
Zero-Copy Merge with RNTuples
EUGENIO MARINELLI

Supervisors:  
Jakob Blomer 
Javier Lopez Gomez



Introduction

2

▸ Data from HEP events is rapidly increasing 

▸ Need of a modern software stack for modern storage hardware and systems 

▸ ROOT RNTuple 

▸ Modern redesign of ROOT TTree I/O subsystem 

▸ Available in ROOT7 

▸ HEP events stored as records of properties 

▸ Properties stored columnar-wise on disk 

▸ RNTuple fits the HEP events workload 

▸ Write-once-read-many columnar access 

▸ Often merging of many RNTuples content is need 

▸ Significant resource consumption



Contribution

3

▸ In this work: 

▸ extensive analysis of the challenges related to merging algorithm of 
RNTuples 

▸ first implementation of zero-copy merge 

▸ comparison with alternative implementations 

▸ overview of those aspects related to this algorithm that still need to be 
investigated.



ROOT7 RNTuples Hierarchy (bottom-up)

4

▸ Pages 

▸ partition columns 

▸ Clusters 

▸ Group of columns for a certain HEP events range 

▸ Cluster Groups 

▸ Set of clusters



ROOT7 RNTuple Metadata

5

▸ Header 

▸ RNTuple schema 

▸ Footer 

▸ Information about clusters, clusters groups, etc 

▸ Page Lists 

▸ Offsets of pages in the clusters 

▸ Stored after each cluster group



RNTuple Merging Operation

6

▸ Given m RNTuples 

▸ We want one resulting RNTuple with: 

▸ New header 

▸ Same content of all the source RNTuples 

▸ Same number of clusters and cluster groups, of the all the source RNTuples 

▸ New page list with updated offsets 

▸ New footer 

▸ Note: we want to share the content without copying it



Reflink and Block Sharing

7

Mechanism of duplicating files by sharing blocks at file system level 

Pros: 

▸ Note: different from hardlink mechanism 

▸ Finer granularity  

▸ file system blocks rather than whole files 

▸ Different metadata, i.e. different inode 

▸ Based on copy-on-write mechanism 

▸ Blocks are duplicated when one of the copy is modified



Reflink and Block Sharing: Challenges

8

▸ Available ONLY on certain file systems: 

▸ brtfs 

▸ XFS 

▸ Accessible through system calls (on Linux only): 

▸ ioctl 

▸ copy_file_range 

▸ Addresses range need to be aligned to the file system block size 

▸ typically 4KB (default) or higher



Reflinks from userspace

9

▸ ioctl  

▸ Fails if: 

▸ used out of XFS or btrfs 

▸ addresses are not aligned 

▸ If conditions met, blocks are duplicated in nearly constant time 

▸ copy_file_range 

▸ more general version of ioctl 

▸ if used on XFS and btrfs and addresses are aligned 

▸ blocks are shared 

▸ if used on other file systems  (EXT3, EXT4, etc): 

▸ efficiently copy the blocks at kernel level - w/o passing through the use-espace 

▸ if used on NFS enables server to server copy



RNTuple Padding

…

Cluster Group

NRTuple Columns Content

Metadata: header, page lists, footer

Padding

…

RNTuple
▸ Needed to enable 

block sharing 

▸ Applied: 

▸ after header 

▸ before and after 
page lists



Zero-Copy Merge

11

▸ Works with one cluster groups at time 

▸ For each cluster group: 

▸ clone the file blocks   

▸ update metadata 

▸ local offsets become global offsets



Evaluation

12

▸ Are blocks really shared?

RNTuple 1

RNTuple 2

Merged RNTuple



Evaluation

13

▸ Zero-Copy merge compared with: 

▸ Trivial merge 

▸ read and write data using standard RNTuple API 

▸ Fast merge 

▸ read from source files and write on destination file 

▸ Kernel merge 

▸ file copy in kernel space



Evaluation: Execution Time

14

▸ Zero copy merge nearly 
constant 

▸ metadata updates is the 
only contribution  

▸ Other merge grows linearly 

▸ Test data is uncompressed



Evaluation: Throughput

15

▸ We achieve higher 
throughput than the 
device limit



Conclusion

16

▸ This first Zero-Copy merge implementation seems to perform well in many 
basic cases 

▸ It outperforms alternative implementations 

▸ Enables the RNTuple merge in almost constant time 

▸ Ideally suit object store  

▸ By nature it enables zero-copy merge



Future Works

17

▸ Many questions still to be investigated 

▸ Can we avoid padding? 

▸ How to deal with OS different from Linux? 

▸ What if we use file systems with different blocks sizes? 

▸ What happens if on disk location of pages is interleaved with other objects? 

▸ Writing two RNTuples concurrently 

▸ How to deal with different storage backends (such as object store Intel DAOS)



THANK YOU!

18


