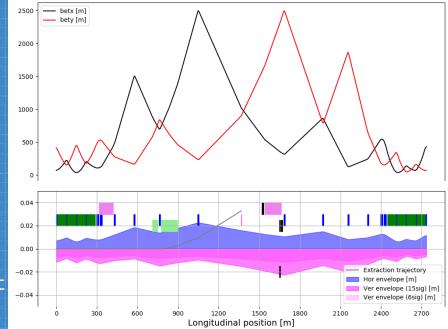

Baseline:


- IPD, 2.8 km for extraction of beam 1 and 2
- 2.5 km dumpline with dilution kicker system to create sweep pattern at graphite beam dump
- Design mainly driven by machine protection
 - Safely extract 8.5 GJ beam
 - Reduce failure probabilities
 - Avoid downtime in case of failure

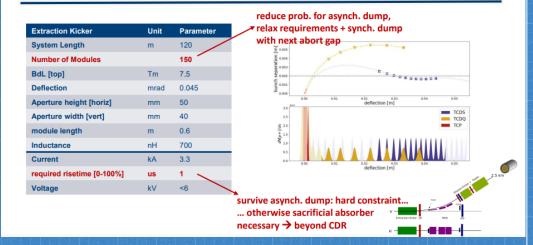
Injection/extraction - from where we started



4


Injection and dump combined

- Overlay main optics constraint of kicker-absorber
 = 90 deg phase
- Most critical is injection failure impacting all extraction elements


Injection and dump combined

- Kickers and absorbers for inj and extr at about same location
- Move injection septum into better phase wrt kicker
 - kick strength factor 1.8 reduced
 - also reduces mis-kicked trajectory offset
- Extraction design with HW parameters not far from CDR (aperture impacted though)
- Injection failure impact
 - Focussing/defocussing in right sequence \rightarrow both systems in vertical
 - Extra MKD clearance of 5 mm (21 cf 16 mm)
 - 27 mm extra at quadrupole
 - MSD protection needs careful design (impact on the outside, most likely increased aperture as well)

Hardware parameters	Unit	Kicker	Septum
Deflection	mrad	0.18	9.8
Integrated field	T.m	2.0	92
System length	m	40	104
Effective length	m	31.8	84
Rise time	μs	0.43	-
Recharge frequency	Hz	pprox 10	-
Flattop length	μs	2.0	≥ 2.0
Flattop stability		$\pm 5\cdot 10^{-3}$	$\pm 10^{-5}$
GFR inj. beam h/v (radius)	mm	-	9/-
Beam stay clear circ. beam h/v (radius)	mm	16/16	9/14 (first unit)
Septum width (first unit)	mm	-	8

Extraction Kicker Requirement

- 0.1 mrad kick
- Similar aperture

- Kick similar
- ~5 mm increased aperture if only 100% miskick,tbc

Injection/dump next

- Thys' modifications in DS have minimal impact on optics in straight → OK
- Run through different failure scenarios of injection and extraction elements, incl global MP studies
- Check inj HW parameters between IPB and IPL and iterate with the goal of a single type of injection HW

 Update list of HW parameters and check for impact on previously chosen technologies and rough cost estimate

 Consider dilution untouched – some impact on dump line optics, envisage focusing triplet there, so room for adaptation