lab

'l:.; open

=%). CERN

EUGENIO MARINELLI

Supervisors:

Jakob Blomer

Javier Lopez Gomez

Introduction

» Data from HEP events is rapidly increasing
» Need of a modern software stack for modern storage hardware and systems
» ROOT RNTuple

» Modern redesign of ROOT TTree I/O subsystem

» Available in ROOT7

» HEP events stored as records of properties

» Properties stored columnar-wise on disk

» RNTuple fits the HEP events workload

» Write-once-read-many columnar access

» Often merging of many RNTuples content is need

» Significant resource consumption

Contribution

» In this work:

» extensive analysis of the challenges related to merging algorithm of
RNTuples

» first implementation of zero-copy merge
» comparison with alternative implementations

» overview of those aspects related to this algorithm that still need to be
investigated.

ROOT7 RNTuples Hierarchy (bottom-up)

struct Event {

int fld;
vector<Particle> fPtcls; ________
} . B i
struct Particle { IIEII]I:IEDJEI, ’j];I;U;lﬂ:DthEEED. U:EEI;I.CIIED
_ —t i “teeia-- -) — —
; Header Page Page List Footer
vector<int> flds;
}: Cluster
Cluster Group
» Pages

» partition columns
» Clusters

» Group of columns for a certain HEP events range
» Cluster Groups

» Set of clusters

ROOT7 RNTuple Metadata

» Header

» RNTuple schema
» Footer

» Information about clusters, clusters groups, etc
» Page Lists

» Offsets of pages in the clusters

» Stored after each cluster group

RNTuple Merging Operation

» Given m RNTuples
» We want one resulting RNTuple with:
» New header
» Same content of all the source RNTuples
» Same number of clusters and cluster groups, of the all the source RNTuples
» New page list with updated offsets
» New footer

» Note: we want to share the content without copying it

6

Reflink and Block Sharing

Mechanism of duplicating files by sharing blocks at file system level
Pros:
» Note: different from hardlink mechanism
» Finer granularity
» tile system blocks rather than whole files
» Different metadata, i.e. different inode
» Based on copy-on-write mechanism

» Blocks are duplicated when one of the copy is modified

7

Reflink and Block Sharing: Challenges

» Available ONLY on certain file systems:
» brtfs
» XFS
» Accessible through system calls (on Linux only):
» ioctl
» copy_file_range
» Addresses range need to be aligned to the file system block size

» typically 4KB (default) or higher

Reflinks from userspace

» ioctl
» Fails if:
» used out of XFS or btrfs
» addresses are not aligned
» If conditions met, blocks are duplicated in nearly constant time
» copy_tile_range
» more general version of ioctl
» if used on XFS and btrfs and addresses are aligned
» blocks are shared
» if used on other file systems (EXT3, EXT4, etc):
» efficiently copy the blocks at kernel level - w/o passing through the use-espace

» if used on NFS enables server to server copy

RNTuple Padding

RNTuple
» Needed to enable
bIOCk sharing I:I NRTuple Columns Content
. Metadata: header, page lists, footer
» Applied: L]

|:| Padding

» after header

» before and after
page lists

Cluster Group

‘----.

) J

4

Zero-Copy Merge

» Works with one cluster groups at time
» For each cluster group:

» clone the file blocks

» update metadata

» local offsets become global offsets

11

Evaluation

» Are blocks really shared?

[root@phsft-cvmOl test/]# xfs bmap -vp ntpll.root

ntpll. root:

EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL FLAGS

O: [0..7]: 105009056. .105009063 2 (151456..151463) 8 000000

1: [8..300007]: 105009064..105309063 | 2 (151464..451463) 300000 100000 RNTuple 1
2
root

2: [300008..300095]: 1053090604..105309151 451464..451551) 88 000000
[root@phsft cvmOl test/]# xfs bmap -vp ntpl2.
ntpl2.root:
EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL FLAGS
O: [0..7]: 105309152, .105309159 2 (451552..451559) 8 000000
1: [8..480007]: 105309160..105789159 2 (451560..931559) 480000 100000 RNTuple 2
2: [480008..480135]: 105/89160..105/8928/ 2 (931560..931687) 128 000000
[root@phsft cvmOl test/]# xfs bmap -vp ntplmerged. root
ntplmerged. root:
EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL FLAGS
: [0..7]: 157286488..157286495 3 (88..95) 8 000000
8..300007]: 105009064 . .105309063 | 2 (151464..451463) 300000 100000
'300008..300087]: 1/1841608..171841687 3 (14555208..14555287) 80 000000 Merged RNTuple
2
3

1300088..780087]:1 1605309160..105789159 451560..931559) 480000 100000
[/80088..780215]: 1/1841688..1/1841815 14555288..14555415) 128 000000

12

Evaluation

» Zero-Copy merge compared with:
» Trivial merge
» read and write data using standard RNTuple API
» Fast merge
» read from source files and write on destination file
» Kernel merge

» file copy in kernel space

13

Evaluation: Execution Time

B Kernel-Copy Merge [ext4d]
) ZerO COpy merge nearly © Fast Merge [ext4]

2001 V Trivial Merge [ext4]
constant ¢ Zero-Copy Merge [xfs]

» metadata updates is the

only contribution 0
» Other merge grows linearly o ¢
— 100 -
» Test data is uncompressed
50 -

0 5 10 15 20 25
Size [GB]

14

Evaluation: Throughput

107 -
» We achieve higher | 2100 GB/cec
throughput than the 1
10" -
device limit '
[s)
&
o 10°
% Device Throughput [0.25 GB/sec]
)
a I — o o e e e e e e e e e e e e e e o o o o
5 0.15 GB/sec 0.12 GB/sec 0.12 GB/sec
3 107!
O
e
|_
: l l l_
1073 -
Zero-Copy Merge Kernel-Copy Merge Fast Merge Trivial Merge

Merging Algorithm

15

Conclusion

» This first Zero-Copy merge implementation seems to perform well in many
basic cases

» It outperforms alternative implementations
» Enables the RNTuple merge in almost constant time
» Ideally suit object store

» By nature it enables zero-copy merge

16

Future Works

)

Many questions still to be investigated

Can we avoid padding?

How to deal with OS different from Linux?

What if we use file systems with different blocks sizes?

What happens if on disk location of pages is interleaved with other objects?
» Writing two RNTuples concurrently

How to deal with different storage backends (such as object store Intel DAOS)

17

THANK YOU!

18

