Local supersymmetry enhancement and the entropy of three-charge black holes

Iberian Strings 2023,

Murcia

Yixuan Li

MPI Munich

Based on [2211.14326] with I. Bena, S. Hampton, A. Houppe and D. Toulikas

What this talk is about

- M5-M2(-P) black hole: The microstates that are made of fractionated \mathbf{M} 2 branes account for the entropy.
- We found: They can transition into microstates with 16 local supersymmetries.
« Dijkgraaf-Verlinde-Verlinde -Maldacena microstates»

What this talk is about

« Dijkgraaf-Verlinde-Verlinde -Maldacena microstates»

- M5-M2(-P) black hole: The microstates that are made of fractionated M2 branes account for the entropy.
- We found: They can transition into microstates with 16 local supersymmetries.

Microstates with 16 local susys account for the black-hole entropy!

- We expect their backreaction to be horizonless microstates.

Outline

1. Local supersymmetry enhancement and black-hole microstates
2. The new M5-M2-P microstates with 16 local supersymmetries

Outline

1. Local supersymmetry enhancement and black-hole microstates
2. The new M5-M2-P microstates with 16 local supersymmetries

The 3-charge black hole and near-horizon geometry

- Type IIA/IIB: $\mathbb{R}^{4,1} \times S_{y}^{1} \times T^{4}$
- Take brane system with 3 charges:

D5(y, $\left.T^{4}\right), ~ D 1(y), ~ P(y)$
or NS5(y, $\left.T^{4}\right)$, F1 (y), P(y)
\Rightarrow naively, 1/8-BPS everywhere

The 3-charge black hole and near-horizon geometry

- Type IIA/IIB: $\mathbb{R}^{4,1} \times S_{y}^{1} \times T^{4}$
- Take brane system with 3 charges:

D5 (y, $\left.T^{4}\right), D 1(y), P(y)$
or NS5 (y, T^{4}), F1(y), P(y)
\Rightarrow naively, 1/8-BPS everywhere

- Use harmonic function rule

$$
\begin{aligned}
d s^{2}= & -\frac{2}{\sqrt{H_{1} H_{5}}}\left[d t^{2}+d y^{2}+\left(H_{P}-1\right)^{-1}(d y-d t)^{2}\right] \\
& +\sqrt{H_{1} H_{5}} d s_{\mathbb{R}^{4}}^{2}+\left(H_{1} H_{5}\right)^{-1 / 2} d s_{T^{4}}^{2}
\end{aligned}
$$

with

$$
H_{1,5, P}=1+\frac{Q_{1,5, P}}{r^{2}}
$$

The 3-charge black hole and near-horizon geometry

- Type IIA/IIB: $\mathbb{R}^{4,1} \times S_{y}^{1} \times T^{4}$
- Take brane system with 3 charges:

D5 (y, $\left.T^{4}\right), ~ D 1(y), P(y)$
or NS5 (y, T^{4}), F1(y), P(y)
\Rightarrow naively, 1/8-BPS everywhere

- Use harmonic function rule
\Rightarrow develops horizon in
supergravity

$$
\begin{aligned}
d s^{2}= & -\frac{2}{\sqrt{H_{1} H_{5}}}\left[d t^{2}+d y^{2}+\left(H_{P}-1\right)^{-1}(d y-d t)^{2}\right] \\
& +\sqrt{H_{1} H_{5}} d s_{\mathbb{R}^{4}}^{2}+\left(H_{1} H_{5}\right)^{-1 / 2} d s_{T^{4}}^{2}
\end{aligned}
$$

with

$$
H_{1,5, P}=1+\frac{Q_{1,5, P}}{r^{2}}
$$

The 3-charge black hole and near-horizon geometry

- Type IIA/IIB: $\mathbb{R}^{4,1} \times S_{y}^{1} \times T^{4}$
- Take brane system with 3 charges:

D5(y, $\left.T^{4}\right), ~ D 1(y), ~ P(y)$
or NS5(y, $\left.T^{4}\right)$, F1 (y), P(y)
\Rightarrow naively, 1/8-BPS everywhere

- Use harmonic function rule
\Rightarrow develops horizon in supergravity

Possible conclusion:

Global charges and
supersymmetries seem to control near-horizon geometry.

Therefore all brane systems develop the same horizon:
To have access the information about the microstates, probe singularity region, where supergravity breaks down.

The 3-charge black hole and near-horizon geometry

- Type IIA/IIB: $\mathbb{R}^{4,1} \times S_{y}^{1} \times T^{4}$
- Take brane system with 3 charges:

D5(y, $\left.T^{4}\right), ~ D 1(y), ~ P(y)$
or NS5(y, $\left.T^{4}\right)$, F1 (y), P(y)
\Rightarrow naively, 1/8-BPS everywhere

- Use harmonic function rule
\Rightarrow develops horizon in supergravity
- Local supersymmetry enhancement:
String-theory excitations (branes, strings) combine together to form a bound state that is locally 1/2-BPS (16 susies).

Local SUSY enhancement - example

- Ex.: F1 (y) and parallel P(y):

- F1or P preserve 16 real supercharges
- Together, F1-P preserve 8

Local SUSY enhancement - example

- Ex.: F1 (y) and parallel P(y):

- F1or P preserve 16 real supercharges
- Together, F1-P preserve 8
- Actually the string can carry momentum: profile
- The F1-P profile preserves the same global supersymmetries...

Local SUSY enhancement - example

- Ex.: F1 (y) and parallel P(y):

- F1or P preserve 16 real supercharges
- Together, F1-P preserve 8
- Actually the string can carry momentum: profile
- The F1-P profile preserves the same global supersymmetries...
- ...but locally it is a $\mathrm{F} 1(\hat{y})$ boosted by orthogonal $P\left(\hat{y}^{\perp}\right)$
- F1 $(\hat{y})-\mathrm{P}\left(\hat{y}^{\perp}\right)$ preserves 16 supercharges

Local supersymmetry \rightarrow information on microstate?

Local VS global supersymmetries

- Branes, strings \rightarrow constraint on ϵ;

Killing spinor

Projector

$$
\Pi^{2}=\Pi
$$

Traceless involution

$$
\begin{gathered}
P^{2}=1 \\
\operatorname{tr}(P)=0
\end{gathered}
$$

Constraint halves number
of supersymmetries

Local VS global supersymmetries

- Branes, strings \rightarrow constraint on ϵ :

$$
\Pi \epsilon \equiv \frac{1}{2}(1+P) \epsilon=0
$$

- Combine k different excitations:

$$
\begin{aligned}
& \epsilon \in \operatorname{ker}\left(\Pi_{1}\right) \cap \ldots \cap \operatorname{ker}\left(\Pi_{k}\right) \\
& \rightarrow \sharp(\text { global supersymmetries })
\end{aligned}
$$

Local VS global supersymmetries

- Branes, strings \rightarrow constraint on ϵ :
- $\hat{\Pi} \epsilon \equiv \frac{1}{2}\left(1+\alpha_{1} P_{1}+\ldots+\alpha_{n} P_{n}\right) \epsilon$

$$
\Pi \epsilon \equiv \frac{1}{2}(1+P) \epsilon=0
$$

- Combine k different excitations:

$$
\begin{gathered}
\quad \epsilon \in \operatorname{ker}\left(\Pi_{1}\right) \cap \ldots \cap \operatorname{ker}\left(\Pi_{k}\right) \\
\rightarrow \#(\text { global supersymmetries })
\end{gathered}
$$

- Add other involutions $\left(P_{k+1}, \ldots, P_{n}\right)$ and weights $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ s.t. $\alpha_{1}+\ldots+\alpha_{n}=1$.

Local VS global supersymmetries

- Branes, strings \rightarrow constraint on ϵ :

$$
\Pi \epsilon \equiv \frac{1}{2}(1+P) \epsilon=0
$$

- Combine k different excitations:

$$
\epsilon \in \operatorname{ker}\left(\Pi_{1}\right) \cap \ldots \cap \operatorname{ker}\left(\Pi_{k}\right)
$$

$\rightarrow \#$ (global supersymmetries)

- Add other involutions $\left(P_{k+1}, \ldots, P_{n}\right)$ and weights $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ s.t. $\alpha_{1}+\ldots+\alpha_{n}=1$.
- $\hat{\Pi} \epsilon \equiv \frac{1}{2}\left(1+\underline{\left.\alpha_{1} P_{1}+\ldots+\alpha_{n} P_{n}\right) \epsilon}\right.$

Mix of excitations (branes, etc) with different charges:

$$
\alpha_{i}=\frac{Q_{i}}{M}
$$

Not necessarily a projector!

Local VS global supersymmetries

- Branes, strings \rightarrow constraint on ϵ :

$$
\Pi \epsilon \equiv \frac{1}{2}(1+P) \epsilon=0
$$

- Combine k different excitations:

$$
\begin{gathered}
\quad \epsilon \in \operatorname{ker}\left(\Pi_{1}\right) \cap \ldots \cap \operatorname{ker}\left(\Pi_{k}\right) \\
\rightarrow \sharp \text { (global supersymmetries) }
\end{gathered}
$$

- Add other involutions $\left(P_{k+1}, \ldots, P_{n}\right)$ and weights $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ s.t. $\alpha_{1}+\ldots+\alpha_{n}=1$.

$$
\alpha_{1}+\ldots+\alpha_{n}=1
$$

- $\hat{\Pi} \epsilon \equiv \frac{1}{2}\left(1+\alpha_{1} P_{1}+\ldots+\alpha_{n} P_{n}\right) \epsilon$
- $\hat{\Pi}^{2}=\hat{\Pi}$ iff the system has 16 susies.

Local VS global supersymmetries

- Branes, strings \rightarrow constraint on ϵ :

$$
\Pi \epsilon \equiv \frac{1}{2}(1+P) \epsilon=0
$$

- Combine k different excitations:

$$
\begin{gathered}
\epsilon \in \operatorname{ker}\left(\Pi_{1}\right) \cap \ldots \cap \operatorname{ker}\left(\Pi_{k}\right) \\
\rightarrow \sharp(\text { global supersymmetries })
\end{gathered}
$$

- Add other involutions $\left(P_{k+1}, \ldots, P_{n}\right)$ and weights $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ s.t. $\alpha_{1}+\ldots+\alpha_{n}=1$.
- $\hat{\Pi} \epsilon \equiv \frac{1}{2}\left(1+\alpha_{1} P_{1}+\ldots+\alpha_{n} P_{n}\right) \epsilon$
- $\hat{\Pi}^{2}=\hat{\Pi}$ iff the system has 16 susies.
- $\left\{\alpha_{i}\right\}$ not unique $\rightarrow\left\{\alpha_{i}(x)\right\}$

along the bound state
ϵ promoted to be a function

Local VS global supersymmetries

- Branes, strings \rightarrow constraint on ϵ :

$$
\Pi \epsilon \equiv \frac{1}{2}(1+P) \epsilon=0
$$

- Combine k different excitations:

$$
\begin{gathered}
\quad \epsilon \in \operatorname{ker}\left(\Pi_{1}\right) \cap \ldots \cap \operatorname{ker}\left(\Pi_{k}\right) \\
\rightarrow \sharp(\text { global supersymmetries })
\end{gathered}
$$

- Add other involutions $\left(P_{k+1}, \ldots, P_{n}\right)$ and weights $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ s.t. $\alpha_{1}+\ldots+\alpha_{n}=1$.
- $\hat{\Pi} \epsilon \equiv \frac{1}{2}\left(1+\alpha_{1} P_{1}+\ldots+\alpha_{n} P_{n}\right) \epsilon$
- $\hat{\Pi}^{2}=\hat{\Pi}$ iff the system has 16 susies.
- $\left\{\alpha_{i}\right\}$ not unique $\rightarrow\left\{\alpha_{i}(x)\right\}$

$$
\hat{\Pi}(x) \epsilon(x)=0
$$

At $x, \epsilon(x) \in \operatorname{ker}(\hat{\Pi}(x)) \rightarrow$ local supersymmetry

- While for global supersymmetry:

$$
\epsilon \in \bigcap_{x} \operatorname{ker}(\hat{\Pi}(x)) .
$$

$\#$ (global susies) $\leq \#$ (local susies)

Local VS global supersymmetries

- Branes, strings \rightarrow constraint on ϵ :

$$
\Pi \epsilon \equiv \frac{1}{2}(1+P) \epsilon=0
$$

- Combine k different excitations:
$\epsilon \in \operatorname{ker}\left(\Pi_{1}\right) \cap \ldots \cap \operatorname{ker}\left(\Pi_{k}\right)$
$\rightarrow \#$ (global supersymmetries)

Local supersymmetry enhancement

- $\hat{\Pi} \epsilon \equiv \frac{1}{2}\left(1+\alpha_{1} P_{1}+\ldots+\alpha_{n} P_{n}\right) \epsilon$
- $\hat{\Pi}^{2}=\hat{\Pi}$ iff the system has 16 susies.
- $\left\{\alpha_{i}\right\}$ not unique $\rightarrow\left\{\alpha_{i}(x)\right\}$

$$
\hat{\Pi}(x) \epsilon(x)=0
$$

At $x, \epsilon(x) \in \operatorname{ker}(\hat{\Pi}(x)) \rightarrow$ local supersymmetry

- While for global supersymmetry:

$$
\epsilon \in \bigcap_{x} \operatorname{ker}(\hat{\Pi}(x)) .
$$

$\#$ (global susies) $\leq \#$ (local susies)

Local supersymmetry enhancement

Local supersymmetry enhancement:
Given a set of global supersymmetries, there sometimes exists a whole moduli space of brane/string systems, parameterised by $\left\{\alpha_{i}(x)\right\}$, preserving those same global supersymmetries, but whose number of local supersymmetries is enhanced.

- identify the additional excitations («glues ») to make a bound state
- determine the charge-to-mass ratios $\left\{\alpha_{i}(x)\right\}$.

Local supersymmetry enhancement

Local supersymmetry enhancement:
Given a set of global supersymmetries, there sometimes exists a whole moduli space of brane/string systems, parameterised by $\left\{\alpha_{i}(x)\right\}$, preserving those same global supersymmetries, but whose number of local supersymmetries is enhanced.

- identify the additional excitations («glues ») to make a bound state
- determine the charge-to-mass ratios $\left\{\alpha_{i}(x)\right\}$.

Local supersymmetry enhancement

Local supersymmetry enhancement:

Given a set of global supersymmetries, there sometimes exists a whole moduli space of brane/string systems, parameterised by $\left\{\alpha_{i}(x)\right\}$, preserving those same global supersymmetries, but whose number of local supersymmetries is enhanced.

- identify the additional excitations (« glues») to make a bound state
- determine the charge-to-mass ratios $\left\{\alpha_{i}(x)\right\}$.

Local SUSY enhancement - example

- $\Pi_{\mathrm{FI}(y)}=\frac{1}{2}\left(1+P_{\mathrm{FI}(y)}\right), \quad P_{\mathrm{FI}(y)}=\Gamma^{0 y} \sigma_{3}$
- $\hat{\Pi}=\frac{1}{2}\left(1+\alpha_{1} P_{\mathrm{F} 1(y)}+\alpha_{2} P_{\mathrm{P}(y)}+\alpha_{3} P_{\mathrm{F}(1)}+\alpha_{4} P_{\mathrm{P}(1)}\right)$
- $\Pi_{\mathrm{P}(y)}=\frac{1}{2}\left(1+P_{\mathrm{P}(y)}\right), \quad P_{\mathrm{P}(y)}=\Gamma^{0 y}$

Local SUSY enhancement - example

Step 0

- $\Pi_{\mathrm{Fl}(\mathrm{y})}=\frac{1}{2}\left(1+P_{\mathrm{Fl}(\mathrm{y})}\right), \quad P_{\mathrm{Fl}(\mathrm{y})}=\Gamma^{0 y} \sigma_{3}$
- $\Pi_{\mathrm{P}(y)}=\frac{1}{2}\left(1+P_{\mathrm{P}(y)}\right), \quad P_{\mathrm{P}(y)}=\Gamma^{0 y}$
- $\hat{\Pi}=\frac{1}{2}\left(1+\alpha_{1} P_{\mathrm{F}(y)}+\alpha_{2} P_{\mathrm{P}(y)}+\alpha_{3} P_{\mathrm{F}(1)}+\alpha_{4} P_{\mathrm{P}(1)}\right)$
defining the global
supersymmetries

Local SUSY enhancement - example

Step 1

- $\Pi_{\mathrm{Fl}(\mathrm{y})}=\frac{1}{2}\left(1+P_{\mathrm{Fl}(\mathrm{y})}\right), \quad P_{\mathrm{Fl}(\mathrm{y})}=\Gamma^{0 y} \sigma_{3}$
- $\Pi_{\mathrm{P}(y)}=\frac{1}{2}\left(1+P_{\mathrm{P}(y)}\right), \quad P_{\mathrm{P}(y)}=\Gamma^{0 y}$
- $\hat{\Pi}=\frac{1}{2}\left(1+\alpha_{1} P_{\mathrm{Fl}(y)}+\alpha_{2} P_{\mathrm{P}(y)}+\alpha_{3} P_{\mathrm{Fl}(1)}+\alpha_{4} P_{\mathrm{P}(1)}\right)$ dipoles

Local SUSY enhancement - example

Step 2

- $\Pi_{\mathrm{FI}(y)}=\frac{1}{2}\left(1+P_{\mathrm{FI}(y)}\right), \quad P_{\mathrm{FI}(y)}=\Gamma^{0 y} \sigma_{3}$
- $\Pi_{\mathrm{P}(y)}=\frac{1}{2}\left(1+P_{\mathrm{P}())}\right), P_{\mathrm{P}(y)}=\Gamma^{0 y}$

Local SUSY enhancement - example

Microstates of the F1-P black hole

- Harmonic rule:
$d s_{s t r i n g}^{2}=H\left[-d u d v+K d v^{2}\right]+\sum_{i=1}^{4} d x_{i} d x_{i}+\sum_{a=1}^{4} d z_{a} d z_{a}$
\rightarrow black hole with horizon at $r=0$.

Microstates of the F1-P black hole

- Harmonic rule:
$d s_{s t r i n g}^{2}=H\left[-d u d v+K d v^{2}\right]+\sum_{i=1}^{4} d x_{i} d x_{i}+\sum_{a=1}^{4} d z_{a} d z_{a}$
\rightarrow black hole with horizon at $r=0$.

- Metric sourced by the string:

$$
d s_{\text {string }}^{2}=H\left[-d u d v+K d v^{2}+2 A_{i} d x_{i} d v\right]+\sum_{i=1}^{4} d x_{i} d x_{i}+\sum_{a=1}^{4} d z_{a} d z_{a}
$$

[Dabhorkar, Gauntlett, Harvey, Waldram '95]
\rightarrow smooth, horizonless solution.

Microstates of the F1-P black hole

The massive string states accounting for the F1-P blackhole entropy can be described in supergravity.

- Harmonic rule:
$d s_{\text {string }}^{2}=H\left[-d u d v+K d v^{2}\right]+\sum_{i=1}^{4} d x_{i} d x_{i}+\sum_{a=1}^{4} d z_{a} d z_{a}$
\rightarrow black hole with horizon at $r=0$.
- Metric sourced by the string:

$$
d s_{\text {string }}^{2}=H\left[-d u d v+K d v^{2}+2 A_{i} d x_{i} d v\right]+\sum_{i=1}^{4} d x_{i} d x_{i}+\sum_{a=1}^{4} d z_{a} d z_{a}
$$

[Dabhorkar, Gauntlett, Harvey, Waldram '95]
\rightarrow smooth, horizonless solution.

2-charge VS 3-charge black holes

- Such «classical» string profiles, through geometric quantization, account for the F1-P black-hole entropy:

$$
S=2 \pi \sqrt{N_{1} N_{P}}
$$

2-charge VS 3-charge black holes

- Such «classical » string profiles, through geometric quantization, account for the F1-P black-hole entropy:
[Lunin, Mathur '01], [Rychkov '05]

$$
S=2 \pi \sqrt{N_{1} N_{P}}
$$

- However: 2-charge black holes: singularity, horizon at $r=0$.
\rightarrow Is the stringy structure resolving the horizon or the singularity?

2-charge VS 3-charge black holes

- Such «classical » string profiles, through geometric quantization, account for the F1-P black-hole entropy:
[Lunin, Mathur '01], [Rychkov '05]

$$
S=2 \pi \sqrt{N_{1} N_{P}}
$$

- However: 2-charge black holes: singularity, horizon at $r=0$.
\rightarrow Is the stringy structure resolving the horizon or the singularity?
- 3-charge black holes: singularity and horizon separated.
\rightarrow in particular D1-D5-P or F1-NS5-P

1st approach: enhancing D1-D5 through KKM

- D1(y), D5(y1234) \longrightarrow KKM(1234 $\psi, y), ~ P(\psi)$ dipoles
- The D1-D5 brane system gains a dimension through the KKM

1st approach: enhancing D1-D5 through KKM

- D1 (y), D5(y1234) \longrightarrow KKM(1234 $\psi, y), \mathrm{P}(\psi)$ dipoles
- The D1-D5 brane system gains a dimension through the KKM
- The (angular) momentum $\mathrm{P}(\psi)$ stabilises the size of the supertube.

\rightarrow replace the deltafunction brane singularity by a source extended in the non-compact dimensions

1st approach: enhancing D1-D5 through KKM

- D1 (y), D5(y1234) \longrightarrow KKM(1234 $\psi, y), ~ P(\psi)$ dipoles
- The D1-D5 brane system gains a dimension through the KKM
- The (angular) momentum $\mathrm{P}(\psi)$ stabilises the size of the supertube.

- The bound state is globally 1/4-BPS, but locally 1/2-BPS

1st approach: enhancing D1-D5 through KKM

- D1 (y), D5(y1234) \longrightarrow KKM(1234 $\psi, y), \mathrm{P}(\psi)$ dipoles
- The D1-D5 brane system gains a dimension through the KKM
- The (angular) momentum $\mathrm{P}(\psi)$ stabilises the size of the supertube.

- The bound state is globally 1/4-BPS, but locally 1/2-BPS
- Then add consistently P and keep locally 1/2-BPS
\rightarrow «superstrata »
[Bena, de Boer, Shigemori, Warner '11]
[Bena, Giusto, Martinec, Russo,
Shigemori, Turton, Warner '16]

Superstrata and their limits

- In supergravity, superstrata are horizonless solutions with same charges as the D1-D5-P black hole

[Bena, Giusto, Martinec, Russo, Shigemori, Turton, Warner '16]

- Part of the

Fuzzball hypothesis:
 Individual black-hole microstates differ from themselves and from the BH solution at the horizon scale.

Superstrata and their limits

- In supergravity, superstrata are horizonless solutions with same charges as the D1-D5-P black hole [Bena, Giusto, Martinec, Russo, Shigemori, Turton, Warner '16]
- Part of the

Fuzzball hypothesis:

Individual black-hole microstates differ from themselves and from the BH solution at the horizon scale.

Drawbacks:

1. $S \sim \sqrt{N_{1} N_{5}} N_{P}^{1 / 4} \ll \sqrt{N_{1} N_{5} N_{P}}$
[Shigemori '19]
2. Have a non-vanishing angular momentum in \mathbb{R}^{4}
\Rightarrow could be atypical
\uparrow are not exactly spherically symmetric

See also [Lin, Maldacena, Rozenberg, Shan '22]

Outline

1. Local supersymmetry enhancement and black-hole microstates
2. The new M5-M2-P microstates with 16 local supersymmetries

2nd approach: internal dimensions

- For the NS5-F1-P black hole (IIA), we know where the entropy is coming from: Litlle strings / frackionaled (M2) branes

«Dijkgraaf-Verlinde-Verlinde -Maldacena microstates»

2nd approach: internal dimensions

- For the NS5-F1-P black hole (IIA), we know where the entropy is coming from: little strings / fractionated (M2) branes

- The momentum is carried by the fractionated M2's through their motion in the T^{4}
\rightarrow reproduce entropy.
«Dijkgraaf-Verlinde-Verlinde -Maldacena microstates»
[Dijkgraaf-Verlinde-Verlinde '96], [Maldacena,'96]

2nd approach: internal dimensions

- For the NS5-F1-P black hole (IIA), we know where the entropy is coming from: Little strings / fractionated (M2) branes

- The momentum is carried by the fractionated M2's through their motion in the T^{4}
\rightarrow reproduce entropy.

$$
S=2 \pi \sqrt{c N_{P} / 6}, \quad c=6 N_{1} N_{5}
$$

«Dijkgraaf-Verlinde-Verlinde -Maldacena microstates»

2nd approach: internal dimensions

- For the NS5-F1-P black hole (IIA), we know where the entropy is coming from: Little strings / fractionated (M2) branes

See e.g. [Martinec, Massai, Turton '19]

«Dijkgraaf-Verlinde-Verlinde -Maldacena microstates»
[Dijkgraaf-Verlinde-Verlinde '96], [Maldacena,'96]

- The momentum is carried by the fractionated M2's through their motion in the T^{4}
\rightarrow reproduce entropy.
- The brane system is point-like in the non-compact spatial dimensions
\rightarrow exact spherical symmetry.

Enhancing the DVVM microstates

[Bena, Hampton, Houppe, YL, Toulikas '22]

- We enhanced the local supersymmetries of the Dijkgraaf-Verlinde-VerlindeMaldacena (DVVM) microstates.

Enhancing the DVVM microstates

[Bena, Hampton, Houppe, YL, Toulikas '22]

- We enhanced the local supersymmetries of the Dijkgraaf-Verlinde-VerlindeMaldacena (DVVM) microstates.
- We found the supersymmetric projector
- preserving the supersymmetries of NS5 (y, T^{4}), F1 $(y), P(y)$
- corresponding to an object with 16 local supersymmetries:

$$
\begin{aligned}
\Pi_{\mathrm{NS} 5-\mathrm{F} 1-\mathrm{P}}=\frac{1}{2}[1 & +a^{2} P_{\mathrm{NS} 5(y 1234)}^{\mathrm{IIA}}+b^{2} P_{\mathrm{F} 1(y)}+c^{2} P_{\mathrm{P}(y)} \\
& \left.+a b\left(P_{\mathrm{D} 4(y 234)}-P_{\mathrm{D} 2(y 1)}\right)+b c\left(P_{\mathrm{P}(1)}-P_{\mathrm{F} 1(1)}\right)+c a\left(P_{\mathrm{D} 4(1234)}-P_{\mathrm{D} 0}\right)\right] .
\end{aligned}
$$

First look at the projector

$$
\Pi_{\mathrm{NS} 5-\mathrm{F} 1-\mathrm{P}}=\frac{1}{2}\left[1+a^{a^{2} P_{\mathrm{NS} 5(y 1234)}^{\mathrm{IIA}}+b^{2} P_{\mathrm{F} 1(y)}+c^{2} P_{\mathrm{P}(y)}}\right.
$$

$$
\left.+a b\left(P_{\mathrm{D} 4(y 234)}-P_{\mathrm{D} 2(y 1)}\right)+b c\left(P_{\mathrm{P}(1)}-P_{\mathrm{F} 1(1)}\right)+c a\left(P_{\mathrm{D} 4(1234)}-P_{\mathrm{D} 0}\right)\right]
$$

Excitations defining the global supersymmetries

First look at the projector

$$
\Pi_{\mathrm{NS} 5-\mathrm{F} 1-\mathrm{P}}=\frac{1}{2}\left[1+a^{2} P_{\mathrm{NS} 5(y 1234)}^{\mathrm{IIA}}+b^{2} P_{\mathrm{F} 1(y)}+c^{2} P_{\mathrm{P}(y)}\right.
$$

$$
+\underline{\left.a b\left(P_{\mathrm{D} 4(y 234)}-P_{\mathrm{D} 2(y 1)}\right)+b c\left(P_{\mathrm{P}(1)}-P_{\mathrm{F} 1(1)}\right)+c a\left(P_{\mathrm{D} 4(1234)}-P_{\mathrm{D} 0}\right)\right] .}
$$

Excitations corresponding to the glues

First look at the projector

$$
\begin{aligned}
\Pi_{\mathrm{NS} 5-\mathrm{F} 1-\mathrm{P}}=\frac{1}{2}[1 & +a^{2} P_{\mathrm{NS} 5(y 1234)}^{\mathrm{IIA}}+b^{2} P_{\mathrm{F} 1(y)}+c^{2} P_{\mathrm{P}(y)} \\
& \left.+a b\left(P_{\mathrm{D} 4(y 234)}-P_{\mathrm{D} 2(y 1)}\right)+b c\left(P_{\mathrm{P}(1)}-P_{\mathrm{F} 1(1)}\right)+c a\left(P_{\mathrm{D} 4(1234)}-P_{\mathrm{D} 0}\right)\right] .
\end{aligned}
$$

BPS condition:

$$
a^{2}+b^{2}+c^{2}=1
$$

$$
\begin{aligned}
P_{\mathrm{P}} & =\Gamma^{01} \\
P_{\mathrm{NS} 5}^{\mathrm{IIA}} & =\Gamma^{012345}
\end{aligned}
$$

$$
P_{\mathrm{KKM}(12345 ; 6)}^{\operatorname{IIA}}=\Gamma^{012345} \sigma_{3}=\Gamma^{6789}
$$

$$
P_{\mathrm{D} 0}=\Gamma^{0} i \sigma_{2}
$$

$$
P_{\mathrm{D} 2}=\Gamma^{012} \sigma_{1}
$$

$$
P_{\mathrm{D} 4}=\Gamma^{01234} i \sigma_{2}
$$

$$
P_{\mathrm{D} 6}=\Gamma^{0123456} \sigma_{1}
$$

$$
\begin{aligned}
P_{\mathrm{F} 1} & =\Gamma^{01} \sigma_{3} \\
P_{\mathrm{NS} 5}^{\mathrm{II}} & =\Gamma^{012345} \sigma_{3} \\
P_{\mathrm{KKM}(12345 ; 6)}^{\mathrm{IIB}} & =\Gamma^{012345}=\Gamma^{6789} \\
P_{\mathrm{D} 1} & =\Gamma^{01} \sigma_{1} \\
P_{\mathrm{D} 3} & =\Gamma^{0023} \sigma_{2} \\
P_{\mathrm{D} 5} & =\Gamma^{012345} \sigma_{1}
\end{aligned}
$$

Glueing NS5 and F1

$$
\begin{aligned}
\Pi_{\mathrm{NS} 5-\mathrm{F} 1-\mathrm{P}}=\frac{1}{2}[1 & +a^{2} P_{\mathrm{NS} 5(y 1234)}^{\mathrm{IIA}}+b^{2} P_{\mathrm{F} 1(y)}+c^{2} P_{\mathrm{P}(y)} \\
& \left.+a b\left(P_{\mathrm{D} 4(y 234)}-P_{\mathrm{D} 2(y 1)}\right)+b c\left(P_{\mathrm{P}(1)}-P_{\mathrm{F} 1(1)}\right)+c a\left(P_{\mathrm{D} 4(1234)}-P_{\mathrm{D} 0}\right)\right] .
\end{aligned}
$$

- Put $c=0$
- NS5(y, $\left.T^{4}\right)$, F1 $(y) \longrightarrow$ local D4(y234), D2(y1)

Glueing NS5 and F1

$\Pi_{\mathrm{NS} 5-\mathrm{F} 1-\mathrm{P}}=\frac{1}{2}\left[1+a^{2} P_{\mathrm{NS}(y 1234)}^{\mathrm{IIA}}+b^{2} P_{\mathrm{F} 1(y)}+c^{2} P_{\mathrm{P}(y)}\right.$

$$
\left.+a b\left(P_{\mathrm{D} 4(y 234)}-P_{\mathrm{D} 2(y 1)}\right)+b c\left(P_{\mathrm{P}(1)}-P_{\mathrm{F} 1(1)}\right)+c a\left(P_{\mathrm{D} 4(1234)}-P_{\mathrm{D} 0}\right)\right] .
$$

- Put $c=0$
- NS5(y, $\left.T^{4}\right)$, F1 $(y) \longrightarrow$ local D4(y234), D2(y1)

Glueing NS5 and F1

$$
\begin{aligned}
\Pi_{\mathrm{NS} 5-\mathrm{F} 1-\mathrm{P}}=\frac{1}{2}[1 & +a^{2} P_{\mathrm{NS} 5(y 1234)}^{\mathrm{IIA}}+b^{2} P_{\mathrm{F} 1(y)}+c^{2} P_{\mathrm{P}(y)} \\
& \left.+a b\left(P_{\mathrm{D} 4(y 234)}-P_{\mathrm{D} 2(y 1)}\right)+b c\left(P_{\mathrm{P}(1)}-P_{\mathrm{F} 1(1)}\right)+c a\left(P_{\mathrm{D} 4(1234)}-P_{\mathrm{D} 0}\right)\right] .
\end{aligned}
$$

- Put $c=0$
- NS5(y, $\left.T^{4}\right)$, F1 $(y) \longrightarrow$ local D4(y234), D2(y1)
- Rough angles between M5's and M2's
 become smooth:
\rightarrow new brane system looks like a furrow along y.

Glueing NS5 and F1

$$
\begin{aligned}
\Pi_{\mathrm{NS} 5-\mathrm{F} 1-\mathrm{P}}=\frac{1}{2}[1 & +a^{2} P_{\mathrm{NS} 5(y 1234)}^{\mathrm{IIA}}+b^{2} P_{\mathrm{F} 1(y)}+c^{2} P_{\mathrm{P}(y)} \\
& \left.+a b\left(P_{\mathrm{D} 4(y 234)}-P_{\mathrm{D} 2(y 1)}\right)+b c\left(P_{\mathrm{P}(1)}-P_{\mathrm{F} 1(1)}\right)+c a\left(P_{\mathrm{D} 4(1234)}-P_{\mathrm{D} 0}\right)\right] .
\end{aligned}
$$

- Put $c=0$
- NS5(y, $\left.T^{4}\right)$, F1 $(y) \longrightarrow$ local D4(y234), D2(y1)
- Rough angles between M5's and M2's
 become smooth:
\rightarrow new brane system looks like a furrow along y.
\uparrow This M5-M2 furrow is dual to a
D4-F1 Callan-Maldacena spike

Glueing NS5 and F1

$$
\begin{aligned}
\Pi_{\mathrm{NS} 5-\mathrm{F} 1-\mathrm{P}}=\frac{1}{2}[1 & +a^{2} P_{\mathrm{NS} 5(y 1234)}^{\mathrm{IIA}}+b^{2} P_{\mathrm{F} 1(y)}+c^{2} P_{\mathrm{P}(y)} \\
& \left.+a b\left(P_{\mathrm{D} 4(y 234)}-P_{\mathrm{D} 2(y 1)}\right)+b c\left(P_{\mathrm{P}(1)}-P_{\mathrm{F} 1(1)}\right)+c a\left(P_{\mathrm{D} 4(1234)}-P_{\mathrm{D} 0}\right)\right] .
\end{aligned}
$$

- The furrow interpolates between M5 and M2:

$$
a=\cos \beta, \quad b=\sin \beta
$$

\Rightarrow The orientation of a local piece of the furrow determines the ratio
 between M5 and M2 charges.

Transition of a M5-M2 black-hole microstate

- Local transition \Rightarrow a M5M2 black-hole microstate will transition into a «labyrinth/maze»
\rightarrow «super-maze »

Glueing NS5, F1 and P

$$
\begin{aligned}
\Pi_{\mathrm{NS} 5-\mathrm{F} 1-\mathrm{P}}=\frac{1}{2}[1 & +a^{2} P_{\mathrm{NS} 5(y 1234)}^{\mathrm{IIA}}+b^{2} P_{\mathrm{F} 1(y)}+c^{2} P_{\mathrm{P}(y)} \\
& \left.+a b\left(P_{\mathrm{D} 4(y 234)}-P_{\mathrm{D} 2(y 1)}\right)+b c\left(P_{\mathrm{P}(1)}-P_{\mathrm{F} 1(1)}\right)+c a\left(P_{\mathrm{D} 4(1234)}-P_{\mathrm{D} 0}\right)\right] .
\end{aligned}
$$

- The M5-M2 furrow carries momentum through ripples modulated orthogonally to its surface

$$
\begin{gathered}
a=\cos \alpha \cos \beta \\
b=\cos \alpha \sin \beta \\
c=\sin \alpha
\end{gathered}
$$

Glueing NS5, F1 and P

- The M5-M2 furrow carries momentum through ripples modulated orthogonally to its surface

$$
\begin{gathered}
a=\cos \alpha \cos \beta \\
b=\cos \alpha \sin \beta \\
c=\sin \alpha
\end{gathered}
$$

- β controls the bending angle of the furrow; α controls the angle of ripples orthogonal to the furrow.

Consequence on a M5-M2-P microstate

- The ripples of the furrow correspond to shape modes of the M5-M2 labyrinth
- The shape modes are the way 16 -susy microstates carry momentum.

Consequence on a M5-M2-P microstate

- The ripples of the furrow correspond to shape modes of the M5-M2 maze

Consequence on a M5-M2-P microstate

- The ripples of the furrow correspond to shape modes of the M5-M2 maze
- The shape modes are the way 16 -local-susy microstates carry momentum.
\Rightarrow The microstates are ensured to have exact spherical symmetry.

Horizonless geometries in supergravity?

- Can they described in supergravity?

Horizonless geometries in supergravity?

- Can they described in supergravity?
- In Type IIA, one can only separate the NS5 branes in the non-compact spatial dimensions. There exists a region close to the branes where the dilaton gets a large value, so supergravity breaks down.
e.g. [Martinec, Massai, Turton '22]

Horizonless geometries in supergravity?

- Can they described in supergravity?
- In Type IIA, one can only separate the NS5 branes in the non-compact spatial dimensions. There exists a region close to the branes where the dilaton gets a large value, so supergravity breaks down.
e.g. [Martinec, Massai, Turton '22]
- But in the M2-M5-P frame, the basic ingredient of the super-maze is a M5 brane with M2 flux on it. The supergravity description of it is valid close to the branes as well.

Conclusion

- Global charges and supersymmetries control the near-horizon geometry.
- Local supersymmetries are a means to get information on the microstates.

Conclusion

- Global charges and supersymmetries control the near-horizon geometry.
- Local supersymmetries are a means to get information on the microstates.
- 1/8-BPS systems (3-charge BHs) have a large moduli space of solutions that have more supersymmetries locally
\uparrow This is crucial in order to understand whether microstates in string theory resolve the singularity or the horizon.

Conclusion

- Global charges and supersymmetries control the near-horizon geometry.
- Local supersymmetries are a means to get information on the microstates.
- $1 / 8$-BPS systems (3 -charge BH) have a large moduli space of solutions that have more supersymmetries locally
\uparrow This is crucial in order to understand whether microstates in string theory resolve the singularity or the horizon.
- The microstate geometries programme used to replace D1-D5P horizons with brane systems that extend in \mathbb{R}^{4}
\uparrow But this approach seems to have limits: entropy, typicality...

Conclusion

- New approach: microstates can carry momentum by having motion in the internal dimensions \Rightarrow exactly spherical symmetry

Conclusion

- New approach: microstates can carry momentum by having motion in the internal dimensions \Rightarrow exactly spherical symmetry
- The DVVM microstates account for the black-hole entropy...
... and we have identified what they become when the branes start interacting.

Conclusion

- New approach: microstates can carry momentum by having motion in the internal dimensions \Rightarrow exactly spherical symmetry
- The DVVM microstates account for the black-hole entropy...
... and we have identified what they become when the branes start interacting.

- These «super-mazes »have 16 local susys, just like the superstrata, but without having their drawbacks.

Outlook

- 16 local susys is a smoking gun for horizonless microstate solutions

Outlook

- 16 local susys is a smoking gun for horizonless microstate solutions
\Rightarrow seems to support Fuzzball hypothesis for M2-M5-P blackhole microstates
\uparrow Construct the fully backreacted supergravity solutions
\uparrow Apply geometric quantization to them.

Outlook

- 16 local susys is a smoking gun for horizonless microstate solutions
\Rightarrow seems to support Fuzzball hypothesis for M2-M5-P black-
 hole microstates
\uparrow Construct the fully backreacted supergravity solutions
\uparrow Apply geometric quantization to them.
- End goal:
«Where » is the information about the black-hole microstate?

Back-up slide

	M2	
		M5

