Quasi Random Generator

Avni Aksoy

Ankara University & CERN

Introduction

- □ For the most of the gun/injector study, the emision process determines the beam properties the cathode (and may continue through rest of the machine..)
 - > The lowest emittance value one can get at the injection
 - > Some 3D-distribution parameters (i.e. uncorrelated energy spread..)
- Usually the (macro) particles are generated with some physical constrains «randomly»
- In order to have good statistical agreement one needs to create «enough» number of macro-particle
 - > we have «pseudo-real» numbers not really «real-numbers»...
 - > if we do not have enough random number we might be struggling with «noises»
 - Large computing power
- □ Having «quasi-random» numbers let us to cover the domain of interest quickly over «pure random» numbers.

PDF and CDF

Mapping Uniform Distribution to any PDF

☐ If we have «statistical - good» uniform distribution the distribution we create ith give will be «statistical – good» also..

«Statistical good» distribution (Low-discrepancy sequence)

- ☐ It is not a random distribution actually it is a sequence...
 - > Simplest uniform N number between 0-1 is
 - $X_i = i/N$
 - > However we can not use this sequence in order not to have correlation hetween coordinates

Pseudorandom

Halton Sequence

The Generator

Particle Generator

- Most of the particle-tracking tools require, the initial particle distribution externally instead of generating them internally..
- Astra-generator is commonly used for creating initial distribution.. However
 - it has limited distribution types..
 - ▶ İt has limitations with random numbers with «noise_reduc» options meanning can not create quasi-rand distributions for all types
 - It has few bugs...
 - And source code is not available...
 - **>** ...
- We decided to develope a script (octave/matlab) to do same job which uses same input file and returns same output..

	1	2	3	4	5	6	7	8	9	10
Parameter	X	у	Z	px	ру	pz	clock	macro	particle	status
								charge	index	flag
Unit	m	m	m	eV/c	eV/c	eV/c	ns	nC		

Particle Generator

- Each macroparticle is represented by 3D-spacial (x,y,z) and 3D-momentum (p_x,p_y,p_z) coordinates.
- ☐ There might be coorelation between them. Like;
 - > x-y coordinates can be distributed based on cathode geometry or laser profile
 - \rightarrow x-p_x might requested to provide an emittance value (ϵ)
 - \rightarrow The energy therefore (p_x, p_y, p_z) coordinates might needed to be equal some value..
 - **>** ...
- Before creating any coordinate the relations between them needs to be evaluated like..
 - > 3D spacial relation -> 2D spacial relation -> Create 1D space ->
 - → 3D momentum relation -> 2D momentum relatio -> Create 1D momentum

Typical input file (with name «generator.in»)

```
Name of output file
&INPUT
   FNAME = 'Example.ini'
                  N_{add=0}, Number of particles
                                            Particle kind
  Add=FALSE,
  IPart=500, Species='electrons'
   Probe=True,
  Noise reduc=T.
                        Wheather will be created on cathode (zi=z0) or in space (ti=t0)
  Cathode: To run the generator in octave/matlab
  Q total=
  Ref zpos
   Dist z=
                 beam=make beam('generator.in');
   Dist pz=
   Dist x=
   Dist y= y,
                    SIG Y-0./JEO, DISC PY- G , NEMIC Y-I.OEO, COI PY-0.OEO
                                       Gaussian transverse coordinates and transverse momentum..
```

1D distributions

Dimension	Key word	Parameter <i>FWHM</i> or σ	unit
temporal, t	Dist_z = 'uniform'	Lt or sig_clock	ns
longitudinal z	Dist_z = 'uniform'	Lz or sig_z	mm
longitudinal Ekin	Dist_pz = 'uniform'	LE or sig_Ekin or emit_z	keV or keVmm
transverse x	Dist_x = 'uniform'	Lx or sig_x	mm
transverse y	Dist_y = ' u niform'	Ly or sig_y	mm
transverse p _x	Dist_px = 'uniform'	Lpx or sig_px or Nemit_x	eV/c or mrad mm
transverse py	Dist_py = 'uniform'	Lpy or sig_py or Nemit_y	eV/c or mrad mm

PDF	Uniform	0.8	
	1 -0.5 0 0.5 1	0.2 1 -0.5 0 0.5	FWHM
$f(x) = \frac{1}{2}$	FWHM 1	for $ x < FWHM$,	$\sigma = \frac{1}{2\sqrt{3}}$

Dimension	Key word	Parameter σ	unit
temporal, t	Dist_z = 'gaussian'	sig_clock	ns
longitudinal z	Dist_z = 'gaussian'	sig_z	mm
longitudinal Ekin	Dist_pz = 'gaussian'	sig_Ekin or emit_z	keV or keVmm
transverse x	Dist_x = 'gaussian'	sig_x	mm
transverse y	Dist_y = 'gaussian'	sig_y	mm
transverse px	Dist_px = 'gaussian'	sig_px or Nemit_x	eV/c or mrad mm
transverse py	Dist_py = 'gaussian'	sig_py or Nemit_y	eV/c or mrad mm

1D distributions

Dimension	Key word	Parameter L and r	unit
temporal, t	Dist_z = 'plateau'	Lt and rt	ns
longitudinal z	Dist_z = 'plateau'	Lz and rz	mm
longitudinal Ekin	Dist_pz = 'plateau'	LE and rE	keV or keVmm
transverse x	$Dist_x = 'plateau'$	Lx and rx	mm
transverse y	Dist_y = 'plateau'	Ly and ry	mm
transverse p _x	Dist_px = 'plateau'	Lpx and rpx	eV/c or mrad mm
transverse py	Dist_py = 'plateau'	Lpy and rpy	eV/c or mrad mm

Dimension	Key word	Parameter o	unit
temporal, t	Dist_z = 'inverted'	sig_clock	ns
longitudinal z	Dist_z = 'inverted'	sig_z	mm
longitudinal Ekin	Dist_pz = 'inverted'	sig_Ekin or emit_z	keV or keVmm
transverse x	Dist_x = 'inverted'	sig_x	mm
transverse y	Dist_y = 'inverted'	sig_y	mm
transverse px	Dist_px = 'inverted'	sig_px or Nemit_x	eV/c or mrad mm
transverse py	Dist_py = 'inverted'	sig_py or Nemit_y	eV/c or mrad mm

 $f(x) = \frac{1}{L} \left(1 + e^{\frac{2}{rt}(2|x|-L)} \right)^{-1}$ for $rt < \frac{L}{2}$, FWHM = L

2D Distributions – Radial

- □ Valid only for transverse space (x-y) and transverse momentum (px-py) pairs
- Command: 'r', 'ru', 'radial', 'radial-uniform'

$$f(x) = \frac{1}{\pi r^2}$$
 for $x^2 + y^2 \le r^2$, FWHM= $\sqrt{3}r$, $\sigma = \frac{r}{2}$

Dimension	Key word	Parameter <i>FWHM</i> or σ	unit
transverse x	Dist_x = 'ru'	Lx or sig_x	mm
transverse y	$Dist_y = \mathbf{'ru'}$	Ly or sig_y	mm
transverse px	Dist_px = 'ru'	Lpx or sig_px or Nemit_x	eV/c or mrad mm
transverse py	Dist_py = 'ru'	Lpy or sig_py or Nemit_y	eV/c or mrad mm

- > if x coordinate is defined, y is ignored
- > If Nemit u is defined sig u is ignored

2D Distributions – radial-plateau

- □ Valid only for transverse space (x-y) and transverse momentum (px-py) pairs
- Command: 'rp', 'radial-plateau'
- ☐ At least one component (x or y) has to be defined
 - > if x coordinate is defined, y is ignored

Dimension	Key word	Parameter L and r	unit
transverse x	$Dist_x = 'rp'$	Lx and rx	mm
transverse y	$Dist_y = \mathbf{rp'}$	Ly and ry	mm
transverse p _x	$Dist_px = rp'$	Lpx and rpx	eV/c
transverse py	Dist_py = ' rp'	Lpy and rpy	eV/c

2D Distributions — radial-gaussian

- □ Valid only for transverse space (x-y) and transverse momentum (px-py) pairs
- Command: 'rg', 'radial-gaussian'
- ☐ At least one component (x or y) has to be defined
 - > if x coordinate is defined, y is ignored
 - > if Nemit u is defined sig u is ignored

-4	-2	0	2	4

Dimension	Key word	Parameter sigma	unit
transverse x	Dist_x = 'rg'	sig_x	mm
transverse y	$Dist_y = \mathbf{rg'}$	sig_y	mm
transverse px	$Dist_px = rg'$	sig_px or nemit_x	eV/c or mrad mm
transverse py	Dist_py = ' rg '	sig_py or nemit_y	eV/c or mrad mm

☐ if C_sig_? is defined, gaussian is **truncated**, i.e. x_{max} =C_sig_x ×sig_x

2D Distributions – radial-parabola

- □ Valid only for transverse space (x-y) and transverse momentum (px-py) pairs
- Command: 'ri', 'radial-parabola'
- At least one component (x or y) has to be defined
 - > if x coordinate is defined, y is ignored
 - > If Nemit_u is defined sig_u is ignored

Dimension	Key word	Parameter sigma	Unit
transverse x	Dist_x = 'ri'	sig_x	mm
transverse y	$Dist_y = 'ri'$	sig_y	mm
transverse p _x	Dist_px = 'ri'	sig_px or nemit_x	eV/c
transverse py	Dist_py = 'ri'	sig_py or nemit_y	eV/c

3D distributions - ellipsoid

- Valid only for spacial coordinate (x-y-z)
- Command: 'ue', 'uniform-ellipsoid'

$$f(x) = \frac{1}{4\pi Lx Ly Lz} \quad \text{for} \quad \frac{x^2}{Lx^2} + \frac{y^2}{Ly^2} + \frac{z^2}{Lz^2} \le 1,$$
$$FWHM_u = \sqrt{2}Lu, \quad \sigma_u = \frac{Lu}{\sqrt{5}}$$

	7					
 3	-2	-1	0 X	1	2	3

Dimension	Key word	Parameter FWHM or σ	unit
temporal, t	$Dist_z = 'ue'$	Lt or sig_clock	ns
longitudinal z	$Dist_z = 'ue'$	Lz or sig_z	mm
transverse x	Dist_x = 'ue'	Lx or sig_x	mm
transverse y	$Dist_y = \mathbf{`ue'}$	Ly or sig_y	mm

3D distributions - isotropic

- □ Valid only for momentum space (px-py-pz).
- Command: 'ue', 'uniform-ellipsoid'
- Momentum of particles fills surface of half sphere.

$$p_x^2 + p_y^2 + p_x^2 = p^2 = E_{kin}^2 + 2E_{kin}$$

- \square RMS momentums: $\sigma_{p_x} = \sigma_{p_y} = 2\sigma_{p_z} = \frac{p}{\sqrt{3}}$
- \square Mean longitudinal momentum $\langle p_z \rangle = \frac{p}{2}$
- □ Transverse norm emittance: $\varepsilon_{\chi} = \frac{\sigma_{\chi}}{\sqrt{3}} \sqrt{\frac{2 E_{kin}}{m_0 c^2}}$

Dimension	Key word	Parameter FWHM	unit
p_x , p_y , p_z	Dist_pz = 'i'	LE	keV

K. Floettmann, TESLA-FEL Report 1997-01

3D distributions — Fermi-Dirac

Conclusion

- □ The generator is capable to generate all distributions which ASTRA generador does and more..
 - > Any distribution can be generated quasi randomly
- ☐ There are some statistical math behind the correlated distributions like
 - distributions on disc, filling sphere surface and filling inside sphere for a given statistical distribution
- One can choose sequences as
 - > rand genertor='sobol', (halton, reversehalton,..)
 - ➤ if noise_reduc=F random numbers are created with linear division..
- There are few items needs to be improved/developed
 - > Some issues with parsing input file like avoiding commanded out notes...
 - We plan to implement user defined PDF as input which might be useful for temporal distribution.