Holographic BCFT Spectra from Brane Mergers

Jani Kastikainen

Astroparticule et Cosmologie, CNRS, Université Paris Cité Department of Physics, University of Helsinki

January 11, 2023

Based on 2209.11227 with Shovon Biswas, Sanjit Shashi and James Sully

1 2D conformal field theory with two boundaries

2 Extended holographic model of a boundary CFT

3 BCC operator from intersecting branes in 3D gravity

4 Additional results

Ja	nı	ĸа	st_1	kain	\mathbf{en}

1 2D conformal field theory with two boundaries

2 Extended holographic model of a boundary CFT

3 BCC operator from intersecting branes in 3D gravity

4 Additional results

Jani	Kastikaine	n

・ロト ・日本・モート ・日本・クタマ

Euclidean 2D CFT on a cylinder

- Consider a Euclidean CFT₂ on a cylinder $(0, W) \times S^1_\beta$ with conformal boundary conditions A and B
- Object of interest: Euclidean path integral over the cylinder

$$Z_{AB} \equiv \int_{A,B} \mathcal{D}\Psi \, e^{-I_{\rm CFT}[\Psi]} \tag{1}$$

which depends only on the modulus W/β

Jani Kastikaine	n

Slicing the path integral with circles and intervals

Closed string channel expansion

• Inserting a complete set of states of $\mathcal{H}^{\text{closed}}$ gives

$$Z_{AB} = \langle A|e^{-WH^{\text{closed}}}|B\rangle = \langle A|0\rangle\langle 0|B\rangle \exp\left(\frac{c}{6}\frac{\pi W}{\beta}\right) + \dots, \quad \frac{W}{\beta} \to \infty.$$
(3)

• The closed string vacuum dominates the $W/\beta \to \infty$ limit

		inen

・ロト ・日本・モート ・日本・クタマ

Open string channel expansion

• Computing the trace over $\mathcal{H}^{\text{open}}$ gives

$$Z_{AB} = \operatorname{Tr} e^{-\beta H^{\operatorname{open}}} \propto \exp\left[-\frac{\pi\beta}{2W} \left(\Delta_{\operatorname{bcc}} - \frac{c}{12}\right)\right] + \dots, \quad \frac{W}{\beta} \to 0.$$
(4)

- If $A \neq B$, vacuum module h = 0 does not appear in the open string Hilbert space
- The next primary state $\Delta_{bcc} > 0$ is the boundary-condition-changing (BCC) operator [Cardy '84, Affleck–Ludwig '94]

1 2D conformal field theory with two boundaries

2 Extended holographic model of a boundary CFT

3 BCC operator from intersecting branes in 3D gravity

4 Additional results

Jani	Kastikaine	n

End-of-the-world branes in AdS_3 gravity

- The boundary of the CFT becomes an end-of-the-world brane in gravity
- Bulk region behind the brane is removed
- Brane tension T depends on the conformal boundary condition A,B

[Takayanagi '11]

[Fujita–Takayanagi–Tonni '11]

4 E N

315

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Holographic duals of a BCFT with two boundaries

• Describing BCC operators when $A \neq B$ requires non-smooth brane intersections

[Biswas–JK–Shashi–Sully '22, Miyaji–Murdia '22]

[Geng–Lüst–Mishra–Wakeham '21]

Holographic model with intersecting branes in 3D gravity

• Bulk action with a conical line defect \mathcal{D} and a brane intersection $\mathcal{C} = \mathcal{Q}_A \cap \mathcal{Q}_B$:

$$I = -\frac{1}{2\kappa} \int_{\mathcal{M}} \sqrt{g} \left(R - 2\Lambda - m \,\delta_{\mathcal{D}} \right) - \frac{1}{\kappa} \int_{\mathcal{Q}} \sqrt{h} \left(K - T \right) - \frac{1}{\kappa} \int_{\mathcal{C}} \sqrt{\sigma} \left(\Theta - M \right), \tag{5}$$

where Θ is the intersection angle and $T = T_{A,B}$

• Variation of the action

$$\delta I = -\frac{1}{2\kappa} \int_{\mathcal{M}} \sqrt{g} \left(G_{ab} + \Lambda g_{ab} + \frac{1}{2} m g_{ab} \,\delta_{\mathcal{D}} \right) \delta g^{ab} - \frac{1}{2\kappa} \int_{\mathcal{Q}} \sqrt{h} \left(K_{ab} - (K - T) h_{ab} \right) \delta h^{ab} + \frac{1}{2\kappa} \int_{\mathcal{C}} \sqrt{\sigma} \left(\Theta - M \right) \,\sigma_{ab} \,\delta \sigma^{ab},$$
(6)

[Biswas-JK-Shashi-Sully '22]

Excited states of the closed string Hamiltonian

• Conical line defect \mathcal{D} at r = 0 in global AdS₃:

$$ds_{\mathbb{H}^3}^2 = (r^2 + \alpha^2) \, d\tau^2 + \frac{dr^2}{r^2 + \alpha^2} + r^2 d\phi^2, \quad 0 < \alpha \le 1 \tag{7}$$

with $\tau \in \mathbb{R}, \, \phi \sim \phi + 2\pi$

• Mass of the defect

$$m = 4\pi \left(1 - \alpha\right) \ge 0 \tag{8}$$

A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D N A D

• Boundary and corner Einstein's equations determine brane embeddings

$$K_{ab} - (K - T) h_{ab} = 0, \quad \Theta - M = 0$$
(9)

Jani Kastikainen	Iberian Strings 2023	January 11, 2023	12 / 26

Single brane saddles

• Consider first the case of no conical defect $\alpha = 1$:

$$ds_{\mathbb{H}^3}^2 = (r^2 + 1) \, d\tau^2 + \frac{dr^2}{r^2 + 1} + r^2 d\phi^2 \tag{10}$$

13 / 26

with $\tau \in \mathbb{R}$ and $\phi \sim \phi + 2\pi$ τ τ Φ (e) Disk brane in Euclidean (f) Strip brane in Euclidean AdS_3 AdS_3 Jani Kastikainen Iberian Strings 2023 January 11, 2023

Slices of disk and strip branes

(g) Constant- ϕ slice of a disk brane

(h) Constant- τ slice of a strip brane

Ja	nı	Kas	tık	cain	en

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Closed string vacuum in gravity

Renormalized on-shell gravity action: ٠

$$e^{-I_{\text{on-shell}}^{\text{ren}}} = \left(\frac{1+T_A}{1-T_A}\right)^{\frac{c}{12}} \left(\frac{1+T_B}{1-T_B}\right)^{\frac{c}{12}} \exp\left(\frac{c}{6}\frac{\pi W}{\beta}\right)$$

- Dominates when $W/\beta \to \infty$
- Identified as the closed string vacuum for all A, B•

[Takayanagi '11]

Open string vacuum in gravity

- Exists only when A = B
- Renormalized on-shell gravity action:

$$e^{-I_{\text{on-shell}}^{\text{ren}}} = \exp\left(\frac{c}{24}\frac{\pi\beta}{W}\right)$$

- Dominates when $W/\beta \to 0$
- Identified as the open string vacuum $\Delta_{bcc} = 0$

[Takayanagi '11]

(11)

Iberian Strings 2023

イロト 不良 イヨト イヨト 回言 ろくの

1 2D conformal field theory with two boundaries

2 Extended holographic model of a boundary CFT

3 BCC operator from intersecting branes in 3D gravity

4 Additional results

. Ia	nı	ка	stik	cain	en.

Strip branes with a conical line defect

• Global Euclidean AdS_3 with a conical line defect at r = 0:

$$ds_{\mathbb{H}^3}^2 = (r^2 + \alpha^2) \, d\tau^2 + \frac{dr^2}{r^2 + \alpha^2} + r^2 d\phi^2, \quad 0 < \alpha < 1 \tag{12}$$

where $4\pi (1 - \alpha) = m$

Figure: Strip brane for different α

	Kas		

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ●

Intersecting annulus brane saddle

• Requires the presence of a conical defect: $\alpha < 1$

BCC operator in gravity

• On-shell action of the intersecting saddle:

$$e^{-I_{\text{on-shell}}^{\text{ren}}} = \exp\left(\frac{c}{24}\frac{\pi\beta}{W}\alpha^2\right)$$

• We can identify

$$\Delta_{\rm bcc} = \frac{c}{12} \left(1 - \alpha^2 \right)$$

• The inverted form might be more familiar

$$\alpha = \sqrt{1 - \frac{12\Delta_{\rm bcc}}{c}} \tag{14}$$

Jani Kastikainen

Iberian Strings 2023

(13)

January 11, 2023

Fixing the BCC dimension $\Delta_{\rm bcc}$

• Intersection angle determined by geometry of brane embeddings:

$$\Theta = \Theta(\alpha) \tag{15}$$

• Corner Einstein's equation fixes α in terms of the corner mass M:

$$M = \Theta(\alpha) \quad \Rightarrow \quad \alpha = \alpha(M) \tag{16}$$

• By tuning M, we fill the gap below the BH threshold:

$$0 < \Delta_{\rm bcc}(\alpha) \le \frac{c}{12} \tag{17}$$

[Biswas–JK–Shashi–Sully '22] [Miyaji–Takayanagi–Ugajin '21]

Limiting cases

- No conical defect $\alpha = 1$ corresponds to the intersection running to the conformal boundary and $\Delta_{bcc} \rightarrow 0$
- Stronger conical defect $\alpha \to 0$ gives a sharper intersection and $\Delta_{\rm bcc} \to \frac{c}{12}$

• 2D conformal field theory with two boundaries

2 Extended holographic model of a boundary CFT

3 BCC operator from intersecting branes in 3D gravity

4 Additional results

Jani	Kastikaine	n

Closed string bra-ket wormhole saddle

Figure: The bra-ket wormhole = intersecting positive tension disk branes

$$\overline{\langle A|0\rangle\langle 0|B\rangle} = \overline{\langle A|0\rangle} \overline{\langle 0|B\rangle} + (\text{wormhole}) + \dots, \qquad (18)$$

[Chen–Gorbenko–Maldacena '20]

[Kusuki '22]

Scalar field coupled to two disk branes

• Scalar field of mass $m^2 = \Delta(2 - \Delta)$:

$$I_{\text{bulk}} \supset \frac{1}{2\kappa} \int_{\mathcal{M}} \sqrt{g} \left(\nabla^a \Phi \nabla_a \Phi + m^2 \Phi^2 \right) - \frac{1}{\kappa} \int_{\mathcal{Q}_A} \sqrt{h} \lambda_A \Phi - \frac{1}{\kappa} \int_{\mathcal{Q}_B} \sqrt{h} \lambda_B \Phi \tag{19}$$

• Scalar field exchange between two disk branes

$$e^{-I_{\text{on-shell}}^{\text{ren}}} = \frac{2\pi\lambda_A\lambda_B}{\Delta^2(1-T_A)(1-T_B)} \left(\frac{1+T_A}{1-T_A}\right)^{\frac{c}{12}-\frac{\Delta}{2}} \left(\frac{1+T_B}{1-T_B}\right)^{\frac{c}{12}-\frac{\Delta}{2}} \frac{e^{-2\pi W/\beta (\Delta-c/12)}}{1-e^{-4\pi W/\beta}}$$
(20)

with the $SL(2,\mathbb{R})$ -character appearing

Thank you

Ja	n_1	Ka	.stı.	kain	\mathbf{en}

Explicit brane embeddings

• Disk brane

$$\tau = F(r; T, \tau_0) \equiv \tau_0 + \frac{1}{\alpha} \operatorname{Tanh}^{-1} \left(\frac{T\alpha}{\sqrt{f_\alpha(r) - T^2 r^2}} \right), \quad r \ge 0.$$
(21)

• Strip brane

$$r = p(\phi; T, \phi_0) \equiv -\frac{T\alpha}{\sqrt{1 - T^2}} \csc\left[\alpha \left(\phi - \phi_0\right)\right], \quad \phi \in \left(\phi_0, \phi_0 + \frac{\pi}{\alpha}\right), \tag{22}$$

Iberian S	Strings	2023
-----------	---------	------

January 11, 2023 27 / 26

Intersection of annulus brane

• Intersection angle

$$\cos\Theta = \frac{1}{r_*^2} \left(T_A T_B f_\alpha(r_*) + \sqrt{r_*^2 - T_A^2 f_\alpha(r_*)} \sqrt{r_*^2 - T_B^2 f_\alpha(r_*)} \right), \tag{23}$$

• Intersection depth

$$r_*^2 = \alpha^2 \csc^2(\alpha \Delta \phi) \left(\frac{T_A^2}{1 - T_A^2} + \frac{T_B^2}{1 - T_B^2} + \frac{2 T_A T_B \cos(\alpha \Delta \phi)}{\sqrt{1 - T_A^2} \sqrt{1 - T_B^2}} \right).$$
(24)

	Kas		

Computation of the on-shell actions

• The renormalized on-shell action can be computed as boundary integral

$$I_{\text{on-shell}}^{\text{ren}} = u_0 \left(M_{\text{ADM}}^{\text{ren}} - \frac{2\pi}{\kappa} A_{\mathcal{H}} \right)$$
(25)

Iberian Strings 2023	January 11, 2023	29 / 26