Normalizing Flows at the LHC Preparing for the Future — ML in HEP, HEPHY/OeAW Vienna —

Claudius Krause

Rutgers, The State University of New Jersey

September 12, 2022

Dr. Claudius Krause

CV Research Experience Dr. rer. nat (2013–2016) I MU Munich Effective Field Theories Postdoc (2016–2018) (conceptual & applied) IFIC Valencia Electroweak Phase Transition Feodor-Lynen Fellow (2018–2020) Beyond the SM Fermilab Machine Learning Applications to Postdoc (2020–2022) simulation & data analyses Rutgers University **E** Talks Community / Organizer Seminars (22) "Fast Calorimeter Challenge 2022" recent: ITP, LBNL, NIKHEF • "Multibosons At The Energy Invited (26) Frontier" workshop at Fermilab recent: IAIFI, Snowmass CSS Pheno-Seminar at Rutgers

• Contributed (21) recent: MODE, DPF, ML4Jets

• HEP Journal Club at Fermilab

Open Questions in High-Energy Physics.

What's not in the Standard Model

- The Nature of Dark Matter
- Neutrino masses
- The Baryon Asymmetry of the Universe
- Dark Energy / Inflation

Experimental Anomalies

- Flavor Observables
- (g − 2)_µ
- Hubble constant H₀

Theoretical Problems

- The Hierarchy Problem
- Origin of Flavor
- Unification of Forces
- Quantum Gravity

Currently explored in Experiments

- Higgs & electroweak Sector of the SM
- Neutrino masses and Hierarchy
- Strong Dynamics
- New Particles & Interactions

We will have a lot more data in the near future.

https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm

Machine Learning and LHC Event Generation, A. Butter, CK et al. [2203.07460]

Machine Learning and LHC Event Generation, A. Butter, CK et al. [2203.07460]

Machine Learning and LHC Event Generation, A. Butter, CK et al. [2203.07460]

- (A lot of) high-precision simulations.
- Analyzing high-dimensional data: Simulation-based Inference and data-driven Anomaly Searches.

Machine Learning and LHC Event Generation, A. Butter, CK et al. [2203.07460]

- (A lot of) high-precision simulations.
- Analyzing high-dimensional data: Simulation-based Inference and data-driven Anomaly Searches.

ML has impacted every aspect of the simulation chain, with one class of models being very powerful: **Normalizing Flows**

Claudius Krause (Rutgers)

Normalizing Flows learn a change-of-coordinates efficiently.

Normalizing Flows learn a change-of-coordinates efficiently.

Having access to the log-likelihood (LL) allows several training options:

- \Rightarrow Based on samples: via maximizing LL(samples).
- \Rightarrow Based on target function f(x): via matching p(x) to f(x).

NFs can also be used for inference: learn p(parameters|data).

Claudius Krause (Rutgers)

Normalizing Flows attack Bottlenecks in the Analysis Chain

Normalizing Flows increase the Sensitivity in our Analyses

(My Contributions to) Normalizing Flows at the LHC

- NFs learn the parameters θ of a series of easy transformations. Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]
- Each transformation is 1d & has an analytic Jacobian and inverse.
 - ⇒ We use Rational Quadratic Splines Durkan et al. [arXiv:1906.04032], Gregory/Delbourgo [IMA J. of Num. An., '82]
- Require a triangular Jacobian for faster evaluation.

 \Rightarrow The parameters θ depend only on a subset of all other coordinates.

- NFs learn the parameters θ of a series of easy transformations. Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]
- Each transformation is 1d & has an analytic Jacobian and inverse.
 - \Rightarrow We use Rational Quadratic Splines

Durkan et al. [arXiv:1906.04032], Gregory/Delbourgo [IMA J. of Num. An., '82]

• Require a triangular Jacobian for faster evaluation.

 \Rightarrow The parameters θ depend only on a subset of all other coordinates.

https://engineering.papercup.com/posts/normalizing-flows-part-2/

- NFs learn the parameters θ of a series of easy transformations. Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]
- Each transformation is 1d & has an analytic Jacobian and inverse.
 - \Rightarrow We use Rational Quadratic Splines

Durkan et al. [arXiv:1906.04032], Gregory/Delbourgo [IMA J. of Num. An., '82]

• Require a triangular Jacobian for faster evaluation.

 \Rightarrow The parameters θ depend only on a subset of all other coordinates.

- NFs learn the parameters θ of a series of easy transformations. Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]
- Each transformation is 1d & has an analytic Jacobian and inverse.
 - ⇒ We use Rational Quadratic Splines Durkan et al. [arXiv:1906.04032], Gregory/Delbourgo [IMA J. of Num. An., '82]
- Require a triangular Jacobian for faster evaluation.
 - \Rightarrow The parameters θ depend only on a subset of all other coordinates.

Autoregressive Blocks (MAF/IAF)

- Coordinates are transformed autoregressivly $\Rightarrow \theta_{x_i}(x_{j < i})$
- + Are very powerful.
- Have a fast and a slow direction.

Bipartite Blocks (Coupling Layers)

• Coordinates are split in 2 sets, transforming each other \Rightarrow

$$\theta_{x\in A}(x\in B)$$
 & $\theta_{x\in B}(x\in A)$

- + Are equally fast in both directions.
- Are not as expressive.

(My Contributions to) Normalizing Flows at the LHC

Phase Space integration uses Importance Sampling.

$$I = \int_{0}^{1} f(\vec{x}) d\vec{x} \qquad \xrightarrow{\text{MC}} \quad \frac{1}{N} \sum_{i} f(\vec{x}_{i}) \qquad \vec{x}_{i} \dots \text{uniform}, \quad \sigma_{\text{MC}}(I) \sim \frac{1}{\sqrt{N}}$$
$$= \int_{0}^{1} \frac{f(\vec{x})}{q(\vec{x})} q(\vec{x}) d\vec{x} \qquad \xrightarrow{\text{MC}} \quad \frac{1}{N} \sum_{i} \frac{f(\vec{x}_{i})}{q(\vec{x}_{i})} \qquad \vec{x}_{i} \dots q(\vec{x}),$$
$$\text{In the limit } q(\vec{x}) \propto f(\vec{x}), \text{ we get } \sigma_{\text{IS}}(I) = 0$$

We therefore have to find a $q(\vec{x})$ that approximates the shape of $f(\vec{x})$.

 \Rightarrow Once found, we can use it for event generation, *i.e.* sampling p_i, ϑ_i , and φ_i according to $d\sigma(p_i, \vartheta_i, \varphi_i)$

Phase Space integration uses Importance Sampling.

$$\begin{split} I &= \int_{0}^{1} f(\vec{x}) \ d\vec{x} & \xrightarrow{\text{MC}} \quad \frac{1}{N} \sum_{i} f(\vec{x}_{i}) & \vec{x}_{i} \dots \text{uniform}, \quad \sigma_{\text{MC}}(I) \sim \frac{1}{\sqrt{N}} \\ &= \int_{0}^{1} \frac{f(\vec{x})}{q(\vec{x})} \ q(\vec{x}) d\vec{x} & \xrightarrow{\text{MC}} \quad \frac{1}{N} \sum_{i} \frac{f(\vec{x}_{i})}{q(\vec{x}_{i})} & \vec{x}_{i} \dots q(\vec{x}), \\ & \text{In the limit } q(\vec{x}) \propto f(\vec{x}), \text{ we get } \sigma_{\text{IS}}(I) = 0 \end{split}$$

We therefore have to find a $q(\vec{x})$ that approximates the shape of $f(\vec{x})$.

 \Rightarrow Once found, we can use it for event generation, *i.e.* sampling p_i, ϑ_i , and φ_i according to $d\sigma(p_i, \vartheta_i, \varphi_i)$

We need both samples x and their probability q(x). \Rightarrow We use a bipartite, coupling-layer-based Flow.

i-flow: Numerical Integration with Normalizing Flows.

Statistical Divergences are used as loss functions:

• Kullback-Leibler (KL) divergence:

$$D_{KL} = \int p(x) \log \left[\frac{p(x)}{q(x)} dx \right] \approx \frac{1}{N} \sum \frac{p(x_i)}{q(x_i)} \log \frac{p(x_i)}{q(x_i)}, \quad x_i \dots q(x)$$

Sherpa needs a high-dimensional integrator.

Sherpa is a Monte Carlo event generator for the Simulation of High-Energy Reactions of PArticles. We use Sherpa to

- compute the matrix element of the process.
- map the unit-hypercube of our integration domain to momenta and angles. To improve efficiency, Sherpa uses a recursive multichannel algorithm.

$$\Rightarrow n_{dim} = \underbrace{3n_{final} - 4}_{\text{kinematics}} + \underbrace{n_{final} - 1}_{\text{multichannel}}$$

https://sherpa.hepforge.org/

Sherpa needs a high-dimensional integrator.

Sherpa is a Monte Carlo event generator for the Simulation of High-Energy Reactions of PArticles. We use Sherpa to

- compute the matrix element of the process.
- map the unit-hypercube of our integration domain to momenta and angles. To improve efficiency, Sherpa uses a recursive multichannel algorithm.

$$\Rightarrow n_{dim} = \underbrace{3n_{final} - 4}_{\text{kinematics}} + \underbrace{n_{final} - 1}_{\text{multichannel}}$$

https://sherpa.hepforge.org/

Figure of merit: Unweighting efficiency

- Unweighting: we need to accept/reject each event with probability ^{f(xi)}/_{max f(x)}. The kept events are unweighted and reproduce the shape of f(x).
- The unweighting efficiency is the fraction of events that "survives" this procedure.

An easy example: $e^+e^- \rightarrow 3j$.

An easy example: $e^+e^- \rightarrow 3j$.

High Multiplicities are difficult to learn in this setup.

unweighting efficiency		LO QCD			
$\langle w \rangle / w_{ m max}$		<i>n</i> =0	n = 1	<i>n</i> =2	n =3
$W^+ + n$ jets	Sherpa	$2.8\cdot 10^{-1}$	$3.8\cdot10^{-2}$	$7.5 \cdot 10^{-3}$	$1.5 \cdot 10^{-3}$
	i-flow	$6.1\cdot10^{-1}$	$1.2\cdot10^{-1}$	$1.0\cdot10^{-2}$	$1.8 \cdot 10^{-3}$
	Gain	2.2	3.3	1.4	1.2
$W^- + n$ jets	Sherpa	$2.9\cdot10^{-1}$	$4.0 \cdot 10^{-2}$	$7.7 \cdot 10^{-3}$	$2.0 \cdot 10^{-3}$
	i-flow	$7.0 \cdot 10^{-1}$	$1.5 \cdot 10^{-1}$	$1.1\cdot10^{-2}$	$2.2 \cdot 10^{-3}$
	Gain	2.4	3.3	1.4	1.1
Z + n jets	Sherpa	$3.1\cdot10^{-1}$	$3.6\cdot10^{-2}$	$1.5\cdot10^{-2}$	$4.7 \cdot 10^{-3}$
	i-flow	$3.8\cdot10^{-1}$	$1.0\cdot 10^{-1}$	$1.4\cdot10^{-2}$	$2.4 \cdot 10^{-3}$
	Gain	1.2	2.9	0.91	0.51
	C.	Gao, S. Höche,	J. Isaacson, CK ,	H. Schulz [arXiv:	2001.10028, PRD]

High Multiplicities are difficult to learn in this setup.

unweighting efficiency		LO QCD			
$\langle w \rangle / w_{ m max}$		<i>n</i> =0	n = 1	<i>n</i> =2	n =3
$W^+ + n$ jets	Sherpa	$2.8\cdot10^{-1}$	$3.8 \cdot 10^{-2}$	$7.5 \cdot 10^{-3}$	$1.5 \cdot 10^{-3}$
	i-flow	$6.1\cdot10^{-1}$	$1.2\cdot10^{-1}$	$1.0\cdot10^{-2}$	$1.8 \cdot 10^{-3}$
	Gain	2.2	3.3	1.4	1.2
$W^- + n$ jets	Sherpa	$2.9\cdot10^{-1}$	$4.0 \cdot 10^{-2}$	$7.7 \cdot 10^{-3}$	$2.0 \cdot 10^{-3}$
	i-flow	$7.0\cdot10^{-1}$	$1.5\cdot 10^{-1}$	$1.1\cdot10^{-2}$	$2.2\cdot10^{-3}$
	Gain	2.4	3.3	1.4	1.1
Z + n jets	Sherpa	$3.1\cdot10^{-1}$	$3.6\cdot10^{-2}$	$1.5\cdot10^{-2}$	$4.7 \cdot 10^{-3}$
	i-flow	$3.8\cdot 10^{-1}$	$1.0\cdot 10^{-1}$	$1.4\cdot10^{-2}$	$2.4 \cdot 10^{-3}$
	Gain	1.2	2.9	0.91	0.51
	C.	Gao, S. Höche,	J. Isaacson, CK,	H. Schulz [arXiv:	2001.10028, PRD]

Improvements:

- make channel number a conditional variable and learn it separately.
- re-use matrix elements multiple times.
- introduce learnable soft permutations, use VEGAS for base dist.

A. Butter, T. Heimel, J. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [in preparation]

(My Contributions to) Normalizing Flows at the LHC

We use the same calorimeter geometry as $\operatorname{CaloGAN}$

- We consider a toy calorimeter inspired by the ATLAS ECal: flat alternating layers of lead and LAr
- They form three instrumented layers of dimension 3×96 , 12×12 , and 12×6

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

We use the same calorimeter geometry as $\operatorname{CaloGAN}$

- We consider a toy calorimeter inspired by the ATLAS ECal: flat alternating layers of lead and LAr
- They form three instrumented layers of dimension 3×96 , 12×12 , and 12×6

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

We use the same calorimeter geometry as $\operatorname{CaloGAN}$

- The GEANT4 configuration of CALOGAN is available at $_{\rm https://github.com/hep-lbdl/CaloGAN}$
- We produce our own dataset: available at [DOI: 10.5281/zenodo.5904188]
- Showers of e^+, γ , and π^+ (100k each)
- All are centered and perpendicular
- $E_{\rm inc}$ is uniform in [1, 100] GeV and given in addition to the energy deposits per voxel:

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

CALOFLOW uses a 2-step approach to learn $p(\vec{\mathcal{I}}|E_{inc})$.

Flow I

- learns $p_1(E_0, E_1, E_2 | E_{inc})$
- is optimized using the log-likelihood.

Flow II

- learns $p_2(\vec{\mathcal{I}}|E_0, E_1, E_2, E_{inc})$ of normalized showers
- in CALOFLOW v1 (2106.05285 called "teacher"):
 - Masked Autoregressive Flow trained with log-likelihood
 - Slow in sampling ($\approx 500 \times$ slower than $\rm CALOGAN)$
- in CALOFLOW v2 (2110.11377 called "student"):
 - Inverse Autoregressive Flow trained with Probability Density Distillation from teacher (log-likelihood prohibitive)

van den Oord et al. [1711.10433]

- i.e. matching IAF parameters to frozen MAF
- Fast in sampling ($\approx 500 \times$ faster than $\rm CALOFLOW$ v1)

A Classifier provides the "ultimate metric".

According to the Neyman-Pearson Lemma we have:

- The likelihood ratio is the most powerful test statistic to distinguish the two samples.
- A powerful classifier trained to distinguish the samples should therefore learn (something monotonically related to) this.
- If this classifier is confused, we conclude $p_{\text{GEANT4}}(x) = p_{\text{generated}}(x)$
- \Rightarrow This captures the full 504-dim. space.

- ? But why wasn't this used before?
- \Rightarrow Previous deep generative models were separable to almost 100%!

DCTRGAN: Diefenbacher et al. [2009.03796, JINST]

$\operatorname{CaloFLOW}$ passes the "ultimate metric" test.

According to the Neyman-Pearson Lemma we have: $p_{\text{GEANT4}}(x) = p_{\text{generated}}(x)$ if a classifier cannot distinguish data from generated samples.

AUC		DNN based classifier				
		Geant 4 vs . CaloGAN	GEANT 4 vs. (teacher) CALOFLOW v1	GEANT 4 vs. (student) CALOFLOW v2		
e ⁺	unnorm.	1.000(0)	0.859(10)	0.786(7)		
	norm.	1.000(0)	0.870(2)	0.824(4)		
γ	unnorm.	1.000(0)	0.756(48)	0.758(14)		
	norm.	1.000(0)	0.796(2)	0.760(3)		
<i>π</i> ⁺	unnorm.	1.000(0)	0.649(3)	0.729(2)		
7	norm.	1.000(0)	0.755(3)	0.807(1)		
AUC $(\in [0.5, 1])$: Area Under the ROC Curve, smaller is better, i.e. more confused						

Sampling Speed: The Student beats the Teacher!

		CaloFlow*		CaloGAN*	${ m Geant4}^\dagger$	
		teacher	student			
	training	22+82 min	+ 480 min	210 min	0 min	
	generation time per shower	36.2 ms	0.08 ms	0.07 ms	1772 ms	
*: on our TITAN V GPU, [†] : on the CPU of CaloGAN: Paganini, de Oliveira, Nachman [1712.10321, PRD]						

CALOFLOW: Comparing Shower Averages: e^+

CALOFLOW: histograms: e^+

CALOFLOW: histograms: e^+

Claudius Krause (Rutgers)

Going the next step: towards deployment in FastSimulation

We have a rapidly evolving field: need a survey of current approaches on a common dataset!

Claudius Krause (Rutgers)

Going the next step: towards deployment in FastSimulation

We have a rapidly evolving field: need a survey of current approaches on a common dataset!

Claudius Krause (Rutgers)

(My Contributions to) Normalizing Flows at the LHC

Bump Hunts have few model assumptions.

Bump Hunts have few model assumptions.

Background Signal

Signal

Background

0.8

Sidebands (SB)

8

10

Simulation-based approaches are model-dependent.

Simulation-based approaches:

• fully supervised:

train classifier on simulated signal and background

- depends on quality of simulation
- high signal model dependence
- provides upper limit on all approaches
- idealized anomaly detector:

train classifier on data and simulated background

- depends on quality of simulation
- still background model dependent
- provides upper limit on data-driven anomaly detection

Data-driven approaches are background model-independent.

Data-driven approaches are background model-independent.

Data-driven approaches are background model-independent.

Classifying Anomalies THrough Outer Density Estimation (CATHODE):

- train "outer" density estimator
 p_{data}(x|m_{JJ} ∈ SB)
- sample "artificial" events from $p_{outer}(x|m_{JJ} \in SR)$
- can also oversample
- train a classifier on these samples vs data

\Rightarrow combines the best of CWoLa-Hunting and ANODE!

A. Hallin, J. Isaacson, G. Kasieczka, **CK**, B. Nachman, T. Quadfasel, M. Schlaffer, D. Shih, M. Sommerhalder [2109.00546, PRD]

Claudius Krause (Rutgers)

CATHODE outperforms other anomaly detectors.

Results:

- showing SIC = TPR/ \sqrt{FPR}
- CATHODE approaches idealized AD
- outperforms ANODE (only 1 density estimator)
- outperforms CWoLa (robust against correlations)

A. Hallin, CK et al. [2109.00546, PRD]

CATHODE outperforms other anomaly detectors.

Results:

- showing SIC = TPR/ \sqrt{FPR}
- CATHODE approaches idealized AD
- outperforms ANODE (only 1 density estimator)
- outperforms CWoLa (robust against correlations)

A. Hallin, CK et al. [2109.00546, PRD]

\Rightarrow These strategies are now being explored in ATLAS and CMS.

ATLAS [2005.02983, PRL]

Normalizing Flows at the LHC Preparing for the Future

- \bullet We expect 25× more LHC data in the future.
- Understanding everything based on 1st principles suffers from computational bottlenecks that can be tackled with ML, and especially Normalizing Flows.

Normalizing Flows at the LHC Preparing for the Future

- We expect $25 \times$ more LHC data in the future.
- Understanding everything based on 1st principles suffers from computational bottlenecks that can be tackled with ML, and especially Normalizing Flows.

Normalizing Flows at the LHC Preparing for the Future

- \Rightarrow With more efficiency and more sensitivity, we will be able to use the LHC to its full potential.
- ⇒ Normalizing Flows density estimators and generative models will help with this endeavor.

The Baryon Asymmetry of the Universe?

Backup

Taming Jacobians 1: with Autoregressive Blocks

 Masked Autoregressive Flow (MAF) is slow in sampling and fast in inference. Papamakarios et al. [arXiv:1705.07057]

 Inverse Autoregressive Flow (IAF) is fast in sampling and slow in inference. Kingma et al. [arXiv:1606.04934]

Claudius Krause (Rutgers)

Taming Jacobians 1: with Autoregressive Blocks

 Masked Autoregressive Flow (MAF) is slow in sampling and fast in inference. Papamakarios et al. [arXiv:1705.07057]

 Inverse Autoregressive Flow (IAF) is fast in sampling and slow in inference. Kingma et al. [arXiv:1606.04934]

Claudius Krause (Rutgers)

Taming Jacobians 1: with Autoregressive Blocks

 Masked Autoregressive Flow (MAF) is slow in sampling and fast in inference. Papamakarios et al. [arXiv:1705.07057]

 Inverse Autoregressive Flow (IAF) is fast in sampling and slow in inference. Kingma et al. [arXiv:1606.04934]

Claudius Krause (Rutgers)

Adding Noise is important for the sampling quality.

• The log-likelihood is less noisy, but smaller. Yet, the quality of the samples is much better!

• This is due to a "wider" mapping of space and less overfitting.

CALOFLOW: Flow I+II histograms: e^+

CALOFLOW: Flow II histograms: e^+

Nearest Neighbors: e^+ (student)

Claudius Krause (Rutgers)

Normalizing Flows at the LHC

Comparing Shower Averages: γ

Flow I histograms: γ

Flow I+II histograms: γ

Claudius Krause (Rutgers)

Flow II histograms: γ

Nearest Neighbors: γ (student)

Claudius Krause (Rutgers)

Comparing Shower Averages: π^+

CALOFLOW: Flow I histograms: π^+

CALOFLOW: Flow I+II histograms: π^+

CALOFLOW: Flow II histograms: π^+

CALOFLOW: Nearest Neighbors: π^+ (student)

