Holographic BCFT Spectra from Brane Mergers

Jani Kastikainen
Astroparticule et Cosmologie, CNRS, Université Paris Cité
Department of Physics, University of Helsinki

$$
\text { January 11, } 2023
$$

Based on 2209.11227 with Shovon Biswas, Sanjit Shashi and James Sully
(1) 2D conformal field theory with two boundaries
(2) Extended holographic model of a boundary CFT
(3) BCC operator from intersecting branes in 3D gravity
(4) Additional results

Table of Contents

(1) 2D conformal field theory with two boundaries
(2) Extended holographic model of a boundary CFT
(3) BCC operator from intersecting branes in 3D gravity
(4) Additional results

Euclidean 2D CFT on a cylinder

- Consider a Euclidean CFT_{2} on a cylinder $(0, W) \times S_{\beta}^{1}$ with conformal boundary conditions A and B
- Object of interest: Euclidean path integral over the cylinder

$$
\begin{equation*}
Z_{A B} \equiv \int_{A, B} \mathcal{D} \Psi e^{-I_{\mathrm{CFT}}[\Psi]} \tag{1}
\end{equation*}
$$

which depends only on the modulus W / β

Slicing the path integral with circles and intervals

$$
\begin{aligned}
Z_{A B} & =\langle A| e^{-W H^{\text {closed }}}|B\rangle \\
H^{\text {closed }} & =\frac{2 \pi}{\beta}\left(L_{0}+\bar{L}_{0}-\frac{c}{12}\right)
\end{aligned}
$$

$$
Z_{A B}=\operatorname{Tr} e^{-\beta H^{\text {open }}}
$$

$$
H^{\mathrm{open}}=\frac{\pi}{W}\left(L_{0}-\frac{c}{24}\right)
$$

$$
\begin{equation*}
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c}{12} n^{2}(n-1) \delta_{n,-m} \tag{2}
\end{equation*}
$$

Closed string channel expansion

- Inserting a complete set of states of $\mathcal{H}^{\text {closed }}$ gives

$$
\begin{equation*}
Z_{A B}=\langle A| e^{-W H^{\text {closed }}}|B\rangle=\langle A \mid 0\rangle\langle 0 \mid B\rangle \exp \left(\frac{c}{6} \frac{\pi W}{\beta}\right)+\ldots, \quad \frac{W}{\beta} \rightarrow \infty . \tag{3}
\end{equation*}
$$

- The closed string vacuum dominates the $W / \beta \rightarrow \infty$ limit

Open string channel expansion

- Computing the trace over $\mathcal{H}^{\text {open }}$ gives

$$
\begin{equation*}
Z_{A B}=\operatorname{Tr} e^{-\beta H^{\mathrm{open}}} \propto \exp \left[-\frac{\pi \beta}{2 W}\left(\Delta_{\mathrm{bcc}}-\frac{c}{12}\right)\right]+\ldots, \quad \frac{W}{\beta} \rightarrow 0 . \tag{4}
\end{equation*}
$$

- If $A \neq B$, vacuum module $h=0$ does not appear in the open string Hilbert space
- The next primary state $\Delta_{\mathrm{bcc}}>0$ is the boundary-condition-changing (BCC) operator
[Cardy '84, Affleck-Ludwig '94]

Table of Contents

(1) 2 D conformal field theory with two boundaries

(2) Extended holographic model of a boundary CFT

(3) BCC operator from intersecting branes in 3D gravity

(4) Additional results

End-of-the-world branes in AdS_{3} gravity

- The boundary of the CFT becomes an end-of-the-world brane in gravity
- Bulk region behind the brane is removed
- Brane tension T depends on the conformal boundary condition A, B
[Takayanagi '11]
[Fujita-Takayanagi-Tonni '11]

Holographic duals of a BCFT with two boundaries

(b) Closed string vacuum

(c) Open string vacuum

(d) BCC operator

- Describing BCC operators when $A \neq B$ requires non-smooth brane intersections
[Biswas-JK-Shashi-Sully '22, Miyaji-Murdia '22]
[Geng-Lüst-Mishra-Wakeham '21]

Holographic model with intersecting branes in 3D gravity

- Bulk action with a conical line defect \mathcal{D} and a brane intersection $\mathcal{C}=\mathcal{Q}_{A} \cap \mathcal{Q}_{B}$:

$$
\begin{equation*}
I=-\frac{1}{2 \kappa} \int_{\mathcal{M}} \sqrt{g}\left(R-2 \Lambda-m \delta_{\mathcal{D}}\right)-\frac{1}{\kappa} \int_{\mathcal{Q}} \sqrt{h}(K-T)-\frac{1}{\kappa} \int_{\mathcal{C}} \sqrt{\sigma}(\Theta-M), \tag{5}
\end{equation*}
$$

where Θ is the intersection angle and $T=T_{A, B}$

- Variation of the action

$$
\begin{align*}
\delta I=- & \frac{1}{2 \kappa} \int_{\mathcal{M}} \sqrt{g}\left(G_{a b}+\Lambda g_{a b}+\frac{1}{2} m g_{a b} \delta_{\mathcal{D}}\right) \delta g^{a b} \\
& -\frac{1}{2 \kappa} \int_{\mathcal{Q}} \sqrt{h}\left(K_{a b}-(K-T) h_{a b}\right) \delta h^{a b} \tag{6}\\
& +\frac{1}{2 \kappa} \int_{\mathcal{C}} \sqrt{\sigma}(\Theta-M) \sigma_{a b} \delta \sigma^{a b},
\end{align*}
$$

Excited states of the closed string Hamiltonian

- Conical line defect \mathcal{D} at $r=0$ in global AdS_{3} :

$$
\begin{equation*}
d s_{\mathbb{H}^{3}}^{2}=\left(r^{2}+\alpha^{2}\right) d \tau^{2}+\frac{d r^{2}}{r^{2}+\alpha^{2}}+r^{2} d \phi^{2}, \quad 0<\alpha \leq 1 \tag{7}
\end{equation*}
$$

with $\tau \in \mathbb{R}, \phi \sim \phi+2 \pi$

- Mass of the defect

$$
\begin{equation*}
m=4 \pi(1-\alpha) \geq 0 \tag{8}
\end{equation*}
$$

- Boundary and corner Einstein's equations determine brane embeddings

$$
\begin{equation*}
K_{a b}-(K-T) h_{a b}=0, \quad \Theta-M=0 \tag{9}
\end{equation*}
$$

Single brane saddles

- Consider first the case of no conical defect $\alpha=1$:

$$
\begin{equation*}
d s_{\mathbb{H}^{3}}^{2}=\left(r^{2}+1\right) d \tau^{2}+\frac{d r^{2}}{r^{2}+1}+r^{2} d \phi^{2} \tag{10}
\end{equation*}
$$

with $\tau \in \mathbb{R}$ and $\phi \sim \phi+2 \pi$

(e) Disk brane in Euclidean AdS_{3}
(f) Strip brane in Euclidean
AdS_{3}
(f) Strip brane in Euclidean
AdS_{3}

Slices of disk and strip branes

(g) Constant- ϕ slice of a disk brane

(h) Constant- τ slice of a strip brane

Closed string vacuum in gravity

- Renormalized on-shell gravity action:

$$
e^{-I_{\text {on-shell }}^{\mathrm{ren}}}=\left(\frac{1+T_{A}}{1-T_{A}}\right)^{\frac{c}{12}}\left(\frac{1+T_{B}}{1-T_{B}}\right)^{\frac{c}{12}} \exp \left(\frac{c}{6} \frac{\pi W}{\beta}\right)
$$

- Dominates when $W / \beta \rightarrow \infty$
- Identified as the closed string vacuum for all A, B
[Takayanagi '11]

$$
\phi \sim \phi+2 \pi
$$

Open string vacuum in gravity

- Exists only when $A=B$
- Renormalized on-shell gravity action:

$$
\begin{equation*}
e^{-I_{\text {on-shell }}^{\text {ren }}}=\exp \left(\frac{c}{24} \frac{\pi \beta}{W}\right) \tag{11}
\end{equation*}
$$

- Dominates when $W / \beta \rightarrow 0$
- Identified as the open string vacuum $\Delta_{\mathrm{bcc}}=0$
[Takayanagi '11]

$$
\tau \sim \tau+\frac{\pi \beta}{W}
$$

Table of Contents

(1) 2 D conformal field theory with two boundaries

(2) Extended holographic model of a boundary CFT
(3) BCC operator from intersecting branes in 3 D gravity
(4) Additional results

Strip branes with a conical line defect

- Global Euclidean AdS_{3} with a conical line defect at $r=0$:

$$
\begin{equation*}
d s_{\mathbb{H}^{3}}^{2}=\left(r^{2}+\alpha^{2}\right) d \tau^{2}+\frac{d r^{2}}{r^{2}+\alpha^{2}}+r^{2} d \phi^{2}, \quad 0<\alpha<1 \tag{12}
\end{equation*}
$$

where $4 \pi(1-\alpha)=m$

Figure: Strip brane for different α

Intersecting annulus brane saddle

(a)

(b)

(c)

- Requires the presence of a conical defect: $\alpha<1$

BCC operator in gravity

- On-shell action of the intersecting saddle:

$$
e^{-I_{\text {on-shell }}^{\text {ren }}}=\exp \left(\frac{c}{24} \frac{\pi \beta}{W} \alpha^{2}\right)
$$

- We can identify

$$
\begin{equation*}
\Delta_{\mathrm{bcc}}=\frac{c}{12}\left(1-\alpha^{2}\right) \tag{13}
\end{equation*}
$$

- The inverted form might be more familiar

$$
\begin{equation*}
\alpha=\sqrt{1-\frac{12 \Delta_{\mathrm{bcc}}}{c}} \tag{14}
\end{equation*}
$$

Fixing the BCC dimension $\Delta_{\text {bcc }}$

- Intersection angle determined by geometry of brane embeddings:

$$
\begin{equation*}
\Theta=\Theta(\alpha) \tag{15}
\end{equation*}
$$

- Corner Einstein's equation fixes α in terms of the corner mass M :

$$
\begin{equation*}
M=\Theta(\alpha) \quad \Rightarrow \quad \alpha=\alpha(M) \tag{16}
\end{equation*}
$$

- By tuning M, we fill the gap below the BH threshold:

$$
\begin{equation*}
0<\Delta_{\mathrm{bcc}}(\alpha) \leq \frac{c}{12} \tag{17}
\end{equation*}
$$

[Biswas-JK-Shashi-Sully '22]
[Miyaji-Takayanagi-Ugajin '21]

Limiting cases

- No conical defect $\alpha=1$ corresponds to the intersection running to the conformal boundary and $\Delta_{\text {bcc }} \rightarrow 0$
- Stronger conical defect $\alpha \rightarrow 0$ gives a sharper intersection and $\Delta_{\mathrm{bcc}} \rightarrow \frac{c}{12}$

(d) $\alpha \rightarrow 1, \Delta_{\mathrm{bcc}} \rightarrow 0$

(e) $\alpha \rightarrow 0, \Delta_{\mathrm{bcc}} \rightarrow \frac{c}{12}$

Table of Contents

(1) 2 D conformal field theory with two boundaries

(2) Extended holographic model of a boundary CFT
(3) BCC operator from intersecting branes in 3D gravity
(4) Additional results

Closed string bra-ket wormhole saddle

Figure: The bra-ket wormhole $=$ intersecting positive tension disk branes

$$
\begin{equation*}
\overline{\langle A \mid 0\rangle\langle 0 \mid B\rangle}=\overline{\langle A \mid 0\rangle} \overline{\langle 0 \mid B\rangle}+\text { (wormhole) }+\ldots, \tag{18}
\end{equation*}
$$

[Chen-Gorbenko-Maldacena '20]
[Kusuki '22]

Scalar field coupled to two disk branes

- Scalar field of mass $m^{2}=\Delta(2-\Delta)$:

$$
\begin{equation*}
I_{\text {bulk }} \supset \frac{1}{2 \kappa} \int_{\mathcal{M}} \sqrt{g}\left(\nabla^{a} \Phi \nabla_{a} \Phi+m^{2} \Phi^{2}\right)-\frac{1}{\kappa} \int_{\mathcal{Q}_{A}} \sqrt{h} \lambda_{A} \Phi-\frac{1}{\kappa} \int_{\mathcal{Q}_{B}} \sqrt{h} \lambda_{B} \Phi \tag{19}
\end{equation*}
$$

- Scalar field exchange between two disk branes

$$
\begin{equation*}
e^{-I_{\mathrm{on}-\mathrm{shell}}^{\mathrm{ren}}}=\frac{2 \pi \lambda_{A} \lambda_{B}}{\Delta^{2}\left(1-T_{A}\right)\left(1-T_{B}\right)}\left(\frac{1+T_{A}}{1-T_{A}}\right)^{\frac{c}{12}-\frac{\Delta}{2}}\left(\frac{1+T_{B}}{1-T_{B}}\right)^{\frac{c}{12}-\frac{\Delta}{2}} \frac{e^{-2 \pi W / \beta(\Delta-c / 12)}}{1-e^{-4 \pi W / \beta}} \tag{20}
\end{equation*}
$$

with the $S L(2, \mathbb{R})$-character appearing

Thank you

Explicit brane embeddings

- Disk brane

$$
\begin{equation*}
\tau=F\left(r ; T, \tau_{0}\right) \equiv \tau_{0}+\frac{1}{\alpha} \operatorname{Tanh}^{-1}\left(\frac{T \alpha}{\sqrt{f_{\alpha}(r)-T^{2} r^{2}}}\right), \quad r \geq 0 \tag{21}
\end{equation*}
$$

- Strip brane

$$
\begin{equation*}
r=p\left(\phi ; T, \phi_{0}\right) \equiv-\frac{T \alpha}{\sqrt{1-T^{2}}} \csc \left[\alpha\left(\phi-\phi_{0}\right)\right], \quad \phi \in\left(\phi_{0}, \phi_{0}+\frac{\pi}{\alpha}\right) \tag{22}
\end{equation*}
$$

Intersection of annulus brane

- Intersection angle

$$
\begin{equation*}
\cos \Theta=\frac{1}{r_{*}^{2}}\left(T_{A} T_{B} f_{\alpha}\left(r_{*}\right)+\sqrt{r_{*}^{2}-T_{A}^{2} f_{\alpha}\left(r_{*}\right)} \sqrt{r_{*}^{2}-T_{B}^{2} f_{\alpha}\left(r_{*}\right)}\right), \tag{23}
\end{equation*}
$$

- Intersection depth

$$
\begin{equation*}
r_{*}^{2}=\alpha^{2} \csc ^{2}(\alpha \Delta \phi)\left(\frac{T_{A}^{2}}{1-T_{A}^{2}}+\frac{T_{B}^{2}}{1-T_{B}^{2}}+\frac{2 T_{A} T_{B} \cos (\alpha \Delta \phi)}{\sqrt{1-T_{A}^{2}} \sqrt{1-T_{B}^{2}}}\right) \tag{24}
\end{equation*}
$$

Computation of the on-shell actions

- The renormalized on-shell action can be computed as boundary integral

$$
\begin{equation*}
I_{\mathrm{on} \text {-shell }}^{\mathrm{ren}}=u_{0}\left(M_{\mathrm{ADM}}^{\mathrm{ren}}-\frac{2 \pi}{\kappa} A_{\mathcal{H}}\right) \tag{25}
\end{equation*}
$$

