

NFN Istituto Nazionale di Fisica Nucleare

VBF-V EFT studies @ LHE

<u>Flavia Cetorelli</u>², Giorgio Pizzati^{1,2}, Andrea Claudio Maria Bulla^{1,2}

- Università degli Studi di Milano Bicocca 1.
- 2. Sezione INFN di Milano - Bicocca

Outline and motivation

VBF-V: EFT dimension 6 studies @ LHE.

- \star Based on **previous** studies in the field:
 - \circ <u>W+2j</u>: 35.9 fb⁻¹ 13 TeV CMS analysis
 - \circ <u>Z+2j</u>: 35.9 fb⁻¹ 13 TeV CMS analysis
- **Preliminary** analysis at parton level:
 - no detector effects, no backgrounds;
 - describe analysis set up and strategy;
 - show some preliminary **results**.
- ★ Outlook:
 - show some possibilities for **future** studies.

Why VBF \rightarrow V?

Interesting process for testing the standard model **(SM)**, **complementary** to Higgs boson measurements. Sensitive to anomalous trilinear gauge couplings **(ATGCs)**: indirect search for **beyond-the-SM** physics at mass scales not directly accessible at the LHC.

VBF - V

Valid up to a certain energy scale of New Physics Λ

The **SM** could be interpreted as an **effective** low energy approximation of a more complete **theory**.

Flavia Cetorelli

SMEFT

W+2j

Operators choice

 \star 39 (25) for Z(W)+2j dim-6 SMEFT operators with various field content from Warsaw basis.

V^3		$(a^6 \text{ and } (a^4 D^2))$		a/,2/,03		Ī',						
		φ and φD		$\psi \phi$			$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$		Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$		$Q_{qq}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar q_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$		$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$						$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$		Ī	$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{\omega G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{ud}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$				$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
0 ã	$\varphi^{\dagger}\varphi \widetilde{G}^{A}_{}G^{A\mu\nu}$	QeB	$(\bar{l}_n \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{i}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{a}^{I}\varphi)(\overline{l}_{n}\tau^{I}\gamma^{\mu}l_{r})$				$Q_{ud}^{(0)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (d_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (d_s \gamma^\mu d_t)$
νφG	$+ \mu\nu$	O	$(p + i) = \mu \nu$	οφι	$(1 \mu \mid) (p \mid 1 \mid)$						$Q_{qd}^{(0)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (d_s \gamma^\mu T^A d_t)$
$Q_{\varphi W}$	$\varphi'\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(q_p \sigma^{\mu\nu} T^{\mu} u_r) \varphi G^{\mu}_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi' \imath D_{\mu} \varphi)(e_p \gamma^{\mu} e_r)$		$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating			
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i \overset{\circ}{D}_{\mu} \varphi)(\bar{q}_p \gamma^{\mu} q_r)$		Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right]$	TCu_r^{β}	$\left[(q_s^{\gamma j})^T C l_t^k \right]$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		$Q_{quqd}^{(1)} \qquad (\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t) \qquad Q_{qqu}$		$\varepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j})^T C q_r^{eta k} ight]\left[(u_s^\gamma)^T C e_t ight]$			
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$		$ \left\ \begin{array}{c} Q_{quqd}^{(8)} \\ q_{p}^{q}T^{A}u_{r} \rangle \varepsilon_{jk}(\bar{q}_{s}^{k}T^{A}d_{t}) \\ \end{array} \right\ \left\ \begin{array}{c} Q_{qqq} \\ q_{qqq} \end{array} \right\ \\ \varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km} \left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k} \right] \left[(q_{s}^{\gamma m})^{T}Cq_{r}^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km} \left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma}\varepsilon_{km} \left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k} \right] $			${}_{r}^{\beta k} \left[(q_{s}^{\gamma m})^{T} C l_{t}^{n} \right]$		
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$		$ \begin{array}{ c c c c c } Q_{lequ}^{(1)} & (\bar{l}_p^j e_r) \varepsilon_{jk}(\bar{q}_s^k u_t) \end{array} & Q_{duu} & \varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(u_s^{\gamma})^T C e_r^{\beta\gamma} \right] \left[(u_s^{\gamma})^T C e_r^{\beta\gamma} \right] \\ \end{array} $			$\left[(u_s^{\gamma})^T C e_t\right]$		
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$		$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$				

Z+2j

W+2j, Z+2j

SMEFT Monte Carlo generations

★ **39 (25)** for Z(W)+2j dim-6 SMEFT operators with various field content from Warsaw basis.

- \star Generated at LO with <u>SMEFTsim</u> + MadGraph5_aMC@NL0 (2.6.5).
 - Insertion of **one** operator per diagram in production/decay.
 - **U(3)**⁵ flavour symmetry, {mW,mZ, GF} input scheme, CP-even, $\Lambda = 1$ TeV.
 - Used LO MG re-weight:
 - generate events once;
 - reweight to different Wilson coeff;
 - algebra to extract single components.

Faster than single components generation

$$N \propto \underbrace{|\mathcal{A}_{\rm SM}|^2}_{\text{Lin}} + \sum_{\alpha} \frac{c_{\alpha}}{\Lambda^2} \cdot \underbrace{2 \operatorname{Re}(\mathcal{A}_{\rm SM} \mathcal{A}_{Q_{\alpha}}^{\dagger})}_{\text{Lin}} + \underbrace{\frac{c_{\alpha}^2}{\Lambda^4}}_{\text{A}^4} \cdot \underbrace{|\mathcal{A}_{Q_{\alpha}}|^2}_{\alpha,\beta} + \sum_{\alpha,\beta} \frac{c_{\alpha} c_{\beta}}{\Lambda^4} \cdot \underbrace{\operatorname{Re}(\mathcal{A}_{Q_{\alpha}} \mathcal{A}_{Q_{\beta}}^{\dagger})}_{\text{Mix}}$$

Phase space selections

Chose the **leptonic decay** mode:

- clearest signature;
- favorable signal to background ratio.

Reproduced LHC-like selections, based on the characteristic signature of VBF-V leptonic final state:

- **2** energetic **jets** well separated in pseudorapidity
- **1 (2)** charged **lepton(s)** (e or μ) from W(Z) decay

W+2j $p_{T'j1} > 70 \text{ GeV and } p_{T'j2} > 70 \text{ GeV}$ $m_{jj} > 400 \text{ GeV and } |\Delta \eta_{jj}| > 4$ $p_{T,11} > 25 \text{ GeV and } |\eta_{11}| < 2$

 $\begin{array}{l} \textbf{Z+2j} \\ p_{T'j_1} > 50 \; \text{GeV and} \; p_{T'j_2} > 30 \; \text{GeV} \\ \textbf{m}_{jj} > 200 \; \textbf{GeV} \; \text{and} \; \left| \Delta \eta_{jj} \right| > 1 \\ p_{T,11} > 25 \; \text{GeV and} \; p_{T,12} > 20 \; \text{GeV} \\ \textbf{77 \; \textbf{GeV} < \textbf{m}_{11} < 107 \; \textbf{GeV} \\ p_{T,11} > 30 \; \text{GeV} \\ p_{T}^{\text{miss}} < 100 \; \text{GeV} \end{array}$

Signal region

For each operator and channel distributions of **several observables** are investigated \rightarrow looking for the most **discriminating** one

Shape analysis

Performed **shape analysis** with MC templates of **SM**, **lin**, **int**, **and quad** components to extract operators constraints at 68% and 95% c.l.:

Analysis strategy

Performed a 1D (2D) **likelihood scan** for each (pair of) operator(s) for each observable:

VBF-Z jj [EWK]

1 D case

-20L

18

16

m_{ii} scan 100 fb⁻¹ (13 TeV)

0.02 0.04 0.06 0.08

Δφ. scan 100 fb⁻¹ (13 TeV)

+ Best Fit

_± 1σ

---±2σ

9 I Q

-3

-2

2 cdd1

95% c.l.: −2∆log L < 3.84 **Sensitivity** estimated as: 68% c.l.: −2∆log L < 2.30

Sensitivity estimated as:

68% c.l.: $-2\Delta \log L < 1$

95% c.l.: −2∆log L < 5.99

Ranking the **variables** wrt to 1σ range (area).

1D Results: sensitivity

Flavia Cetorelli

Best Confidence Interval

2D results: sensitivity

2D scan: **2** Wilson coefficients at time, all possible pairs tried with all possible variables. Ranking wrt **area** of contour at 1σ .

Most stringent constraints include **4-fermions operators**

2D EFT studies: correlation

From 2D likelihood scan:

- Area (previous slide) → sensitivity and create ranking of most constrained operators (as for 1D case)
- **Shape** of the contour \rightarrow indicate:
 - possible correlation between operators
 - flat directions

Useful info for **N-dimensional** studies: flat directions must be avoided, since make fit fail! Indication of STRONG correlation.

Summary of results and outlook

VBF-V channels are good candidate to put constraints on **dimension 6 operators**:

• in particular 4-fermions and Vff

Inclusion of **QCD** background:

• EFT dependence of the QCD induced sample $(O(\alpha^2 \alpha_s^2))$ never weakens the sensitivity, as shown in <u>VBS EFT paper</u>.

Combination:

- of VBF-V channels, Z+2j and W+2j → to put tighter constraint (as shown in 2016 CMS <u>reco</u> <u>analysis</u>)
- with other VBS and triboson channels:
 - \rightarrow Towards **global EFT** combination in LHC!

These LHE preliminary results are the inputs pointing towards an **LHC data analysis**, including all background, detector effects and systematic uncertainties.

Analysis framework

Comprehensive **framework** developed and maintained in **Milano-Bicocca**: from generations of events to datacard creation and fitting model!

Ntuples and LHE generation **framework**: <u>https://github.com/UniMiBAnalyses/D6EFTStudies</u>

Post-processing, QCD merging, and shape maker based on: https://github.com/GiacomoBoldrini/D6tomkDatacard

Dimension 6 operators in SMEFT

Bosons and 2 fermions operators

4 fermions operators

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$		$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_G $Q_{\tilde{G}}$ Q_W $Q_{\overline{W}}$	$\begin{split} &f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ &f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ &\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho} \\ &\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho} \end{split}$	$egin{array}{c} Q_{arphi} \ Q_{arphi \Box} \ Q_{arphi \Box} \ Q_{arphi D} \ D \end{array}$	$(\varphi^{\dagger}\varphi)^{3}$ $(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$ $(\varphi^{\dagger}D^{\mu}\varphi)^{*}(\varphi^{\dagger}D_{\mu}\varphi)$	Qeq Quq Qdq	$\begin{array}{l} (\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)\\ (\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})\\ (\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi) \end{array}$	$egin{aligned} Q_{ll} & & \ Q_{qq}^{(1)} & \ Q_{qq}^{(3)} & \ Q_{qq}^{(3)} & \ Q_{lq}^{(1)} & \ Q_{lq}^{(1$	$\begin{split} &(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)\\ &(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)\\ &(\bar{q}_p\gamma_\mu\tau^I q_r)(\bar{q}_s\gamma^\mu\tau^I q_t)\\ &(\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t) \end{split}$	Qee Quu Qdd Qeu	$\begin{split} & (\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t) \\ & (\bar{u}_p \gamma_\mu u_r) (\bar{u}_s \gamma^\mu u_t) \\ & (\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t) \\ & (\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t) \end{split}$	Qle Qiu Qiu Qid Qqe	$\begin{split} &(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)\\ &(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)\\ &(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)\\ &(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t) \end{split}$
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$		$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed} $Q^{(1)}$	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t) \\ (\bar{u} \gamma u) (\bar{d} \gamma^\mu d_t)$	$Q_{qu}^{(1)}$ $Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$ $(\bar{q}_s \gamma_s T^A q_s)(\bar{u}_s \gamma^\mu T^A u_t)$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$			$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$ $(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$\frac{(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)}{(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)}$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(l_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}iD^{I}_{\mu}\varphi)(l_{p}\tau^{I}\gamma^{\mu}l_{r})$					$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}iD_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating			
$Q_{\varphi \overline{W}}$	$\varphi^{\dagger}\varphi W^{I}_{\mu u}W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}iD_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right]$	$^{T}Cu_{r}^{\beta}]$	$\left[(q_{s}^{\gamma j})^{T}Cl_{t}^{k}\right]$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i D^{I}_{\mu} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})\right]$	$^{T}Cq_{r}^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{u}_{p} \gamma^{\mu} u_{r})$	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[\left(q_{p}^{lpha} ight.$	$(f)^T C q_r^{\beta}$	$^{8k}]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n} ight]$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$\varepsilon^{lphaeta\gamma}\left[(d_p^{lpha})^T ight.$	Cu_r^{β}	$[(u_s^\gamma)^T Ce_t]$
$Q_{\varphi \overline{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	Quant	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$				ing a state of the

Warsaw basis

Irreducible background

Irreducible bkg for VBF-V are all diagrams involving **QCD** interactions leading to same final state. They are of order $O(\alpha^2 \alpha_s^2)$ @LO and **interfere** with the EW signal.

W+2j: operators and best observable

Best observables are usually **jet** related ones.

Between $Q_{qq}^{(3)}$ and Q_{He} there are **seven orders** of difference in terms of sensitivity.

 \rightarrow Strong indication for a possible additional study at the reco level!

Operator	Best	68% CL interval	95% CL interval				
	variable						
$Q_{qq}^{(3)}$	m_{jj}	[-0.021, 0.022]	[-0.041, 0.043]				
$Q_{Hl}^{(3)}$	η_{j^2}	[-0.056, 0.055]	[-0.110, 0.107]				
$Q_{Hq}^{(3)}$	η_{j^1}	[-0.061, 0.062]	[-0.119, 0.121]				
$Q_{ll}^{(1)}$	p_{T,j^2}	[-0.083, 0.083]	[-0.161, 0.164]				
$Q_{qq}^{(3,1)}$	η_{j^1}	[-0.083, 0.121]	[-0.133, 0.183]				
$Q_{qq}^{(1,1)}$	η_{l^1}	[-0.099, 0.114]	[-0.143, 0.158]				
Q_{uWRe}	η_{j^2}	[-0.101, 0.102]	[-0.196, 0.203]				
$Q_{qq}^{(1)}$	η_{j^1}	[-0.220, 0.267]	[-0.346, 0.406]				
Q_{HWB}	η_{j^1}	[-0.323, 0.333]	[-0.625, 0.665]				
Q_{HDD}	η_{j^1}	[-0.566, 0.581]	[-1.096, 1.156]				
Q_W	m_{jj}	[-0.608, 0.561]	[-1.035, 0.951]				
$Q_{qu}^{(1)}$	η_{j^1}	[-0.855, 0.897]	[-1.213, 1.255]				
$Q_{lq}^{(3)}$	$ \Delta \phi_{jj} $	[-0.889, 0.902]	[-1.518, 1.542]				
$Q_{qd}^{(1)}$	η_{j^2}	[-0.966, 0.939]	[-1.354, 1.327]				
$Q_{Hq}^{(1)}$	p_{T,j^2}	[-0.974, 0.882]	[-1.955, 1.641]				
$Q_{Hu}^{(1)}$	η_{j^1}	[-1.595, 1.973]	[-2.452, 2.890]				
Q_{lu}	η_{l^1}	[-2.151, 2.137]	[-3.017, 3.003]				
Q_{Hd}	p_{T,j^2}	[-2.834, 2.244]	[-3.883, 3.288]				
$Q_{lq}^{(1)}$	η_{l^1}	[-4.489, 4.084]	[-6.453, 6.012]				
Q_{ld}	p_{T,j^2}	[-10.358, 10.974]	[-14.661, 15.278]				
$Q_{Hl}^{(1)}$	η_{l^1}	[-52, 45]	[-100,81]				
Q_{ed}	m_{jj}	[-109, 111]	[-154, 156]				
Q_{qe}	m_{jj}	[-132, 130]	[-185, 184]				
Q_{eu}	$ \Delta \eta_{jj} $	[-1438, 1439]	[-2019, 2020]				
Q_{He}	$ \Delta \eta_{jj} $	[-81429,80881]	[-160086, 157980]				

Variables ranking

Variables are sorted wrt to their 1 sigma interval (or area in the 2D case).

