On action and properties of 10D multiple D0-brane

 system.
Unai De Miguel Sárraga

Department of Physics and EHU Quantum Center, University of the Basque Country UPV/EHU, Bilbao, Spain.

Based on PRD 106, 066004 (2022)[2204.05973 [hep-th]] and [arXiv:2212.14829 [hep-th]] with Igor Bandos

Contents

(1) Introduction
(2) 10D (spinor) moving frame formalism
(3) Supersymmetric 10D multiple D0-brane action

- Local worldline supersymmetry
- Equations on motion and a convenient gauge
- Gauge fixed form of the field equations
(4) Conclusions and outlook

Outline

(1) Introduction
(2) 10D (spinor) moving frame formalism
(3) Supersymmetric 10D multiple D0-brane action

- Local worldline supersymmetry
- Equations on motion and a convenient gauge
- Gauge fixed form of the field equations
(4) Conclusions and outlook

Dirichlet p-branes (or Dp-branes) are supersymmetric extended objects

- On which the fundamental $D=10$ superstrings can have its ends attached.
- In 10D, there exist supersymmetric $\mathrm{D} p$-branes:
- $p=0,2,4,6,8$ in type IIA superspace.
- $p=1,3,5,7,9$ in type IIB superspace.
- Its worldvolume action is given by the sum of the nonlinear Dirac-Born-Infeld (DBI) term and Wess-Zumino (WZ) term [Cederwall, von Gussich, Nilsson, Westerberg, 1996; Cederwall, von Gussich, Nilsson, Sundell, Westerberg 1996; Aganagic, Popescu, Schwarz 1996; Bergshoeff, Townseng 1996; Bandos, Sorokin, Tonin 1997].

Systems of multiple branes

- In 1995, E . Witten argued that the system of N nearly coincident $\mathrm{D} p$-branes
- carries non-Abelian gauge fields on center of energy worldvolume.
- Its gauge fixed description at very low energy limit is given by the action of non-Abelian $\mathrm{U}(N)$ SUSY Yang-Mills (SYM) theory at low energy.
- In it, the $N=1$ case gives the action for Abelian $\mathrm{U}(1) \mathrm{SYM}$ which can be identified as a weak field limit of gauge fixed version of the single $\mathrm{D} p$-brane.

Problem statement

- Despite a number of very interesting results obtained during the past 27 years [Tseytlin 1997; Emparan 1998; Myers 1999; Sorokin 2000; Panda 2003; Lozano, Janssen et al 2002-2005; Howe, Lindstrom, Wulff 2005, 2007; Bandos 2008, 2012, 2018]
- The complete supersymmetric action for $m D p$-branes was not known even for the simplest case of $p=0$.
- It is widely believed that the bosonic limit of this system is given by the Myers's "dielectric brane" action [Myers 1999]. However, despite extensive study, it still resists the supersymmetric generalization.
- A candidate to complete doubly supersymmetric (spacetime supersymmetry + worldline supersymmetry) action for the mD0-brane system was constructed by Igor Bandos in 2018 [JHEP 2018] but
- an attempt do obtain it by dimensional reduction from mMO action failed, which was a bit surprising. This was one of the original motivations of our study.

The dimensional reduction of multiple $\mathrm{M} p$-brane action

- For $p=0$, it is expected that mD 0 action
- be invariant under rigid spacetime supersymmetry,
- be invariant under local worldline supersymmetry which
- acts on the center of energy sector like κ-symmetry of single D0-brane,
- acts on the physical fields as a local version of the SUSY of $\operatorname{SU}(N)$ SYM or as its generalization.

Dynamical variables describing the mD0 system

- The set of center of energy variables contains coordinate functions

$$
Z^{M}(\tau)=\left(x^{\mu}(\tau), \theta^{\alpha 1}(\tau), \theta_{\alpha}^{2}(\tau)\right), \quad \mu=0, \ldots, 9, \quad \alpha=1, \ldots, 16
$$

given by bosonic 10 -vector and two fermionic Majorana-Weyl spinors, describing the embedding of the center of energy worldline \mathcal{W}^{1} in flat type IIA target superspace,

$$
\mathcal{W}^{1} \subset \Sigma^{(16 \mid 32)}: \quad Z^{M}=Z^{M}(\tau)
$$

- The relative motion of the mD0 constituents are described by matrix fields of the $\mathrm{d}=1 \mathcal{N}=16 \mathrm{SU}(N)$ SYM multiplet.
- We use some auxiliary fields. In particular, these are spinor moving frame variables.

Outline

(1) Introduction
(2) 10D (spinor) moving frame formalism
(3) Supersymmetric 10D multiple D0-brane action

- Local worldline supersymmetry
- Equations on motion and a convenient gauge
- Gauge fixed form of the field equations
(4) Conclusions and outlook

Moving frame in 10D

- To write the candidate to multiple D0-branes action (mD0) we need to introduce the moving frame fields described by

$$
\left(u_{\mu}^{0}, u_{\mu}^{i}\right) \in \mathrm{SO}(1,9),
$$

where $i=1, \ldots, 9$ are vector indices of $\mathrm{SO}(9)$ group. This implies that $u_{\mu}^{0}=u_{\mu}^{0}(\tau)$ and $u_{\mu}^{i}=u_{\mu}^{i}(\tau)$ satisfy

$$
u_{\mu}^{0} u^{\mu 0}=1, \quad u_{\mu}^{0} u^{\mu i}=0, \quad u_{\mu}^{i} u^{\mu j}=-\delta^{i j} .
$$

Spinor moving frame $=\sqrt{\text { moving frame }}$

- Moving frame fields are related to spinor moving frame $\operatorname{Spin}(1,9)$ valued matrix

$$
v_{\alpha}^{q} \in \operatorname{Spin}(1,9),
$$

by the conditions of Lorentz invariance of σ-matrices

$$
u_{\mu}^{(\nu)} \sigma_{\alpha \beta}^{\mu}=v_{\alpha}^{q} \sigma_{q p}^{(\nu)} v_{\beta}^{p},
$$

where $q=1, \ldots, 16$ are spinor indices of $\mathrm{SO}(9)$ group.

- With a suitable representation of σ-matrices, the latter constraints can be split into

$$
u_{\mu}^{0} \sigma_{\alpha \beta}^{\mu}=v_{\alpha}^{q} v_{\beta}^{q}, \quad u_{\mu}^{i} \sigma_{\alpha \beta}^{\mu}=v_{\alpha}^{q} \gamma_{\alpha \beta}^{i} v_{\beta}^{p}, \quad v_{\alpha}^{q} \tilde{\sigma}_{\mu}^{\alpha \beta} v_{\beta}^{p}=u_{\mu}^{0} \delta_{q p}+u_{\mu}^{i} \gamma_{q p}^{i}
$$

This can be used to define the inverse spinor moving frame matrix

$$
v_{\alpha}^{q} \tilde{\sigma}^{\mu \alpha \beta} u_{\mu}^{0}=v_{q}^{\beta}, \quad v_{\alpha}^{q} v_{q}^{\beta}=\delta_{\alpha}^{\beta} .
$$

Outline

(1) Introduction

(2) 10D (spinor) moving frame formalism
(3) Supersymmetric 10D multiple D0-brane action

- Local worldline supersymmetry
- Equations on motion and a convenient gauge
- Gauge fixed form of the field equations
(4) Conclusions and outlook

The complete nonlinear action for a supersymmetric multiple D0-brane system

$$
\begin{aligned}
& S_{\mathrm{mDO} 0}=\int_{\mathcal{W}^{1}} m E^{0}-i m \int_{\mathcal{W}^{1}}\left(\mathrm{~d} \theta^{1} \theta^{2}-\theta^{1} \mathrm{~d} \theta^{2}\right)-\frac{1}{\mu^{6}} \int_{\mathcal{W}^{1}} \frac{\mathrm{~d} \mathcal{M}}{\mathcal{M}} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{X}^{i}\right)+ \\
& +\frac{1}{\mu^{6}} \int_{\mathcal{W}^{1}}\left(\operatorname{tr}\left(\mathbb{P}^{i} \mathrm{D} \mathbb{X}^{i}+4 i \Psi_{q} \mathrm{D} \Psi_{q}\right)+\frac{2}{\mathcal{M}} E^{0} \mathcal{H}\right)+\frac{1}{\mu^{6}} \int_{\mathcal{W}^{1}} \frac{1}{\sqrt{2 \mathcal{M}}}\left(E^{1 q}-E_{q}^{2}\right) \times \\
& \times \operatorname{tr}\left(-4 i\left(\gamma^{i} \boldsymbol{\Psi}\right)_{q} \mathbb{P}^{i}+\frac{1}{2}\left(\gamma^{i j} \boldsymbol{\Psi}\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right) \\
& \quad \text { where } \mathcal{H}=\frac{1}{2} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)-\frac{1}{64} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2}-2 \operatorname{tr}\left(\mathbb{X}^{i} \boldsymbol{\Psi} \gamma^{i} \boldsymbol{\Psi}\right) .
\end{aligned}
$$

- It is written in terms of the variables used for the single D0-brane (now the center of mass variables) and
- SU(N) SYM fields: $9+9$ bosonic and 16 fermionic Hermitean traceless $N \times N$ matrix matter fields $\mathbb{X}^{i}=\mathbb{X}^{i}(\tau), \mathbb{P}^{i}=\mathbb{P}^{i}(\tau)$ and $\Psi_{q}=\Psi_{q}(\tau)$ and the bosonic anti-Hermitean worldline gauge field $\mathbb{A}=\mathrm{d} \tau \mathbb{A}_{\tau}(\tau)$.
- The latter enters in the action from the covariant derivatives of matrix matter fields

$$
\mathrm{D} \mathbb{X}^{i}:=\mathrm{d} \mathbb{X}^{i}-\Omega^{i j} \mathbb{X}^{j}+\left[\mathbb{A}, \mathbb{X}^{i}\right], \quad \mathrm{D} \boldsymbol{\Psi}_{q}:=\mathrm{d} \boldsymbol{\Psi}_{q}-\frac{1}{4} \Omega^{i j} \boldsymbol{\Psi}_{p}+\left[\mathbb{A}, \boldsymbol{\Psi}_{q}\right]
$$

which also include the composite $\mathrm{SO}(9)$ connection

$$
\Omega^{i j}:=u^{\mu i} \mathrm{~d} u_{\mu}^{j} .
$$

- Moving frame vector u_{μ}^{0} and spinor frame matrix field v_{α}^{q} and its inverse v_{q}^{α} are used to construct bosonic and fermionic forms

$$
E^{0}=\Pi^{\mu} u_{\mu}^{0}, \quad E^{1 q}=\mathrm{d} \theta^{1 \alpha} v_{\alpha}^{q}, \quad E_{q}^{2}=\mathrm{d} \theta_{\alpha}^{2} v_{q}^{\alpha} .
$$

where

$$
\Pi^{\mu}=\mathrm{d} x^{\mu}-i \mathrm{~d} \theta^{1} \sigma^{\mu} \theta^{1}-i \mathrm{~d} \theta^{2} \tilde{\sigma}^{\mu} \theta^{2}=\mathrm{d} \tau \Pi_{\tau}^{\mu}
$$

is the 10D Volkov-Akulov 1-form in type IIA superspace.

- $\mathcal{M}=\mathcal{M}\left(\mathcal{H} / \mu^{6}\right)$ is an arbitrary positively definite function.
- The particular case of this action with

$$
\mathcal{M}=\frac{m}{2}+\sqrt{\frac{m^{2}}{4}+\frac{\mathcal{H}}{\mu^{6}}}
$$

can be obtained by dimensional reduction of the 11D multiple M-wave (multiple M0-branes) action [I. Bandos and U.D.M. Sarraga arXiv:2212.14829].

- Another representative of this system with $\mathcal{M}=m$ was constructed in [I. Bandos JHEP 2018].

Invariance under (target IIA superspace) rigid supersymmetry

- By construction, the mD0-brane action is invariant under SUSY

$$
\begin{aligned}
& \delta_{\epsilon} \theta^{1 \alpha}=\epsilon^{1 \alpha}, \quad \delta_{\epsilon} \theta_{\alpha}^{2}=\epsilon_{\alpha}{ }^{2}, \quad \delta_{\epsilon} v_{\alpha}^{q}=0, \\
& \delta_{\epsilon} x^{\mu}=i \theta^{1} \sigma^{\mu} \epsilon^{1}+i \theta^{2} \tilde{\sigma}^{\mu} \epsilon^{2}
\end{aligned}
$$

with constant fermionic parameters $\epsilon^{1 \alpha}$ and ϵ_{α}^{2} which acts nontrivially on the center of mass variables only.

Invariance under local worldline supersymmetry which

- acts on the center of mass variables as κ-symmetry of single D0-brane

$$
\begin{aligned}
& \delta_{\kappa} \theta^{1 \alpha}=\kappa^{q} v_{q}^{\alpha} / \sqrt{2}, \quad \delta_{\kappa} \theta_{\alpha}^{2}=-\kappa^{q} v_{\alpha}^{q} / \sqrt{2} \\
& \delta_{\kappa} x^{\mu}=i \delta_{\kappa} \theta^{1} \sigma^{\mu} \theta^{1}+i \delta_{\kappa} \theta^{2} \tilde{\sigma}^{\mu} \theta^{2} \\
& \delta_{\kappa} v_{\alpha}^{q}=0 \Rightarrow \delta_{\kappa} u_{\mu}^{0}=0=\delta_{\kappa} u_{\mu}^{i} .
\end{aligned}
$$

The local worldline supersymmetry of the matrix matter fields

$$
\begin{gathered}
\delta_{\kappa} \mathbb{X}^{i}=\frac{4 i}{\sqrt{\mathcal{M}}} \kappa \gamma^{i} \boldsymbol{\Psi}+\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \delta_{\kappa} \mathcal{H} \mathbb{X}^{i}-\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \Delta_{\kappa} \mathcal{K} \mathbb{P}^{i}, \\
\delta_{\kappa} \mathbb{P}^{i}=-\frac{1}{\sqrt{\mathcal{M}}}\left[\kappa \gamma^{i j} \boldsymbol{\Psi}, \mathbb{X}^{j}\right]-\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \delta_{\kappa} \mathcal{H} \mathbb{P}^{i}+\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \Delta_{\kappa} \mathcal{K}\left(\frac{1}{16}\left[\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right], \mathbb{X}^{j}\right]-\right. \\
\left.-\gamma_{p q}^{i}\left\{\Psi_{p}, \Psi_{q}\right\}\right), \\
\delta_{\kappa} \Psi_{q}=-\frac{1}{2 \sqrt{\mathcal{M}}}\left(\kappa \gamma^{i}\right)_{q} \mathbb{P}^{i}-\frac{i}{16 \sqrt{\mathcal{M}}}\left(\kappa \gamma^{i j}\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]-\frac{i}{4 \mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \Delta_{\kappa} \mathcal{K}\left[\left(\gamma^{i} \Psi\right)_{q}, \mathbb{X}^{i}\right],
\end{gathered}
$$

where

$$
\delta_{\kappa} \mathcal{H}=\frac{1}{\sqrt{\mathcal{M}}} \frac{\operatorname{tr}\left(\kappa^{q} \boldsymbol{\Psi}_{q}\left(\left[\mathbb{X}^{i}, \mathbb{P}^{i}\right]-4 i\left\{\boldsymbol{\Psi}_{q}, \boldsymbol{\Psi}_{q}\right\}\right)\right)}{1+\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathfrak{H}}
$$

and

$$
\Delta_{\kappa} \mathcal{K}=\frac{1}{2 \sqrt{\mathcal{M}}} \frac{\operatorname{tr}\left(4 i\left(\kappa \gamma^{i} \boldsymbol{\Psi}\right) \mathbb{P}^{i}+\frac{5}{2}\left(\kappa \gamma^{i j} \boldsymbol{\Psi}\right)\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right)}{1+\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathfrak{H}}
$$

with

$$
\mathfrak{H}:=\operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)+\frac{1}{16} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2}+2 \operatorname{tr}\left(\mathbb{X}^{i} \boldsymbol{\Psi} \gamma^{i} \boldsymbol{\Psi}\right)
$$

- From variation with respect to coordinate functions

$$
\begin{gathered}
u_{\mu}^{0} \mathrm{~d} u^{i \mu}\left(m+\frac{2}{\mu^{6}} \frac{\mathcal{H}}{\mathcal{M}}\right)=0 \Longrightarrow \Omega^{i}:=u_{\mu}^{0} \mathrm{~d} u^{i \mu}=0 \text { when } \mathcal{M} \neq-\frac{2}{m} \frac{\mathcal{H}}{\mu^{6}} \\
\left(m+\frac{1}{\mu^{6}} \frac{\mathcal{H}}{\mathcal{M}}\right)\left(E^{1 q}+E_{q}^{2}\right)=\frac{-i}{4 \sqrt{2 \mathcal{M}} \mu^{6}} \gamma_{q p}^{i} i \nu_{p} \Omega^{i}
\end{gathered}
$$

The first result implies that the latter gives $E^{1 q}+E_{q}^{2}=0$.

- From the (spinor) moving frame variation

$$
\mu^{6} E^{i}\left(m+\frac{2}{\mu^{6}} \frac{\mathcal{H}}{\mathcal{M}}\right)-\frac{1}{2 \sqrt{2 \mathcal{M}}}\left(E^{1 q}+E_{q}^{2}\right) \gamma_{q p}^{i} i \nu_{p}-2 \operatorname{tr}\left(\mathbb{P}^{[j} \mathbb{X}^{k]}+i \Psi \gamma^{j k} \Psi\right) \Omega^{i}=0
$$

and with the above results, we obtain

$$
E^{i}=\Pi^{\mu} u_{\mu}^{i}=0
$$

- These are the same e.o.m. as for the single D0-brane.
- Equations of motion for the matrix fields are complicated, but can be simplified by gauge fixing.

$\mathrm{SO}(9)$ and $\mathrm{SU}(N)$ gauge fixing

- As we are dealing with $d=1$ field theory, gauge fields can be always gauged away. So, we can fix the local $\mathrm{SO}(9)$ gauge symmetry by

$$
\Omega^{i j}=u_{\mu}^{i} \mathrm{~d} u^{j \mu}=0
$$

which (together with $\Omega^{i}:=u_{\mu}^{0} u^{i \mu}=0$) implies

$$
\mathrm{d} u_{\mu}^{0}=0, \quad \mathrm{~d} u_{\mu}^{i}=0, \quad \mathrm{~d} v_{\alpha}^{q}=0, \quad \mathrm{~d} v_{q}^{\alpha}=0
$$

- Similarly, using the $\operatorname{SU}(N)$ gauge symmetry we can set

$$
\mathbb{A}=0
$$

- In this gauge the covariant derivatives $\mathrm{D}=\mathrm{d} \tau \mathrm{D}_{\tau}$ reduces to

$$
\mathrm{d}=\mathrm{d} \tau \mathrm{~d}_{\tau}=\mathrm{d} \tau \frac{\mathrm{~d}}{\mathrm{~d} \tau} .
$$

Gauge fixing of κ-symmetry

- Under rigid supersymmetry and worldline supersymmetry

$$
\delta \theta^{1 q}=\epsilon^{1 q}+\kappa^{q} / \sqrt{2}, \quad \delta \theta_{q}^{2}=\epsilon_{q}^{2}-\kappa^{q} / \sqrt{2}
$$

- The gauge worldline SUSY (κ-symmetry) can be used to fix the gauge

$$
\theta_{q}^{2}=0 \quad \Longrightarrow \quad \epsilon_{q}^{2}=\kappa^{q} / \sqrt{2}
$$

- Then, from $E^{1 q}+E_{q}^{2}=0$ (with $\mathrm{d} v_{\alpha}^{q}=0=\mathrm{d} v_{\alpha}^{q}$), we obtain $\mathrm{d} \theta^{1 q}=0$ and

$$
E^{0}=\mathrm{d} x^{\mu} u_{\mu}^{0}=\mathrm{d} x^{0}, \quad E^{i}=\mathrm{d} x^{\mu} u_{\mu}^{i}=\mathrm{d} x^{i}
$$

- E^{0} and E^{i} are supersymmetric since now

$$
\delta x^{0}=i\left(\epsilon^{1 q}+\epsilon_{q}^{2}\right) \theta^{1 q}, \quad \delta x^{i}=i\left(\epsilon^{1 q}+\epsilon_{q}^{2}\right) \gamma_{q p} \theta^{1 p}
$$

and these terms are constants due to $\mathrm{d} v_{\alpha}^{q}=0, \mathrm{~d} \theta^{1 q}=0$ and $\mathrm{d} \epsilon=0$.

Based on all above...

- We can fix the gauge with respect to the reparametrization invariance by setting

$$
E^{0}=\mathrm{d} x^{0}=\mathrm{d} \tau \quad \Longrightarrow \quad E_{\tau}^{0}=\dot{x}^{0}=1 \text { and it still preserves supersymmetry. }
$$

Gauged fixed form of the field equations

- Taking into account center of mass equations and the gauge fixed conditions

$$
\Omega^{i}=0, \quad E^{i}=0, \quad \mathrm{~d} u_{\mu}^{0}=0, \quad \mathrm{~d} u_{\mu}^{i}=0, \quad \mathrm{~d} v_{\alpha}^{q}=0, \quad \theta^{2}=0 .
$$

the equations for the bosonic matrix fields read

$$
\dot{\mathbb{X}}^{i}=-\frac{2}{\mathcal{M}} \frac{\left(1-\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathcal{H}\right)}{\left(1+\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathfrak{H}\right)} \dot{x}^{0} \mathbb{P}^{i}, \quad \dot{\mathbb{P}}^{i}=\frac{2}{\mathcal{M}} \frac{\left(1-\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathcal{H}\right)}{\left(1+\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathfrak{H}\right)} \dot{x}^{0}\left(\frac{1}{16}\left[\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right], \mathbb{X}^{j}\right]-\gamma_{p r}^{i}\left\{\boldsymbol{\Psi}_{p}, \boldsymbol{\Psi}_{r}\right\}\right),
$$

and for the fermionic matrix field

$$
\dot{\mathbf{\Psi}}_{q}=-\frac{i}{2 \mathcal{M}} \frac{\left(1-\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathcal{H}\right)}{\left(1+\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathfrak{H}\right)} \dot{x}^{0}\left[\left(\gamma^{i} \boldsymbol{\Psi}\right)_{q}, \mathbb{X}^{i}\right] .
$$

- An important observation is that if we formally define new (field dependent) time variable by

$$
\mathrm{d} t=\mathrm{d} x^{0} \frac{2}{\mathcal{M}} \frac{\left(1-\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime} \mathcal{M}}{\mathcal{M}}\right)}{\left(1+\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathfrak{H}\right)},
$$

the above equations acquire the form
$\frac{\mathrm{d}}{\mathrm{d} t} \mathbb{X}^{i}=-\mathbb{P}^{i}, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} \mathbb{P}^{i}=\frac{1}{16}\left[\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right], \mathbb{X}^{j}\right]-\gamma_{p r}^{i}\left\{\boldsymbol{\Psi}_{p}, \boldsymbol{\Psi}_{r}\right\}, \quad \frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{\Psi}_{q}=-\frac{i}{4}\left[\left(\gamma^{i} \boldsymbol{\Psi}\right)_{q}, \mathbb{X}^{i}\right]$ which are exactly $1 \mathrm{~d} \mathcal{N}=16 \mathrm{SU}(N) \mathrm{SYM}$ equations.

- Let us stress that

$$
\mathrm{d} t=\mathrm{d} x^{0} \frac{2}{\mathcal{M}} \frac{\left(1-\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathcal{H}\right)}{\left(1+\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathfrak{H}\right)},
$$

cannot be considered as 1 d general coordinate transformation of proper time τ.

The simplest way to be convinced is to notice that

- If it was the gauge symmetry, it would connect the model with any invertible $\mathcal{M}(\mathcal{H})$ to the model with $\mathcal{M}(\mathcal{H})=1($ or $\mathcal{M}(\mathcal{H})=m$ as in [I. Bandos JHEP 2018].)

$$
\dot{\mathbb{X}}^{i}=-\frac{1}{m} \mathbb{P}^{i}, \quad \dot{\mathbb{P}}^{i}=\frac{1}{m}\left(\frac{1}{16}\left[\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right], \mathbb{X}^{j}\right]-\gamma_{p r}^{i}\left\{\boldsymbol{\Psi}_{p}, \boldsymbol{\Psi}_{r}\right\}\right)
$$

- But, calculating the canonical momentum $p_{\mu}=\frac{\partial \mathcal{L}}{\partial \dot{x}^{\mu}}$, we find that $p_{\mu} p^{\mu}=\mathfrak{M}^{2}$ with

$$
\mathfrak{M}=m+\frac{2}{\mu^{6}} \frac{\mathcal{H}}{\mathcal{M}}
$$

giving thus the mass of the mD0-system. This is clearly invariant under all gauge symmetries.

- So, this $\mathcal{M}(\mathcal{H})$ determines the physical characteristic (mass) of the system and cannot be changed by any gauge symmetry.
- Thus what we have found is an interesting correspondence between equations of mD0 with different $\mathcal{M}(\mathcal{H})$ but this correspondence does not imply gauge equivalence.

Outline

(1) Introduction
(2) 10 D (spinor) moving frame formalism
(3) Supersymmetric 10D multiple D0-brane action

- Local worldline supersymmetry
- Equations on motion and a convenient gauge - Gauge fixed form of the field equations

4 Conclusions and outlook

Conclusions

- The main result of this work is the set of complete nonlinear candidate actions for 10D supersymmetric multiple D0-brane system that includes an arbitrary nonvanishing function $\mathcal{M}(\mathcal{H})$.
- These actions are doubly supersymmetric i.e. it posses spacetime supersymmetry and worldline supersymmetry, the counterpart of κ-symmetry of single D0-brane. Notice that the form of the latter depends on the choice of $\mathcal{M}(\mathcal{H})$ function.
- The presence of an arbitrary positively definite $\mathcal{M}(\mathcal{H})$ in our candidate mD0 action is to be understood better.
- It contains physical information as it enters the expression for the mass of mD0 system.
- A particular model with $\mathcal{M}(\mathcal{H})=\frac{m}{2}+\sqrt{\frac{m^{2}}{4}+\frac{\mathcal{H}}{\mu^{6}}}$ is obtained by dimensional reduction of mM 0 system.
- We have found an interesting formal correspondence of the equations of mD0 system with any $\mathcal{M}(\mathcal{H})$ with SYM equations.
- It does not imply gauge equivalence with SYM (since $\mathcal{M}(\mathcal{H})$ defines mass of mD0 system).
- However it can be used to relate (some) solutions of mD0 and SYM equations.
- In particular, all the SUSY solutions of mD0 equations are SUSY solutions of SYM.

Outlook

- One of the ways to clarify what member of our family of candidate action is preferable for description of mDO (if it is unique) is to check whether T-duality relates it to mD1 action.
- Such a check requires to construct mD1 action, the problem which we are studying presently.

The end!

Thank you for your attention!

Appendix I: single D0-brane and its κ-symmetry

10D D0-brane in flat type IIA superspace in the moving frame formulation

$$
S_{\mathrm{D} 0}=m \int_{\mathcal{W}^{1}} E^{0}-i m \int_{\mathcal{W}^{1}}\left(\mathrm{~d} \theta^{1 \alpha} \theta_{\alpha}^{2}-\theta^{1 \alpha} \mathrm{~d} \theta_{\alpha}^{2}\right),
$$

where $\mathrm{d}=\mathrm{d} \tau \partial_{\tau}$ and E^{0} is the contraction

$$
E^{0}=\Pi^{\mu} u_{\mu}^{0}, \quad\left[E^{i}=\Pi^{\mu} u_{\mu}^{i}\right]
$$

of the pull-back to the worldline of the 10D Volkov-Akulov 1-form

$$
\Pi^{\mu}=\mathrm{d} x^{\mu}-i \mathrm{~d} \theta^{1} \sigma^{\mu} \theta^{1}-i \mathrm{~d} \theta^{2} \tilde{\sigma}^{\mu} \theta^{2}=\mathrm{d} \tau \Pi_{\tau}^{\mu}
$$

This is the first order form of the 10D massive superparticle action [de Azcarraga-Lukierski 1982 for $D=4]$

$$
S=m \int_{\mathcal{W}^{1}} \sqrt{\Pi^{\mu} \Pi_{\mu}}-i m \int_{\mathcal{W}^{1}}\left(\mathrm{~d} \theta^{1} \theta^{2}-\theta^{1} \mathrm{~d} \theta^{2}\right)
$$

but we strongly need spinor frame to write the action for mD0.

κ-symmetry of single D0-brane

$$
\begin{aligned}
& \delta_{\kappa} \theta^{1 \alpha}=\kappa^{q} v_{q}^{\alpha}, \quad \delta_{\kappa} \theta_{\alpha}^{2}=-\kappa^{q} v_{\alpha}^{q} \\
& \delta_{\kappa} v_{\alpha}^{q}=0 \Longrightarrow \delta_{\kappa} u_{\mu}^{i}=\delta_{\kappa} u_{\mu}^{0}=0 \\
& \delta_{\kappa} x^{\mu}=i \delta_{\kappa} \theta^{1 \alpha} \sigma_{\alpha \beta}^{\mu} \theta^{1 \alpha}+i \delta_{\kappa} \theta^{2} \tilde{\sigma}^{\mu \alpha \beta} \theta_{\beta}^{2}
\end{aligned}
$$

which is parametrized by fermionic function $\kappa^{q}=\kappa^{q}(\tau)$ carrying spinor index of $\mathrm{SO}(9)$.

The local fermionic κ-symmetry implies

- that the ground state is invariant under a part $(1 / 2)$ of the spacetime supersymmetry.
- that one of the two spinor fermionic coordinate functions can be removed (gauge fixing).

Appendix II: Covariant derivatives and variations

- Derivatives of the moving frame are given by

$$
\mathrm{D} u_{\mu}^{0}:=\mathrm{d} u_{\mu}^{0}=u_{\mu}^{i} \Omega^{i}, \quad \mathrm{D} u_{\mu}^{i}:=\mathrm{d} u_{\mu}^{i}+u_{\mu}^{j} \Omega^{j i}=u_{\mu}^{0} \Omega^{i} .
$$

- Derivatives of the spinor moving frame are given by

$$
\begin{aligned}
& \mathrm{D} v_{\alpha}^{q}:=\mathrm{d} v_{\alpha}^{q}+\frac{1}{4} \Omega^{i j} v_{\alpha}^{p} \gamma_{p q}^{i j}=\frac{1}{2} \gamma_{q p}^{i} v_{\alpha}^{p} \Omega^{i}, \\
& \mathrm{D} v_{q}^{\alpha}:=\mathrm{d} v_{q}^{\alpha}+\frac{1}{4} \Omega^{i j} v_{p}^{\alpha} \gamma_{p q}^{i j}=-\frac{1}{2} \gamma_{q p}^{i} v_{p}^{\alpha} \Omega^{i} .
\end{aligned}
$$

- They are expressed in terms of Cartan forms

$$
\Omega^{i}=u_{\mu}^{0} \mathrm{~d} u^{\mu i}, \quad \Omega^{i j}=u_{\mu}^{i} \mathrm{~d} u^{\mu j},
$$

whose derivatives have the forms (Maurer-Cartan equations)

$$
\mathrm{D} \Omega^{i}=\mathrm{d} \Omega^{i}+\Omega^{j} \wedge \Omega^{j i}=0, \quad \mathrm{~d} \Omega^{i j}+\Omega^{i k} \wedge \Omega^{k j}=-\Omega^{i} \wedge \Omega^{j} .
$$

Appendix II: Covariant derivatives and variations

- The variation of the moving frame and spinor moving frame are given by

$$
\begin{array}{ll}
\delta u_{\mu}^{0}=u_{\mu}^{i} i_{\delta} \Omega^{i}, & \delta u_{\mu}^{i}=u_{\mu}^{0} i_{\delta} \Omega^{i}, \\
\delta v_{\alpha}^{q}=\frac{1}{2} \gamma_{q p}^{i} v_{\alpha}^{p} i_{\delta} \Omega^{i}, & \delta v_{q}^{\alpha}=-\frac{1}{2} \gamma_{q p}^{i} v_{p}^{\alpha} i_{\delta} \Omega^{i} .
\end{array}
$$

Appendix III: e.o.m from matrix matter fields variation

$$
\begin{aligned}
& \mathrm{D} \mathbb{X}^{i}=-\frac{2}{\mathcal{M}}\left(1-\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathcal{H}\right) E^{0} \mathbb{P}^{i}+\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}}\left(\mathbb{X}^{i} \mathrm{~d} \mathcal{H}-\mathbb{P}^{i} \mathrm{~d} \mathcal{K}\right)+ \\
& +\frac{1}{\sqrt{2 \mathcal{M}}}\left(E^{1 q}-E_{q}^{2}\right)\left(4 i\left(\gamma^{i} \boldsymbol{\Psi}\right)_{q}-\frac{1}{2 \mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} i \nu_{q} \mathbb{P}^{i}\right), \\
& \mathrm{DP}^{i}=\frac{2}{\mathcal{M}}\left[\left(1-\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathcal{H}\right) E^{0}+\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{4 \sqrt{2 \mathcal{M}}}\left(E^{1 q}-E_{q}^{2}\right) i \nu_{q}\right] \times \\
& \times\left(\frac{1}{16}\left[\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right], \mathbb{X}^{j}\right]-\gamma_{p r}^{i}\left\{\boldsymbol{\Psi}_{p}, \boldsymbol{\Psi}_{r}\right\}\right) \frac{1}{\sqrt{2 \mathcal{M}}}\left(E^{1 q}-E_{q}^{2}\right)\left[\left(\gamma^{i j} \boldsymbol{\Psi}\right)_{q}, \mathbb{X}^{j}\right]+ \\
& +\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathrm{d} \mathcal{K}\left(\frac{1}{16}\left[\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right], \mathbb{X}^{\mathcal{J}}\right]-\gamma_{p r}^{i}\left\{\boldsymbol{\Psi}_{p}, \boldsymbol{\Psi}_{r}\right\}\right)-\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathbb{P}^{i} \mathrm{~d} \mathcal{H}, \\
& \mathrm{D} \boldsymbol{\Psi}_{q}=-\frac{i}{2 \mathcal{M}}\left[\left(1-\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathcal{H}\right) E^{0}+\frac{1}{4 \mu^{6}} \frac{\mathcal{M}^{\prime}}{\sqrt{2 \mathcal{M}}}\left(E^{1 p}-E_{p}^{2}\right) i \nu_{p}\right]\left[\left(\gamma^{i} \boldsymbol{\Psi}\right)_{q}, \mathbb{X}^{i}\right]- \\
& -\frac{i}{4 \mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}}\left[\left(\gamma^{i} \Psi\right)_{q}, \mathbb{X}^{i}\right] \mathrm{d} \mathcal{K}-\frac{1}{2 \sqrt{2 \mathcal{M}}}\left(E^{1 p}-E_{p}^{2}\right)\left(\gamma_{p q}^{i} \mathbb{P}^{i}+\frac{i}{8} \gamma_{p q}^{i j}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right) \text {. }
\end{aligned}
$$

- Equations of motion for the matrix fields are complicated, but can be simplified by gauge fixing.
- Before describing this, let us notice that they imply

$$
\mathrm{d} \mathcal{H}=0 \quad \text { and } \quad i \mathrm{D} \nu_{q}=\frac{2 \sqrt{2}}{\sqrt{\mathcal{M}}}\left(E^{1 q}-E_{q}^{2}\right) \mathcal{H}
$$

where

$$
i \nu_{q}:=\operatorname{tr}\left(-4 i\left(\gamma^{i} \boldsymbol{\Psi}\right)_{q} \mathbb{P}^{i}+\frac{1}{2}\left(\gamma^{i j} \boldsymbol{\Psi}\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right)
$$

- These are Noether identities for gauge symmetries: reparametrization invariance (1d general coordinate invariance) and local worldline SUSY.

Appendix IV: other expressions

- The term \mathcal{K} express the combination

$$
\mathcal{K}=\operatorname{tr}\left(\mathbb{X}^{i} \mathbb{P}^{i}\right) .
$$

- Its differential form reads

$$
\begin{aligned}
\mathrm{d} \mathcal{K} & =-\frac{2}{\mathcal{M}} \frac{\mathfrak{H}}{\left(1+\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathfrak{H}\right)}\left(1-\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathcal{H}\right) E^{0}+ \\
& +\frac{\left(E^{1 q}-E_{q}^{2}\right)}{\sqrt{2 \mathcal{M}}} \frac{\operatorname{tr}\left(4 i\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}+\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right)-\frac{1}{2 \mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathfrak{H} i \nu_{q}}{\left(1+\frac{1}{\mu^{6}} \frac{\mathcal{M}^{\prime}}{\mathcal{M}} \mathfrak{H}\right)} .
\end{aligned}
$$

- Its worldline supersymmetry variation of $\mathcal{K}=\operatorname{tr}\left(\mathbb{X}^{i} \mathbb{P}^{i}\right)$ by

$$
\Delta_{\kappa} \mathcal{K}=\delta_{\kappa}\left(\operatorname{tr}\left(\mathbb{X}^{i} \mathbb{P}^{i}\right)\right)+\frac{1}{2 \sqrt{\mathcal{M}}} i \kappa^{q} \nu_{q} .
$$

