Towards a non-relativistic AdS/CFT duality

Andrea Fontanella (Perimeter Institute)

Iberian Strings 2023

Based on:
"Light-Cone Gauge in Non-Relativistic $\operatorname{AdS}_{5} \times \mathrm{S}^{5}$ String Theory" with J.M. Nieto and A. Torrielli arXiv:2102.00008, "Classical string solutions in non-relativistic $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$: closed and twisted sectors" with J.M. Nieto arXiv:2109.13240,
"Coset space actions for nonrelativistic strings"
with S. van Tongeren arXiv:2203.07386,
"Extending the non-relativistic string AdS coset" with J.M. Nieto arXiv:2208.02295,
"Non-relativistic string monodromies"
with J.M. Nieto and O. Ohlsson Sax arXiv:2211.04479

Motivations

- Interested in non-AdS holography
- Strings with: 1) NR target space, 2) relativistic world-sheet

NON - Relativistic

Foliation " $2+8$ " $\hat{A}=(A, a)$
$A=0,1 \quad a=2, \ldots, 8$

- NR (bosonic) string is Weyl anomaly free in $d=26$
[Gomis, J. Oh, Z. Yan, 2019][Gallegos, Gursoy, Zinnato, 2019]
- Target space geometry is string Newton-Cartan
[Harmark, Hartong, Obers, 2017][Bergshoeff, Gomis, Yan, 2018]
- First considered in flat space [Gomis, Ooguri, 20oo][Danielsson, Guijosa, Kruczenski, ${ }^{2000]}$ then in $\mathrm{AdS}_{5} \times S^{5}{ }_{\text {[Gomis, Gomis, Kamimura, 2005] }}$

Holography....

- Relativistic strings in $\mathrm{AdS}_{5} \times S^{5} / \mathcal{N}=4$ SYM. Holography has been extensively studied. One needs observables to match:
"string excitations $=$ dimensions of gauge-invariant operators"

$$
E(\sqrt{\lambda}, m, \ldots)=\Delta(\lambda, m, \ldots)
$$

- Integrability: key property to determine the spectrum exactly.

Questions:

- Can we determine the spectrum of NR strings in $\mathrm{AdS}_{5} \times S^{5}$?
- is the theory integrable?

Outline

1. NR strings in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$
2. Classical string solutions (BMN-like, GKP-like)
3. Semiclassical expansion of the NR action
4. Coset formulation + Lax pair
5. Spectral curve

NR strings in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

Flat space

$$
S=\int \partial X^{\mu} \partial X^{\nu} \eta_{\mu \nu}
$$

NR limit [Gomis, Ooguri, 2000]

$$
X^{0} \rightarrow c X^{0}, \quad X^{1} \rightarrow c X^{1}, \quad c \rightarrow \infty
$$

Curved spacetime

$$
S=\int \partial X^{\mu} \partial X^{\nu} g_{\mu \nu}
$$

rescaling of X^{μ} ?

Homogeneous spaces $G / H \quad$ (e.g. $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$)

$$
S=\int\langle A, P A\rangle, \quad A=g^{-1} \mathrm{~d} g, \quad g \in G
$$

choice of $g=$ choice of coordinates

$$
\text { (e.g. } g=e^{X \cdot T} \text {) }
$$

NR limit $=$ IW contr.: $\quad \mathfrak{s o}(2,4) \oplus \mathfrak{s o}(6) \longrightarrow$ s.Newton-Hooke ${ }_{5} \oplus$ Eucl $_{5}$
translations $=" 2+8 " \quad P_{0} \rightarrow \frac{P_{0}}{c}, P_{1} \rightarrow \frac{P_{1}}{c} \quad$ (+ boost)

$$
\text { rescaling of generators } \quad \longleftrightarrow \quad \text { rescaling of coords }
$$

$E_{\mu}{ }^{\hat{A}}: \quad$ long. $\quad E_{\mu}{ }^{A}=c \tau_{\mu}{ }^{A}+\frac{1}{c} m_{\mu}{ }^{A} \quad A=0,1$
transv. $E_{\mu}{ }^{a}=e_{\mu}{ }^{a} \quad a=2, \ldots, 8$
metric:

$$
\begin{aligned}
g_{\mu \nu} & =-c^{2} \tau_{\mu}{ }^{A} \tau_{\nu}{ }^{B} \eta_{A B}+\text { finite } \\
B_{\mu \nu} & =c^{2} \varepsilon_{A B} \tau_{\mu}{ }^{A} \tau_{\nu}{ }^{B}
\end{aligned}
$$

add closed B-field

$$
\text { Divergent }\left(g_{\mu \nu}+B_{\mu \nu}\right)=\lambda_{A} F^{A}+\frac{1}{c^{2}} \lambda_{A} \lambda^{A}=\text { finite }+ \text { subleading }
$$

λ_{A} are 2 non-propagating worldsheet scalars (Lagrange multipliers)
Now we can take $c \rightarrow \infty$
$S^{\mathrm{NR}}=\int \mathrm{d}^{2} \sigma\left(\gamma^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} H_{\mu \nu}+\varepsilon^{\alpha \beta}\left(\lambda_{+} \theta_{\alpha}{ }^{+} \tau_{\mu}{ }^{+}+\lambda_{-} \theta_{\alpha}{ }^{-} \tau_{\mu}{ }^{-}\right) \partial_{\beta} X^{\mu}\right)$
$\theta_{\alpha}{ }^{ \pm}$zweibein of w.s. metric, $H_{\mu \nu}$ is the finite piece from $g_{\mu \nu}$
Coordinates:

$$
A d S_{5}\left(t, z, z_{2}, z_{3}, z_{4}\right) \times S^{5}\left(\phi, y_{1}, y_{2}, y_{3}, y_{4}\right)
$$

String Newton-Cartan vielbeine
$\tau_{\mu}{ }^{A}: \quad \operatorname{AdS} S_{2}(t, z) \quad e_{\mu}{ }^{a}: \quad f(z) \mathbb{R}^{3}\left(z_{2}, z_{3}, z_{4}\right) \times \mathbb{R}^{5}\left(\phi, y_{1}, \ldots, y_{4}\right)$

Solving equations of motion for $\lambda_{ \pm}$(fix conformal gauge)

$$
t=\kappa \tau \quad z=-2 \tan (\kappa \sigma / 2) \quad \kappa \in \mathbb{Z}
$$

The string must have winding!
$\underline{\text { Relativistic string in } \mathrm{AdS}_{5} \times S^{5}}$
BMN solution (point-like) [Berenstein, Maldacena, Nastase, 2002]

$$
t=\phi=\kappa \tau
$$

Dispersion relation $E=J$
In light-cone gauge ($\left.X_{ \pm}=t \pm \phi\right)$, and in large string tension $T \gg 1$, action expands about strings in pp-wave
$\underline{\text { NR string in } \mathrm{AdS}_{5} \times S^{5}}$
BMN-like (extended string) [AF, Nieto, 2021]

$$
t=\kappa \tau \quad \phi=\omega \tau \quad z=-2 \tan (\kappa \sigma / 2) \quad \lambda_{ \pm} \sim \cos (\kappa \sigma)
$$

Dispersion relation $E \sim J^{2}$
In light-cone gauge ($X_{ \pm}=t \pm \phi$), in $T \gg 1$ and $R \gg 1$, action expands about free fields + corrections σ-dependent

Reason: 1) z is not isometry $\left.z=z_{\mathrm{cl}}+z_{\mathrm{fl}} 2\right) z$ is not in the lightcone $X_{ \pm}$

Classical Integrability

- Goal: find a Lax pair for the NR action in $\operatorname{AdS}_{5} \times S^{5}$
- Strategy for relativistic string: capture the metric (vielbein) inside a Maurer-Cartan form (coset action) [Metsaev, Tseytin, 1998]

$$
\begin{gathered}
\operatorname{AdS}_{5} \times S^{5}=\frac{S O(2,4) \times S O(6)}{S O(1,4) \times S O(5)}=\frac{\text { isometry }}{\text { isotropy }} \\
S=\int \mathrm{d}^{2} \sigma \gamma^{\alpha \beta}\left\langle A_{\alpha}, P A_{\beta}\right\rangle
\end{gathered}
$$

A_{α} is the Maurer-Cartan form. $\left(P A=A^{(1)}\right)$

- E.o.m.

$$
\partial_{\alpha}\left(\gamma^{\alpha \beta} A_{\beta}^{(1)}\right)+\gamma^{\alpha \beta}\left[A_{\alpha}^{(0)}, A_{\beta}^{(1)}\right]=0
$$

- Lax pair [Bena, Polchinski, Roiban, 2003]

$$
\mathscr{L}=A^{(0)}+\ell_{1} A^{(1)}-\ell_{2} \star A^{(1)} \quad \ell_{1}^{2}-\ell_{2}^{2}=1
$$

Equivalence:

$$
\mathrm{d} \mathscr{L}+\mathscr{L} \wedge \mathscr{L}=0 \quad \Longleftrightarrow \quad \text { E.o.m. }
$$

- NR string: isometry of $\mathrm{AdS}_{5} \times S^{5}$ is $\infty-\mathrm{dim}$, but isotropy finite.
- Truncate the NR isometry to capture the NC vielbeine (suggested by Lie algebra expansion)
[AF, van Tongeren 2022][AF, Nieto, 2022]

$$
S^{\mathrm{NR}}=\int \mathrm{d}^{2} \sigma \gamma^{\alpha \beta}\left\langle J_{\alpha}, P J_{\beta}\right\rangle \quad J_{\alpha} \equiv A_{\alpha}-(\star \Lambda)_{\alpha}
$$

A_{α} is the Maurer-Cartan form. Λ_{α} external current, depends on $\lambda_{ \pm}$

- Equations of motion

$$
\partial_{\alpha}\left(\gamma^{\alpha \beta} J_{\beta}^{(1)}\right)+\gamma^{\alpha \beta}\left[J_{\alpha}^{(0)}, J_{\beta}^{(1)}\right]=0 \quad \mathcal{E}^{\lambda_{ \pm}}=\varepsilon^{\alpha \beta} \theta_{\alpha}^{ \pm} A_{\beta}^{H_{ \pm}}=0
$$

- Lax pair

$$
\mathscr{L}^{\mathrm{NR}}=A^{(0)}+\ell_{1} A^{(1)}-\ell_{2} \star J^{(1)} \quad \quad \ell_{1}^{2}-\ell_{2}^{2}=1
$$

on solutions of $\mathcal{E}^{\lambda_{ \pm}}=0$

Spectral curve

- Alternative route to the spectrum, it captures TBA equations
- Compute the eigenvalues of monodromy matrix

$$
\mathcal{M}=\mathrm{P} \exp \left(\int_{0}^{2 \pi} \mathrm{~d}^{2} \sigma \mathscr{L}_{\sigma}^{\mathrm{NR}}(\xi)\right)
$$

$\xi=$ spectral parameter

- Theorem: On solutions of $\mathcal{E}^{\lambda_{ \pm}}=0$ all eigenvalues are ξ-independent
[AF, Nieto, Ohlsson Sax 2022]
- \mathcal{M} evaluated on BMN-like sol. is non-diagonalisable

$$
\left.\mathcal{M}\right|_{\text {BMN-like }}=S\left(\begin{array}{cccccc}
\times & \times & \times & & & \\
& \times & \times & & & \\
& & \times & & & \\
& & & \times & \times & \\
& & & & \times & \\
& & & & & \times
\end{array}\right) S^{-1}
$$

\times no ξ-dep. \times yes ξ-dep. $\quad \Longrightarrow \quad$ spectral curve defined by " \times "

- Reason of non-diagonalisability: $\mathfrak{s o}(2,4) \oplus \mathfrak{s o}(6)$ is semi-simple, but s.Newton-Hooke ${ }_{5} \oplus$ Eucl $_{5}$ is not
- semi-simple part of s.Newton-Hooke ${ }_{5} \oplus \mathrm{Eucl}_{5}$ is diagonalisable

Same apply for relativistic string in flat space.

- Poincaré algebra is not semi-simple.
- Eigenvalues of monodromy on any solution do not depend on ξ

Diagonalisable:

$$
\mathcal{M}=S e^{p_{i}(\xi) C_{i}} S^{-1} \quad C_{i} \in \text { Cartan }
$$

$$
\text { Non-diagonalisable: } \quad \mathcal{M}=S e^{q_{i}(\xi) W_{i}} S^{-1} \quad W_{i} \in \text { MAS }
$$

(MAS $=$ maximal abelian subalgebra)

Summary of NR strings in $\mathrm{AdS}_{5} \times S^{5}$

- NR string needs winding (consequence of $\mathcal{E}^{\lambda_{ \pm}}=0$)
- having winding spoils semiclassical expansion of the action (z is not an isometry)
- found a coset formulation + Lax pair
- Monodromy is non-diagonalisable, its eigenvalues are ξ-independent
- proposed an alternative definition of spectral curve

Future directions

- Relativistic solution that flows to BMN-like?

Take the NR limit directly on the relativistic spectrum.

- generalised spectral curve, Y-system
- SUSY coset action
- Deformations

$$
S^{\mathrm{NR}}=\int \mathrm{d}^{2} \sigma \gamma^{\alpha \beta}\left\langle J_{\alpha}, \mathcal{O} J_{\beta}\right\rangle
$$

- Identify the "dual" limit on $\mathcal{N}=4$ SYM
- Carroll strings: boring or interesting?

Thank you for your attention!

More questions?
Δ afontanella@perimeterinstitute.ca

