Multipartite information in conformal field theories

Alejandro Vilar López
Université Libre de Bruxelles (ULB)
[2209.14311 - César A. Agón, P. Bueno, Óscar Lasso, AVL]

Iberian Strings 2023 - Murcia

Introduction

OFT from vacuum correlation functions

$$
\begin{gathered}
\langle 0| \phi_{i}(x)|0\rangle \\
\langle 0| \phi_{i}(x) \phi_{j}(y)|0\rangle
\end{gathered}
$$

[Wightman program of axiomatic QFT]

Introduction

OFT from vacuum correlation functions

$$
\begin{gathered}
\langle 0| \phi_{i}(x)|0\rangle \\
\langle 0| \phi_{i}(x) \phi_{j}(y)|0\rangle
\end{gathered}
$$

[Wightman program of axiomatic QFT]

QFT from information theoretic measures?

[Algebraic OFT language]

Introduction

OFT from vacuum correlation functions

$$
\begin{gathered}
\langle 0| \phi_{i}(x)|0\rangle \\
\langle 0| \phi_{i}(x) \phi_{j}(y)|0\rangle
\end{gathered}
$$

[Wightman program of axiomatic QFT]

QFT from information theoretic measures?

[Algebraic OFT language]

$$
\text { We will focus on CFTs } \longrightarrow\left(\Delta_{i}, s_{i}, C_{i j k}\right)
$$

Introduction

Basic quantity associated to a region / subalgebra: entanglement entropy (EE)

$$
S(A) \equiv S\left(\rho_{\mathcal{A}}\right)=c_{0}\left(\frac{L}{\epsilon_{U V}}\right)^{d-2}+\ldots
$$

Introduction

Basic quantity associated to a region / subalgebra: entanglement entropy (EE)

$$
S(A) \equiv S\left(\rho_{\mathcal{A}}\right)=c_{0}\left(\frac{L}{\epsilon_{U V}}\right)^{d-2}+\ldots
$$

Mutual information (MI) is better behaved

$$
I_{2}(A, B)=S(A)+S(B)-S(A \cup B) \geq 0
$$

Introduction

Basic quantity associated to a region / subalgebra: entanglement entropy (EE)

$$
S(A) \equiv S\left(\rho_{\mathcal{A}}\right)=c_{0}\left(\frac{L}{\epsilon_{U V}}\right)^{d-2}+\ldots
$$

Mutual information (MI) is better behaved

$$
I_{2}(A, B)=S(A)+S(B)-S(A \cup B) \geq 0
$$

\rightarrow Large separation expansion between two spheres in any CFT [1511.07462 - Agón, Faulkner] [1304.7985-Cardy]

$$
I \sim \frac{\sqrt{\pi}}{4} \frac{\Gamma(2 \Delta+1)}{\Gamma(2 \Delta+3 / 2)} \frac{\left(R_{1} R_{2}\right)^{2 \Delta}}{r^{4 \Delta}}+\ldots
$$

Lowest conformal dimension (scalar)

Introduction

Generalize by including more subregions (N-partite information)

$$
I_{N}\left(A_{1}, \ldots, A_{N}\right) \equiv-\sum_{\sigma}(-1)^{|\sigma|} S(\sigma), \quad \sigma \subset\left\{A_{1}, \ldots, A_{N}\right\}
$$

$\begin{array}{ll}\Rightarrow & I_{3}\left(A_{1}, A_{2}, A_{3}\right)=S\left(A_{1}\right)+S\left(A_{2}\right)+S\left(A_{3}\right)-S\left(A_{1} A_{2}\right)-S\left(A_{1} A_{3}\right)-S\left(A_{2} A_{3}\right)+S\left(A_{1} A_{2} A_{3}\right) \\ \Rightarrow & I_{N}\left(\cdot, A_{N-1}, A_{N}\right)=I_{N-1}\left(\cdot, A_{N-1}\right)+I_{N-1}\left(\cdot, A_{N}\right)-I_{N-1}\left(\cdot, A_{N-1} A_{N}\right) \\ \Rightarrow & I_{N}\left(A_{1}, \ldots, A_{N}\right) \lessgtr 0\end{array}$
These quantities have not been studied much (only in holographic theories a bit)

Outline

1 N-partite information as a correlator of twist fields \& long distance expansion
(2) Spherical regions: exact results up to $N=4$
3) Free scalar in $\mathrm{d}=3$: checks against lattice computations
(4) Comments on connections to holographic results

The replica trick and twist operators

$$
S(A)=\lim _{n \rightarrow 1} \frac{1}{1-n} \log \left[\frac{Z\left(\mathcal{C}_{A}^{(n)}\right)}{Z^{n}}\right]=\lim _{n \rightarrow 1} \frac{1}{1-n} \log \left[\left\langle\Sigma_{A}^{(n)}\right\rangle_{\mathrm{CFT}^{\otimes n}}\right]
$$

[0405152 - Calabrese, Cardy]
[1011.5482 - Calabrese, Cardy, Tonni]

The replica trick and twist operators

$$
S(A)=\lim _{n \rightarrow 1} \frac{1}{1-n} \log \left[\frac{Z\left(\mathcal{C}_{A}^{(n)}\right)}{Z^{n}}\right]=\lim _{n \rightarrow 1} \frac{1}{1-n} \log \left[\left\langle\Sigma_{A}^{(n)}\right\rangle_{\mathrm{CFT}^{\otimes n}}\right]
$$

[0405152 - Calabrese, Cardy]
[1011.5482 - Calabrese, Cardy, Tonni]

$$
\begin{aligned}
& \Rightarrow \Sigma_{A}^{(n)}=\left\langle\Sigma_{A}^{(n)}\right\rangle\left(1+\tilde{\Sigma}_{A}^{(n)}\right) \\
& \Longrightarrow I_{N}\left(\left\{A_{i}\right\}\right)=-\sum_{\alpha=1}^{N}(-1)^{\alpha} \sum_{i_{1}<\cdots<i_{\alpha}} S\left(A_{i_{1}} \ldots A_{i_{\alpha}}\right)
\end{aligned}
$$

The replica trick and twist operators

$$
S(A)=\lim _{n \rightarrow 1} \frac{1}{1-n} \log \left[\frac{Z\left(\mathcal{C}_{A}^{(n)}\right)}{Z^{n}}\right]=\lim _{n \rightarrow 1} \frac{1}{1-n} \log \left[\left\langle\Sigma_{A}^{(n)}\right\rangle_{\mathrm{CFT}^{\otimes n}}\right]
$$

[0405152 - Calabrese, Cardy]

[1011.5482 - Calabrese, Cardy, Tonni]

$$
\Longrightarrow \quad \Sigma_{A}^{(n)}=\left\langle\Sigma_{A}^{(n)}\right\rangle\left(1+\tilde{\Sigma}_{A}^{(n)}\right)
$$

$$
\Longrightarrow I_{N}\left(\left\{A_{i}\right\}\right)=-\sum_{\alpha=1}^{N}(-1)^{\alpha} \sum_{i_{1}<\cdots<i_{\alpha}} S\left(A_{i_{1}} \ldots A_{i_{\alpha}}\right) \longrightarrow \lim _{n \rightarrow 1} \frac{(-1)^{N+1}}{1-n}\left\langle\tilde{\Sigma}_{A_{1}}^{(n)} \tilde{\Sigma}_{A_{2}}^{(n)} \ldots \tilde{\Sigma}_{A_{N}}^{(n)}\right\rangle
$$

The long distance expansion

OPE-like expansion of the twist operators for each region

$$
\begin{array}{cc}
\mathrm{CFT}^{\otimes n} \\
\left\langle\Sigma_{A}^{(n)}\right\rangle\left(1+\tilde{\Sigma}_{A}^{(n)}\right)=\bigotimes_{i=0}^{n-1}\left(\sum_{a \in A}\left|e_{a}^{i+1}\right\rangle\left\langle e_{a}^{i}\right|\right) \otimes \mathbf{1}_{\bar{A}} \longrightarrow \tilde{\Sigma}_{A}^{(n)}=\sum_{\left\{k_{j} \neq \mathbf{1}\right\}} C_{\left\{k_{j}\right\}}^{A} \prod_{j=0}^{n-1} \Phi_{k_{j}}^{(j)}\left(x_{A}\right)
\end{array}
$$

The long distance expansion

OPE-like expansion of the twist operators for each region
[1006.0047 - Headrick]

$$
\begin{array}{cc}
\mathrm{CFT}^{\otimes n} \\
\left\langle\Sigma_{A}^{(n)}\right\rangle\left(1+\tilde{\Sigma}_{A}^{(n)}\right)=\bigotimes_{i=0}^{n-1}\left(\sum_{a \in A}\left|e_{a}^{i+1}\right\rangle\left\langle e_{a}^{i}\right|\right) \otimes \mathbf{1}_{\bar{A}} \longrightarrow \tilde{\Sigma}_{A}^{(n)}=\sum_{\left\{k_{j} \neq 1\right\}} C_{\left\{k_{j}\right\}}^{A} \prod_{j=0}^{[1011.5482-\text { Calabrese, Cardy, Tonni] }} \Phi_{k_{j}}^{(j)}\left(x_{A}\right)
\end{array}
$$

$$
\Longrightarrow I_{N}\left(\left\{A_{i}\right\}\right)=\lim _{n \rightarrow 1} \frac{(-1)^{N+1}}{1-n}\left\langle\tilde{\Sigma}_{A_{1}}^{(n)} \tilde{\Sigma}_{A_{2}}^{(n)} \ldots \tilde{\Sigma}_{A_{N}}^{(n)}\right\rangle
$$

\Rightarrow At large separation between regions, keep only the lowest scaling dimension operator

$$
\tilde{\Sigma}_{A}^{(n)}=\sum_{i} C_{i}^{A} \mathcal{O}^{i}\left(x_{A}\right)+\cdots+\sum_{i<j} C_{i j}^{A} \mathcal{O}^{i}\left(x_{A}\right) \mathcal{O}^{j}\left(x_{A}\right)+\ldots
$$

The long distance expansion

OPE-like expansion of the twist operators for each region
[1006.0047 - Headrick]

$$
\begin{array}{cc}
\mathrm{CFT}^{\otimes n} \\
\left\langle\Sigma_{A}^{(n)}\right\rangle\left(1+\tilde{\Sigma}_{A}^{(n)}\right)=\bigotimes_{i=0}^{n-1}\left(\sum_{a \in A}\left|e_{a}^{i+1}\right\rangle\left\langle e_{a}^{i}\right|\right) \otimes \mathbf{1}_{\bar{A}} \longrightarrow \tilde{\Sigma}_{A}^{(n)}=\sum_{\left\{k_{j} \neq \mathbf{1}\right\}} C_{\left\{k_{j}\right\}}^{A} \prod_{j=0}^{[1011.5482-\text { Calabrese, Cardy, Tonni] }} \Phi_{k_{j}}^{n-1}\left(x_{A}\right)
\end{array}
$$

$$
\Longrightarrow I_{N}\left(\left\{A_{i}\right\}\right)=\lim _{n \rightarrow 1} \frac{(-1)^{N+1}}{1-n}\left\langle\tilde{\Sigma}_{A_{1}}^{(n)} \tilde{\Sigma}_{A_{2}}^{(n)} \ldots \tilde{\Sigma}_{A_{N}}^{(n)}\right\rangle
$$

\Rightarrow At large separation between regions, keep only the lowest scaling dimension operator

$$
\begin{aligned}
\tilde{\Sigma}_{A}^{(n)}= & \sum_{i} C_{i}^{A} \mathcal{O}^{i}\left(x_{A}\right)+\cdots+\sum_{i<j} C_{i j}^{A} \mathcal{O}^{i}\left(x_{A}\right) \mathcal{O}^{j}\left(x_{A}\right)+\ldots \\
& \sim(n-1)
\end{aligned}
$$

The long distance expansion

This already gives the long distance behaviour of the N-partite information

$$
I_{N}\left(\left\{A_{i}\right\}\right) \sim \sum C_{i_{1} j_{1}}^{A_{1}} \ldots C_{i_{N} j_{N}}^{A_{N}}\left\langle\mathcal{O}_{A_{1}}^{i_{1}} \mathcal{O}_{A_{1}}^{j_{1}} \ldots \mathcal{O}_{A_{N}}^{i_{N}} \mathcal{O}_{A_{N}}^{j_{N}}\right\rangle \sim\left(\frac{R}{r}\right)^{2 N \Delta}
$$

$$
\left[\left\langle\mathcal{O}^{i}(x) \mathcal{O}^{j}(y)\right\rangle=\frac{\delta^{i j}}{|x-y|^{2 \Delta}}\right]
$$

The long distance expansion

This already gives the long distance behaviour of the N -partite information

$$
I_{N}\left(\left\{A_{i}\right\}\right) \sim \sum C_{i_{1} j_{1}}^{A_{1}} \ldots C_{i_{N} j_{N}}^{A_{N}}\left\langle\mathcal{O}_{A_{1}}^{i_{1}} \mathcal{O}_{A_{1}}^{j_{1}} \ldots \mathcal{O}_{A_{N}}^{i_{N}} \mathcal{O}_{A_{N}}^{j_{N}}\right\rangle \sim\left(\frac{R}{r}\right)^{2 N \Delta}
$$

Coefficients can be computed from correlators:

$$
\left[\left\langle\mathcal{O}^{i}(x) \mathcal{O}^{j}(y)\right\rangle=\frac{\delta^{i j}}{|x-y|^{2 \Delta}}\right]
$$

$$
\Longrightarrow C_{i j}^{A}=\lim _{x \rightarrow \infty}\left|x-x_{A}\right|^{4 \Delta}\left\langle\tilde{\Sigma}_{A}^{(n)} \mathcal{O}^{i}(x) \mathcal{O}^{j}(x)\right\rangle \equiv R_{A}^{2 \Delta} C_{i j}
$$

\rightarrow
For spheres, there is a trick relating the correlator to that of two modular-evolved operators

$$
C_{i j} \underset{n \rightarrow 1}{\sim} \frac{1}{\sin ^{2 \Delta}\left(\frac{\pi(i-j)}{n}\right)}
$$

Spheres at long distances

Organize the correlator in terms of the number of sheets with non-trivial insertions:

$$
I_{N}\left(\left\{A_{i}\right\}\right) \sim R^{2 N \Delta} \sum C_{i_{1} j_{1}} \ldots C_{i_{N} j_{N}}\left\langle\mathcal{O}_{A_{1}}^{i_{1}} \mathcal{O}_{A_{1}}^{j_{1}} \ldots \mathcal{O}_{A_{N}}^{i_{N}} \mathcal{O}_{A_{N}}^{j_{N}}\right\rangle
$$

$\Rightarrow I_{2}$

$$
{ }_{i} \longrightarrow I_{2}=c_{2: 2}^{(2)} \frac{R_{1}^{2 \Delta} R_{2}^{2 \Delta}}{r^{4 \Delta}} \quad c_{2: 2}^{(2)}=\lim _{n \rightarrow 1} \frac{1}{n-1} \sum_{i<j} C_{i j}^{2}=\frac{\sqrt{\pi}}{4} \frac{\Gamma(2 \Delta+1)}{\Gamma(2 \Delta+3 / 2)}
$$

Spheres at long distances

Organize the correlator in terms of the number of sheets with non-trivial insertions:

$$
I_{N}\left(\left\{A_{i}\right\}\right) \sim R^{2 N \Delta} \sum C_{i_{1} j_{1}} \ldots C_{i_{N} j_{N}}\left\langle\mathcal{O}_{A_{1}}^{i_{1}} \mathcal{O}_{A_{1}}^{j_{1}} \ldots \mathcal{O}_{A_{N}}^{i_{N}} \mathcal{O}_{A_{N}}^{j_{N}}\right\rangle
$$

$\Rightarrow I_{2}$

$$
{ }_{i} \longrightarrow I_{2}=c_{2: 2}^{(2)} \frac{R_{1}^{2 \Delta} R_{2}^{2 \Delta}}{r^{4 \Delta}} \quad c_{2: 2}^{(2)}=\lim _{n \rightarrow 1} \frac{1}{n-1} \sum_{i<j} C_{i j}^{2}=\frac{\sqrt{\pi}}{4} \frac{\Gamma(2 \Delta+1)}{\Gamma(2 \Delta+3 / 2)}
$$

$\Rightarrow I_{3}$

$$
i \not \varlimsup_{j} c_{3: 2}^{(3)} \sim \sum_{i<j} C_{i j}^{3}
$$

$$
c_{3: 3}^{(1,1,1)} \sim \sum_{i<j<k} C_{i j} C_{j k} C_{k i}
$$

université

Spheres at long distances

$$
\frac{I_{4}}{R^{8 \Delta}}=\left[\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}\right\rangle-\frac{3}{r^{4 \Delta}}\right]^{2} \frac{2^{8 \Delta} \Gamma(4 \Delta+1)^{2}}{2 \Gamma(8 \Delta+2)}+\cdots+\left[\ldots c_{4: 4}^{(1,1,1,1)}\right.
$$

Spheres at long distances

$\Rightarrow I_{4}$

$$
\frac{I_{4}}{R^{8 \Delta}}=\left[\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}\right\rangle-\frac{3}{r^{4 \Delta}}\right]^{2} \frac{2^{8 \Delta} \Gamma(4 \Delta+1)^{2}}{2 \Gamma(8 \Delta+2)}+\cdots+[\ldots] c_{4 ; 4}^{(1,1,1,1)}
$$

Computed analytically for conformal dimensions $1 / 2$ and 1 , otherwise numerically

$$
c_{4: 4}^{(1,1,1,1)} \sim \int_{-\infty}^{\infty} \mathrm{d} p \mathrm{~d} q \mathrm{~d} r B_{p}(\Delta) B_{q}(\Delta) B_{r}(\Delta) \frac{B_{p+q+r}(\Delta)}{\left(e^{p+r}-1\right)\left(e^{p+q}-1\right)}
$$

Recap

\rightarrow By analyzing a long distance expansion of twist operators, we showed that for any CFT and in any dimension the long distance behaviour of the N -partite information is

$$
I_{N}\left(\left\{A_{i}\right\}\right) \underset{r \gg R}{\sim}\left(\frac{R}{r}\right)^{2 N \Delta} \quad \begin{aligned}
& \text { ! Lowest dimensional operator assumed to be a scalar } \\
& \text { ! Regions do not have to be spherical } \\
& \\
& \text { ! There might be cancellations in the prefactor }
\end{aligned}
$$

Recap

\rightarrow By analyzing a long distance expansion of twist operators, we showed that for any CFT and in any dimension the long distance behaviour of the N -partite information is

$$
I_{N}\left(\left\{A_{i}\right\}\right) \underset{r \gg R}{\sim}\left(\frac{R}{r}\right)^{2 N \Delta} \quad \begin{aligned}
& \text { ! Lowest dimensional operator assumed to be a scalar } \\
& \\
& \\
& \text { ! Regions do not have to be spherical }
\end{aligned}
$$

\rightarrow If the regions considered are spheres, we can be more explicit about the prefactor. The leading piece of the N -partite information encodes the N -point function of the operator.

$$
I_{2} \longrightarrow \Delta \quad I_{3} \longrightarrow C_{O O O} \quad I_{4} \longrightarrow\langle\mathcal{O O O O}\rangle
$$

Going to higher N is technically involved, but there is a systematic procedure.

The free scalar CFT

When considering a free scalar theory:
\rightarrow Results should be generically applicable if a CFT has a free scalar sector which provides the lowest-dimensional operator
\rightarrow Correlators factorize, and are non-zero only if they involve an even number of fields
$\Rightarrow \Delta_{\text {free scalar }}=\frac{d-2}{2}$

We will compare our results with lattice computations in $d=3$

The free scalar CFT

For a free scalar theory in the lattice, EE can be obtained from two-point correlators

$$
\begin{gathered}
S(A)=\operatorname{Tr}\left[\left(C_{A}+\frac{1}{2}\right) \log \left(C_{A}+\frac{1}{2}\right)-\left(C_{A}-\frac{1}{2}\right) \log \left(C_{A}-\frac{1}{2}\right)\right] \begin{array}{c}
{[0212631 \text { - Peschel] }} \\
\text { [0905.2562 - Casini, Huerta] }
\end{array} \\
\Rightarrow C_{A}=\sqrt{X_{A} P_{A}}, \quad X_{i j}=\operatorname{Tr}\left(\rho \phi_{i} \phi_{j}\right), \quad P_{i j}=\operatorname{Tr}\left(\rho \pi_{i} \pi_{j}\right) \\
\Rightarrow X_{(0,0),(i, j)}=\frac{1}{8 \pi^{2}} \int_{-\pi}^{\pi} \mathrm{d} x \int_{-\pi}^{\pi} \mathrm{d} y \frac{\cos (j y) \cos (i x)}{\sqrt{2(1-\cos (x))+2(1-\cos (y))}} \\
P_{(0,0),(i, j)}=\frac{1}{8 \pi^{2}} \int_{-\pi}^{\pi} \mathrm{d} x \int_{-\pi}^{\pi} \mathrm{d} y \cos (j y) \cos (i x) \sqrt{2(1-\cos (x))+2(1-\cos (y))}
\end{gathered}
$$

The free scalar CFT

For a free scalar theory in the lattice, EE can be obtained from two-point correlators

$$
\begin{aligned}
& S(A)=\operatorname{Tr}\left[\left(C_{A}+\frac{1}{2}\right) \log \left(C_{A}+\frac{1}{2}\right)-\left(C_{A}-\frac{1}{2}\right) \log \left(C_{A}-\frac{1}{2}\right)\right] \begin{array}{l}
{[0212631 \text { - Peschel] }} \\
{[0905.2562-\text { Casini, Huerta] }}
\end{array} \\
& \Longrightarrow C_{A}=\sqrt{X_{A} P_{A}}, \quad X_{i j}=\operatorname{Tr}\left(\rho \phi_{i} \phi_{j}\right), \quad P_{i j}=\operatorname{Tr}\left(\rho \pi_{i} \pi_{j}\right) \\
& \\
& X_{(0,0),(i, j)}=\frac{1}{8 \pi^{2}} \int_{-\pi}^{\pi} \mathrm{d} x \int_{-\pi}^{\pi} \mathrm{d} y \frac{\cos (j y) \cos (i x)}{\sqrt{2(1-\cos (x))+2(1-\cos (y))},(i, j)}=\frac{1}{8 \pi^{2}} \int_{-\pi}^{\pi} \mathrm{d} x \int_{-\pi}^{\pi} \mathrm{d} y \cos (j y) \cos (i x) \sqrt{2(1-\cos (x))+2(1-\cos (y))}
\end{aligned}
$$

The free scalar CFT

For a free scalar theory in the lattice, EE can be obtained from two-point correlators

$$
\begin{aligned}
& S(A)=\operatorname{Tr}\left[\left(C_{A}+\frac{1}{2}\right) \log \left(C_{A}+\frac{1}{2}\right)-\left(C_{A}-\frac{1}{2}\right) \log \left(C_{A}-\frac{1}{2}\right)\right] \begin{array}{c}
{[0212631 \text { - Peschel] }]} \\
{[0905.2562-\text { Casini, Huerta] }} \\
\Rightarrow \\
C \\
C_{A}=\sqrt{X_{A} P_{A}}, \quad X_{i j}=\operatorname{Tr}\left(\rho \phi_{i} \phi_{j}\right), \quad P_{i j}=\operatorname{Tr}\left(\rho \pi_{i} \pi_{j}\right) \\
\\
X_{(0,0),(i, j)}=\frac{1}{8 \pi^{2}} \int_{-\pi}^{\pi} \mathrm{d} x \int_{-\pi}^{\pi} \mathrm{d} y \frac{\cos (j y) \cos (i x)}{\sqrt{2(1-\cos (x))+2(1-\cos (y))}} \\
\\
P_{(0,0),(i, j)}=\frac{1}{8 \pi^{2}} \int_{-\pi}^{\pi} \mathrm{d} x \int_{-\pi}^{\pi} \mathrm{d} y \cos (j y) \cos (i x) \sqrt{2(1-\cos (x))+2(1-\cos (y))} \\
\text { By analizing more general subregions we verified the long distance } \\
\text { expansion up to } \mathrm{N}=6
\end{array}
\end{aligned}
$$

The free scalar CFT

There is very good matching between our analytical and numerical results

$$
\begin{array}{lll}
\left.\Rightarrow I_{2}\right|_{d=3}=\frac{1}{48}\left(\frac{R}{r}\right)^{2} \approx 0.08333\left(\frac{R}{r}\right)^{2} & \left.I_{2}\right|_{d=3} ^{\mathrm{att}}=0.0832\left(\frac{R}{r}\right)^{2} \\
\left.\Rightarrow I_{3}\right|_{d=3}=\frac{1}{12 \sqrt{3} \pi}\left(\frac{R}{r}\right)^{3} \approx 0.01531\left(\frac{R}{r}\right)^{3} & \left.I_{3}\right|_{d=3} ^{\mathrm{att}}=0.0155\left(\frac{R}{r}\right)^{3} \\
\left.\Leftrightarrow I_{4}\right|_{d=3}=\left(\frac{1}{180}+\frac{1}{6 \pi^{2}}\right)\left(\frac{R}{r}\right)^{4} \approx 0.0224\left(\frac{R}{r}\right)^{4} & \left.I_{4}\right|_{d=3} ^{\mathrm{att}}=0.0207\left(\frac{R}{r}\right)^{4}
\end{array}
$$

The free scalar CFT

There is very good matching between our analytical and numerical results

$$
\begin{array}{llrl}
\left.\Rightarrow I_{2}\right|_{d=3} & =\frac{1}{48}\left(\frac{R}{r}\right)^{2} \approx 0.08333\left(\frac{R}{r}\right)^{2} & \left.I_{2}\right|_{d=3} ^{\mathrm{att}}=0.0832\left(\frac{R}{r}\right)^{2} \\
\left.\Leftrightarrow I_{3}\right|_{d=3}=\frac{1}{12 \sqrt{3} \pi}\left(\frac{R}{r}\right)^{3} \approx 0.01531\left(\frac{R}{r}\right)^{3} & \left.I_{3}\right|_{d=3} ^{\mathrm{att}}=0.0155\left(\frac{R}{r}\right)^{3} \\
\left.\Rightarrow I_{4}\right|_{d=3}=\left(\frac{1}{180}+\frac{1}{6 \pi^{2}}\right)\left(\frac{R}{r}\right)^{4} \approx 0.0224\left(\frac{R}{r}\right)^{4} & \left.I_{4}\right|_{d=3} ^{\mathrm{att}}=0.0207\left(\frac{R}{r}\right)^{4}
\end{array}
$$

Analytical results for other d up to $\mathrm{N}=4$ and numerical ones for higher $\mathrm{N}<7$ suggest that

$$
\left.I_{N, d}\right|^{\text {free scalar }}>0
$$

Comments for holographic theories

In the large separation regime, the multipartite information vanishes at large N due to

$$
S\left(A_{1}, \ldots, A_{\alpha}\right)=\min _{\gamma} \frac{\operatorname{Area}\left(\gamma_{A_{1}, \ldots, A_{\alpha}}\right)}{4 G_{N}}=S\left(A_{1}\right)+\cdots+S\left(A_{\alpha}\right)
$$

Comments for holographic theories

In the large separation regime, the multipartite information vanishes at large N due to

$$
S\left(A_{1}, \ldots, A_{\alpha}\right)=\min _{\gamma} \frac{\operatorname{Area}\left(\gamma_{A_{1}, \ldots, A_{\alpha}}\right)}{4 G_{N}}=S\left(A_{1}\right)+\cdots+S\left(A_{\alpha}\right)
$$

We must include the first correction in $1 / \mathrm{N}$

$$
\begin{aligned}
& S(A)=\min _{\gamma} \frac{\operatorname{Area}\left(\gamma_{A}\right)}{4 G_{N}}+S_{b}\left(A^{b}\right) \\
& I_{N}\left(A_{1}, \ldots, A_{N}\right)=I_{N}^{b}\left(A_{1}^{b}, \ldots, A_{N}^{b}\right)
\end{aligned}
$$

Comments for holographic theories

In the large separation regime, the multipartite information vanishes at large N due to

$$
S\left(A_{1}, \ldots, A_{\alpha}\right)=\min _{\gamma} \frac{\operatorname{Area}\left(\gamma_{A_{1}, \ldots, A_{\alpha}}\right)}{4 G_{N}}=S\left(A_{1}\right)+\cdots+S\left(A_{\alpha}\right)
$$

We must include the first correction in $1 / \mathrm{N}$

$$
\begin{aligned}
& S(A)=\min _{\gamma} \frac{\operatorname{Area}\left(\gamma_{A}\right)}{4 G_{N}}+S_{b}\left(A^{b}\right) \\
& I_{N}\left(A_{1}, \ldots, A_{N}\right)=I_{N}^{b}\left(A_{1}^{b}, \ldots, A_{N}^{b}\right)
\end{aligned}
$$

We can prove this for well separated spherical regions in the
 boundary in an independent way, by using the bulk modular flow

Comments for holographic theories

\rightarrow Extrapolate dictionary at large separation:

$$
\left\langle\phi\left(x_{1}, z_{1}\right), \ldots \phi\left(x_{n}, z_{n}\right)\right\rangle \underset{\left|x_{i}-x_{j}\right| \gg\left|z_{k}\right|}{=} \alpha_{\Delta}^{N} z_{1}^{\Delta} \ldots z_{N}^{\Delta}\left\langle\mathcal{O}\left(x_{1}\right) \ldots \mathcal{O}\left(x_{N}\right)\right\rangle
$$

There is an expansion of twist operators in the bulk analogous to the boundary one:

$$
\begin{aligned}
\tilde{\Sigma}_{A^{b}}^{(n)} & =\sum_{i<j} C_{i j}^{A^{b}} \phi^{i}\left(X_{A^{b}}\right) \phi^{j}\left(X_{A^{b}}\right)+\ldots \\
C_{i j}^{A^{b}} & =\lim _{\left|x-x_{A}\right| \rightarrow \infty} G\left(X, X_{A^{b}}\right)^{-2}\left\langle\tilde{\Sigma}_{A^{b}}^{(n)} \phi^{i}(x) \phi^{j}(x)\right\rangle,
\end{aligned} \quad \text { [1511.07462-Agón, Faulkn }
$$

\rightarrow The coefficients are given by a two-point function of modular evolved fields (under control for bulk hemispheres)

$$
C_{i j}^{A^{b}}=\frac{C_{i j}}{\alpha_{\Delta}^{2} z_{A^{b}}^{2}} \Rightarrow \tilde{\Sigma}_{A^{b}}^{(n)} \underset{\text { extr. }}{\sim} \tilde{\Sigma}_{A}^{(n)} \Rightarrow I_{N}^{b}\left(A_{1}^{b}, \ldots, A_{N}^{b}\right)=I_{N}\left(A_{1}, \ldots, A_{N}\right)
$$

Conclusions and open questions

\Rightarrow We provided a proof of the long distance behaviour of the N -partite information in a CFT for general regions and in any dimension.
\Rightarrow For spherical regions, we showed how to systematically obtain the coefficient of the leading order term at long distances. It characterizes the lowest dimensional operator of the theory.
\rightarrow We checked our results for ad=3 free scalar on the lattice and for holographic theories.

Conclusions and open questions

\rightarrow We provided a proof of the long distance behaviour of the N-partite information in a CFT for general regions and in any dimension.
\Rightarrow For spherical regions, we showed how to systematically obtain the coefficient of the leading order term at long distances. It characterizes the lowest dimensional operator of the theory.
\rightarrow We checked our results for a $\mathrm{d}=3$ free scalar on the lattice and for holographic theories.
There are several questions still to be understood:
\Rightarrow How to reconstruct the CFT data? Presumably, we will need to include subleading terms.
\rightarrow Non-scalar lowest dimensional operators? Exact results beyond spheres?
\Rightarrow Is there a meaning of I_{N} as a bound on correlators? $\quad I_{2} \geq \frac{\left(\left\langle\mathcal{O}_{1} \mathcal{O}_{2}\right\rangle-\left\langle\mathcal{O}_{1}\right\rangle\left\langle\mathcal{O}_{2}\right\rangle\right)^{2}}{2\left\|\mathcal{O}_{1}\right\|^{2}\left\|\mathcal{O}_{2}\right\|^{2}}$
¡Muchas gracias!

